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What is Learning?

• (Arthur Samuel, 1959)

– Field of study that gives computers the ability to learn 

without being explicitly programmed.

• (Tom Mitchel, 1998)

– A computer program is said to learn from some 

experience E with respect to some task T and some 

performance measure P, if its performance T as 

measured by P, improves with experience E.
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Example

• Suppose your computer watches which emails 

you do or do not mark as spam, and based on 

that learns how to better filter spam.

What are task T, experience E, and performance P?

 Classifying emails as spam or not spam.

 Watching you label emails as spam or not spam.

 The number of emails correctly classified as spam 

or not spam
3



Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Algorithm Taxonomy
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Components of ML Algorithms

• Representation
– Decision trees
– Sets of rules / Logic programs
– Graphical models (Bayes/Markov nets)
– Neural networks
– Support vector machine

• Evaluation
– Accuracy, precision and recall, mean-squared error, likelihood, 

posterior probability, cost function, margin of error, entropy, etc.

• Optimization
– Combinatorial (e.g. greedy search)

– Convex (e.g. gradient descent)

– Constrained (e.g. linear programming)
5
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Types of Experiences

• Supervised Learning

– Humans learn from past experiences

– Computers learn from labeled data that 
represents past experience or prior knowledge

• Unsupervised Learning

– No a priori models, unlabelled data

• Reinforcement Learning

– Training through interaction with an environment; 
the agent receives a numerical reward signal
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Unsupervised Learning
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Challenge: Classify into two groups
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Unsupervised Learning:

Human vs. Other
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Supervised Learning:

The Training Process
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“Female”

“Male”

“Other”
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Supervised Learning:

Testing
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The Classification Process
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Walking Limping Falling Wheelchair Use
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What Features We Extract is Important
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Efficacy of Features Dependent on 

Transmit Parameters!
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S.Z. Gurbuz, B. Erol, B. Cagliyan, B. Tekeli, “Operational Assessment and Adaptive Selection of Micro-Doppler 

Features,” IET RSN, 2015.
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More Features Not Necessarily Better

• “Curse of Dimensionality”
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https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
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Feature Selection Algorithms

• Filter Methods

– Based on some metric, features are selected

– Advantage is that it doesn’t depend on classifier

– Disadvantage is that it may not accurately predict 
ultimate classification accuracy

• Wrapper Methods

– Brute force just try and find the best combination 
of features

– May (or may not) give better combination, but 
computationally intensive and classifier specific
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Feature Selection Example

16



Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Classifiers in Supervised Learning

• Linear Classifier:  Support Vector Machine (SVM)

– Aims to maximize the margin (distance) between

two classes in the input space
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Non-Linear Classifier Example

• K-Nearest Neighbors

– Algorithm searches the entire training set, calculating the

difference between the new sample and each training

model

– Output is the class with the K-most similar neighbors
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Other Classifiers

Supervised:

• Decision Trees

• Random Forests

• Bayesian Classifiers

• Boosting

• Neural Networks

… and more…
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Unsupervised:

• Clustering

• Gaussian Mixture 

Models

… and more…
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Distance Metrics
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Performance Metrics
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• Confusion Matrix

• Accuracy

– Correct classification rate (# correct/total)

Accuracy
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More Metrics
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• Precision = true positives / all positives

• Recall = Sensitivity = 

= true positives/(true positive + false negative)

• Specificity = 

= true negatives/(true negatives + false positives)

Recall = Sensitivity

Precision Specificity
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Receiver Operating Characteristics 

(ROC) and Area-Under-Curve (AUC)
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Watch Out for Generalization and 

Overfitting!
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• Generalization

– The ability to produce reasonable outputs for 

inputs not encountered during training
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Overfitting
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• Overfitting is a modeling error that introduces bias to the model because 

it is too closely related to the data set.

• Overfitting makes the model relevant to its data set only, and irrelevant to 

any other data sets.

• Performs well on the data used during training but poorly with new data

 

To avoid overfitting, use a sufficient amount of training data 

with statistical variations, and early stopping...
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The More (Data), The Merrier
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• Overfitting depends on the amount of data, relative 

to the complexity of the hypothesis

• With more data, we can explore more complex 

hypotheses spaces, and still find a good solution
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How Can You Detect Overfitting?

• Divide data into three disjoint sets:

– Training: set of examples for learning 

– Validation: examples to tune architecture 

of assess errors

– Test: performance assessment of classifier; gives 
unbiased estimate of generalization error 

• Overfitting can be identified by checking validation 
metrics such as accuracy and loss. The validation 
metrics usually increase until a point where they 
stagnate or start declining when the model is 
affected by overfitting.
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Overfitting Example
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How Can Overfitting Be Prevented?

• Training with More Data

• Data Augmentation

• Reduce Complexity of Model

• Ensembling (combine predictions from two or 
more separate models)
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