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How Do Biological Systems Learn?

. I

Study of neural computation inspired by the observation:

» Biological learning systems are built of very complex webs of interconnected
neurons

« Each unit takes real-valued inputs (possibly from other units)
* Produces a single real valued output (which becomes the input to many
other units)

A colored scanning electron micrograph (SEM) ~ —_ Axon termina o
of a neuron (nerve cell). Yy . \ \

Myelin sheat

Myelinated axon

Image from S. Srihari
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The Human Brain

I

* Densely interconnected network
of 101! (100 billion) neurons

* Each connected to 10% (10,000)
others

* Fastest neuron switching time is
10-3 seconds
— Slow compared to computer
switching speed: 101%secs
* Activity excited or inhibited
through connections to other
neurons
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Speed and Distributed Processing

 Humans can make certain decisions (visually recognize your
mother) in 10 secs

* Implies that in 10 sec interval cannot possibly have more than a few
hundred steps, given switch speed

» Highly parallel/distributed processing operations should exist

Figure by Andrew Ng. 5
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Seeing with your Tongue
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Human Echolocation
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Our Hypothesis in NN
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Idealization of A Neuron
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Neural Network Structure

zZ = z Gix,- +b
@ @ — =1 Neuron output

Linear Non-linear
- . . . .
. combination activation

Inputs Weights
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Activation Functions

(a) (b) (c)

Sigmoid Tangent Hyperbolic Rectified Linear Unit (ReLU)
1 o(z) = tanh(z o(z) = max(0, z
o=l (2) = tanh(2) (2) = max(0,7)
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DEEP NEURAL NETWORKS
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Artificial Neural Network

Layer 1 Layer 2 Layer 3 Layer 4

Input Layer — ~— —
Hidden Layers
Feed Forward Neural Network Structure:
* The connections between the nodes do not form a cycle. No loops
* The information moves in only one direction, forward, from the input nodes, through the hidden

Output Layer

nodes (if any) and to the output nodes 12
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First (Input) Layer

aq(;j) — “activation” of unit i inlayer j

First layer (Input Layer):

Layer 1 Layer 2 Layer 3 Layer 4

First layer activations are same as the

inputs
(1) _
ca;’ =x
« 4 _ 1
a, = Xp a( ) = X
e aV =y
3 — 73 1
ey
0 1]
atV
al =1 |=[*
(1) X7
Layer1l Layer 2




Propagate to 2" Layer

<" Biasnodeal’=1 . * Bias parameter
’ 2 1 1) (1 1) (1 1
9 £ = 0+ 00 4 60 40 )
a0y

2 2
a$? = o(z{?)

?) = o( a(()l) + Qﬁ)agl) + Hg)agl) + agl))

_ac()l)_

(2) _ (1) 1) a; | _ qM~T (D
Layer 1 Layer 2 Z3 = l 931 032 ] - (93,; ) a

2 2 1 1
as? = 0(z5”) = o((65,)7a")
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Activations of 2"d Layer

L
D Let’s calculate all the activations in the next layer
Biasnodea, =1

A2 Cl(()z) =1

]
...
]

@) _ 5(,@
2P = 0Pal + 60 4 6DV 4+ 9D a” = 0(z7)

2 2
29 = 0{Pal” +6{Pa'V +6alV + 62 alV a$? = o(z{?)

A2 = oPal) + ofal? + obalh + ofal? o -

Layer1l i Layer2

o) ey o gV

2
)
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Let’s Rewrite in Matrix Form

Bias node a(()l) _q ©(J) — matrix of w.elghts cont.rollmg function mapping
) from layer j to layer (j+1)
H [, (2)]
-a(()l) =1 12
a(l) Zé ) a(z) — G(Z(Z))
a(l) = %1) Z(Z) = Z§2) = e(l)a(l) 1
a, (2) Elementwise
e Za
3 (2)
| Zg

If the network has s; units in layer j and s;,; units
in layer (j+1) then the size of @Wis Siva X (5; +1)

(D) () H@O) H(D)]
0100 0117 012" O3

1) — | o@D (1) (1) (1)
0()_ 930 931 932 933

(1) (1) (1) (1)
050 0517 055 0537 16

Sevgi Z. Gurbuz (szgurbuz@ua.edu) UJ?;H OF ALABAMA®




Number of Parameters in a DNN

Layer 1 Layer 2 Layer 3 Layer 4
© () — matrix of weights controlling If the network has s; units in layer jand s, ,
function mapping from layer j to  unitsin layer (j+1) then the size of @U)js Si+1
layer (j+1) X (s;+1)
M) ——— 5x4=20 Total number of parameters:
@) = 5yE=30 20+30+24=74

0®) = 4x6=24
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Keep Propagating

I L

Forward propagation:
For a given state of parameters @), ©(2) and ©®) we can calculate all the

activations in each layer: . o .
First layer activations are the input

features x= xl
2
L2) _ o)) .

al2) — g(z(z)) (add a(()2))—> Second Layer Activations

L(3) — ©(2) 42

aB®) =, (2(3)) (add a(()S)) ~———=  Third Layer Activations

L4 — 9(3),43)
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What Can DNNs Represent?

* Two questions:
What is the representational power of this family of functions?
Are there functions that cannot be modeled with a Neural Network?

ASIRIRSImASS Mabensfis d Cori Neural Networks with at least one hidden layer
are universal approximators.

© 1989 Springer-Veriag New Yark Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenk /- . .
U Given any continuous function g(x) and some € >0,
S , there exists a Neural Network fg(x) with one hidden
h., = = layer (with a reasonable choice of non-linearity, e.g.
T \_ sigmoid) such that Vx, Ig(x)-fo(x) | < €. )

A number fd liverse application areas are with the '--of
g:v:mlf of an n-dimensional real variable, x & R”, by fini u:lnca:c ombin:

foette o In other words, the neural network can approximate

where y; € R" and a;, § € R are fixed. (T is the transpose of y so that yx is the inner
product of y and x.) Here the univariate function ¢ depends heavily on the context

of the application. Our major concern is with so-called sigmoidal o's: a ny CO nti n u O u s f u n Ct i O n .

1 as t— +oo,
Hm_‘{ﬂ as - —co.

n neural network theory as the activation function

e s o e ke This result holds even if the function has many inputs.

* Date received: October 21, 1988, Date revised: February 17, 1989. This research was supporied 19

in part by NSF Grant DCR-8619103, ONR Cantract N00D-86-G-0202 and DOE Gmm DE-FGﬂz-
TY OF ALABAMA®
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What if we go Deeper?

B

* If one hidden layer suffices to approximate any function, why use
more layers and go deeper?

Two Caveats:

1) First, this doesn't mean that a network can be used to exactly compute any function.
Rather, we can get an approximation that is as good as we want. By increasing the
number of hidden neurons we can improve the approximation.

2) the class of functions which can be approximated in the way described are
the continuous functions. If a function is discontinuous, i.e., makes sudden, sharp
jumps, then it won't in general be possible to approximate using a neural net.

¥

a more precise statement of the universality theorem is that
neural networks with a single hidden layer can be used to
approximate any continuous function to any desired precision.

20
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Cost Functions for Training

A&

%%
ZaAN\\N

Layer 1 Layer 2 G(Z) Layer 3 Layer 4

¥yt

Training data: Need a cost function to say how well
(x), y@), (x@, y@),....., (x(M), yim)), é the approximation for given
parameters © 21

Sevgi Z. Gurbuz (szgurbuz@ua.edu) " UNIVERSITY OF ALABAMA®




How to Define Cost?

I D

* |t depends on the application and NN structure
— Regression
— Binary classification (Logistic Activation)
— Multi-class classification (K-binary) (Logistic Activation)
— Standard Multi-class (Softmax Activation)

4 Each case has a different cost function A
(again basically depending on the probabilistic view of
the data and Maximum likelihood estimation of
_ parameters) )
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Example: Cost in Regression

o6 _ Single output
"y ER

input layer

hidden layer 1 hidden layer 2 Y
Linear output Unit

Assuming vy are independent and

1< | | Gaussian distributed with mean
J(@) = §Z(f(x(l); 0) — y®)2 é f(x®©;@). This cost is the same
i=1 obtained in Maximum Likelihood
Estimation of ®

23
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Why? Take Derivative at Output

Derivative at the
output node will be
back-propagated to
update 0. Hence it is
important.

input layer

hidden layer 1 hidden layer 2

M
1 . .
—_— — (3;1) _ (l) 2 ](@) . ,- .
J(©) 2 ;zl(z y) # Eﬁl) — (Z(S ) _ y(l))

The error ( f(x(; @) — y®) for each data sample is actually

the derivative at the output node wrt z
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Another Example: Binary
Classification

output layer

)
hidden layer 1 hidden layer 2 ! Logistic Unit

input layer

This time output is either y=0 or y=1 (Binary!) [
The output unit is a logistic unit ~ _—5

SUNSE S C E T

) el X 25
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Cost Function for Binary Classification

J(©) = - %[Z yDlog f(xP;0) + (1 — y®D)log(1 - f(xV;0))
=1

ati . J(©) _ i), i
Derivative at the output node: 0 = f(x( ), @) - y( )
1 m
J(0) =—-— 2 yDlogh® + (1 - yD)log(1 — k)| RO = 1
mis 14e—20
=1 e
J(©) —y® 1-y® pO_yO |
—=—— 4 — = — :
dh® ~ h@® T1-h®  p®O(1-pO J(O) ; ;
dh® . . dz®
_ = h((1-p®) , _
dz® (Same as for linear regression)

26
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Standard Multi-Class Classification

Output Layeris a
softmax layer

Layer 1 Layer 2 Layer 3 Layer 4

Softmax assigns decimal probabilities to each class in a multi-class problem. Those
decimal probabilities must add up to 1.0. This additional constraint helps training
converge more quickly than it otherwise would.
2®
e’ softmax
(i) activation o (WTx1b)

Lie? -
k p(y = jlx) = =
EkeK e(wk X—f—bk)

k =1 to K number of classes

@) Network outputs are interpreted as probabilities
h:’ =
J

Sevgi Z. Gurbuz (szgurbuz@ua.edu) /ERSITY OF ALABAMA?®




Cost for Standard Multiclass

. L cccsssSS
S _
j@ == > > 5 logh’
[i=1 k=1 i
Derivation is a little longer but for 0
.o J®) w» o
softmax case the derivative wrt the = h, .

. : (l)
activation and the output layer is dz

similar: just the error

Regularized Cost:

Jo(0) = J(8) + 5 Z(@ %
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MATHEMATICS OF TRAINING:
1. Gradient Descent
2. Backpropagation
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Gradient Descent: How to Find
Maxima/Minima

15

10
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Gradient Descent

* Want to minimize J(f, f;) over parameters 6, 6,

5?,192 J(Qo, (91)

Outline:
* Start with some §,, #; (could be arbitrary)
» Keep changing 0,0, toreduce J(fy,01) until

we hopefully end up at a minimum
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GD in Multiple dimensions

= ‘- ‘1 “' " -h-l.
i\
bk +Ary P
Irj-{-"#&ﬂ 1] l|' *l**' .‘l ‘: _"‘:‘i‘i:’. rr":ﬁ*’ﬁt"‘%ﬂ‘l\#‘ rll|. .'- - :

L
AR
"""I:. b-.
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Simply Gradient Descent

Start with arbitrary 6, 6,

repeat until convergence {

0
0; :=0,; an(Bo 61) (forj=0andj=1)

¥
ol ! X{arm‘?f (‘QAQ (5‘\'4\3 5.‘2’2>
J(® ;} cv‘;,‘{j"" ” J (%1,?

SOt A

(=
— N
FQ b)f}a

0,29, l(Po”")

—>
) ("‘9? 91 >0
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Effect of Learning Rate (Step Size)

Learning Rate o small:

R

o Tov mon iludion;
1o ]e\\,\d 4he Miaimum

o o sod] DGD s slow |

R

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Learning Rate a too large:
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Effect of Learning Rate (Step Size)

I
Learning Rate a fixed or variable

n- Ot s Cons der &ﬂwl

+ M‘(f]/\+ deceore o

ovesr hme -

0.
)
— N + Dipfrent & n®, or
ince grodiont aeks smelles A g@nwﬁ o (i

U\‘JQOAQ 00 The Q\Vo‘me'l'ff' suitable wil |

%Q)( ol @ven s worl - Pul s
. F e ’ aom S“‘:” NN a&Jan@l ekﬂ-l
~ Fixed ™ |

acame f we necd 4
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How to choose a
* For sufficiently small a , J(0) should
decrease at every iteration
* Very small a converges slowly
* Very large a might not converge

 Test different a:
— start small, then gradually increase
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When to stop?

* Declare that the algorithm has converged
when the cost J(0) decreases by less than a
predefined error in one iteration
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Summary of Backpropagation

1. Define a training set .2, which consists of N training samples with the corre-
sponding desired outputs

= Ix(n),d(n);n=1,2,...,N}.

{)_

2. Random initialization of the network weights w

Set W =x,n=1,30"V=11=1,2,.,L
3. Forward propagation of training sample x(#)

[ [ (-1
v = z Wiy V()

=0

{f)( - ga”) ( {0)
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Backpropagation (cont’d)

4. Calculate the local gradient for all neurons. Equations (3.20) and (3.25).
L .@}{LJ(VEFL)(H)) if /=1L

oy D
sm=4¢

o DOV st oy T (n)  else
5. Compute gradient vector of weights according to (3.28)

o0& () {r 1)
. {f) = 0,7y

6. Weight update according to (3.16)

o0&
Dot = w0 =7
3,0

_ﬂ
7. lterate m — n+ 1 and repeat steps 3—6. until stopping critarion is met.
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DNN ARCHITECTURES
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Convolutional Neural Networks

I s

e Consist of a number of convolutional and
subsampling layers optionally followed by fully
connected layers.

Convolution

] Max.
Pooling

. Max.
Convolution a Fully Class

Pooling . :
| Convolution Pooling Connected Predictions

A .
= e £
- — Ty
LIy i
. =
-- e | | e

41
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Auto-Encoders (AEs)

* Neural network that takes unlabeled data and
tries to learn the identity function, i.e.
optimizes weights such that output
approximates input.

Matrix to
Vector |—>»
Conversion

(QOOo0oooogoooooon |
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Convolutional Auto-Encoders
(CAEs)

I L ssSS
 CAEs combine the benefits of convolutional
filtering in CNN’s with unsupervised pre-
training of autoencoders

DDDDDDDDDDDDDDDDDDDDDDDD

||% ﬂll

a? Unpooling

b

Encoder
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Residual Neural Networks

e Residual units include a short cut path

— If no new information is learned by adding layers, identity mapping
can be used

Input

)

Fully Connected Layers "

)

T T

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®




Next Time...

... Examples from radar applications
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