ECE 693 — Special Topics:
Al for Radar System Design

Introduction to Deep Learning

Dr. Sevgi Zubeyde Gurbuz
szgurbuz@ua.edu

Feb. 11, 2022

THE UNIVERSITY OF

ALABAMA

mailto:szgurbuz@ua.edu

BIOLOGICAL MOTIVATIONS

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®

How Do Biological Systems Learn?

. I

Study of neural computation inspired by the observation:

» Biological learning systems are built of very complex webs of interconnected
neurons

« Each unit takes real-valued inputs (possibly from other units)
* Produces a single real valued output (which becomes the input to many
other units)

A colored scanning electron micrograph (SEM) ~ —_ Axon termina o
of a neuron (nerve cell). Yy . \ \

Myelin sheat

Myelinated axon

Image from S. Srihari

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

The Human Brain

I

* Densely interconnected network
of 101! (100 billion) neurons

* Each connected to 10% (10,000)
others

* Fastest neuron switching time is
10-3 seconds
— Slow compared to computer
switching speed: 101%secs
* Activity excited or inhibited
through connections to other
neurons

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Frontal Parietal

Occipital
s lobe

Temporal
lobe

Speed and Distributed Processing

 Humans can make certain decisions (visually recognize your
mother) in 10 secs

* Implies that in 10 sec interval cannot possibly have more than a few
hundred steps, given switch speed

» Highly parallel/distributed processing operations should exist

Figure by Andrew Ng. 5

sevgi Z. GurbuZ (g THE UNIVERSITY OF ALABAMA®

Seeing with your Tongue

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA?

Human Echolocation

I O ——

-

o
-

Sarn Oldridge

Echnlm;atar

. ‘k_

Sevgi Z. Gurbuz (szgurbuz@ua.edu) IE UNIVERSITY OF ALABAMA‘;

Our Hypothesis in NN

> Dendrites

Idealization of A Neuron

INPUT ACTIVITY _~ WEIGHTED
) INPUT

OUTPUT
ACTIVITY

=) G ! Synapse

1L
Neuron Firing

Activation function

- Input weiglits
w
3

- -

%) \
s

>

Q

=

c

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA?

Neural Network Structure

zZ = z Gix,- +b
@ @ — =1 Neuron output

Linear Non-linear
-
. combination activation

Inputs Weights

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®

Activation Functions

(a) (b) (c)

Sigmoid Tangent Hyperbolic Rectified Linear Unit (ReLU)
1 o(z) = tanh(z o(z) = max(0, z
o=l (2) = tanh(2) (2) = max(0,7)

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®

DEEP NEURAL NETWORKS

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®

Artificial Neural Network

Layer 1 Layer 2 Layer 3 Layer 4

Input Layer — ~— —
Hidden Layers
Feed Forward Neural Network Structure:
* The connections between the nodes do not form a cycle. No loops
* The information moves in only one direction, forward, from the input nodes, through the hidden

Output Layer

nodes (if any) and to the output nodes 12

Sevgi Z. Gurbuz (szgurbuz@ua.edu) NIVERSITY OF ALABAMA®

First (Input) Layer

aq(;j) — “activation” of unit i inlayer j

First layer (Input Layer):

Layer 1 Layer 2 Layer 3 Layer 4

First layer activations are same as the

inputs
(1) _
ca;’ =x
« 4 _ 1
a, = Xp a() = X
e aV =y
3 — 73 1
ey
0 1]
atV
al =1 |=[*
(1) X7
Layer1l Layer 2

Propagate to 2" Layer

<" Biasnodeal’=1 . * Bias parameter
’ 2 1 1) (1 1) (1 1
9 £ = 0+ 00 4 60 40)
a0y

2 2
a$? = o(z{?)

?) = o(a(()l) + Qﬁ)agl) + Hg)agl) + agl))

ac()l)

(2) _ (1) 1) a; | _ qM~T (D
Layer 1 Layer 2 Z3 = l 931 032] - (93,;) a

2 2 1 1
as? = 0(z5”) = o((65,)7a")

14

Gurbuz (szgurbuz@ua.edu)

Activations of 2"d Layer

L
D Let’s calculate all the activations in the next layer
Biasnodea, =1

A2 Cl(()z) =1

]
...
]

@) _ 5(,@
2P = 0Pal + 60 4 6DV 4+ 9D a” = 0(z7)

2 2
29 = 0{Pal” +6{Pa'V +6alV + 62 alV a$? = o(z{?)

A2 = oPal) + ofal? + obalh + ofal? o -

Layer1l i Layer2

o) ey o gV

2
)

Sevgi Z. Gurbuz (szgurbuz@ua.edu) IE UNIVERSITY OF ALABAMA®

Let’s Rewrite in Matrix Form

Bias node a(()l) _q ©(J) — matrix of w.elghts cont.rollmg function mapping
) from layer j to layer (j+1)
H [, (2)]
-a(()l) =1 12
a(l) Zé) a(z) — G(Z(Z))
a(l) = %1) Z(Z) = Z§2) = e(l)a(l) 1
a, (2) Elementwise
e Za
3 (2)
| Zg

If the network has s; units in layer j and s;,; units
in layer (j+1) then the size of @Wis Siva X (5; +1)

(D) () H@O) H(D)]
0100 0117 012" O3

1) — | o@D (1) (1) (1)
0()_ 930 931 932 933

(1) (1) (1) (1)
050 0517 055 0537 16

Sevgi Z. Gurbuz (szgurbuz@ua.edu) UJ?;H OF ALABAMA®

Number of Parameters in a DNN

Layer 1 Layer 2 Layer 3 Layer 4
© () — matrix of weights controlling If the network has s; units in layer jand s, ,
function mapping from layer j to unitsin layer (j+1) then the size of @U)js Si+1
layer (j+1) X (s;+1)
M) ——— 5x4=20 Total number of parameters:
@) = 5yE=30 20+30+24=74

0®) = 4x6=24

Sevgi Z. Gurbuz (szgurbuz@ua.edu) INIVERSITY OF ALABAMA?®

Keep Propagating

I L

Forward propagation:
For a given state of parameters @), ©(2) and ©®) we can calculate all the

activations in each layer: . o .
First layer activations are the input

features x= xl
2
L2) _ o)) .

al2) — g(z(z)) (add a(()2))—> Second Layer Activations

L(3) — ©(2) 42

aB®) =, (2(3)) (add a(()S)) ~———= Third Layer Activations

L4 — 9(3),43)
Sevgi Z. Gurbuz (szgurbuz@ua.edu) . UNIVERSITY OF ALABAMA?®

— Output Layer Activations

What Can DNNs Represent?

* Two questions:
What is the representational power of this family of functions?
Are there functions that cannot be modeled with a Neural Network?

ASIRIRSImASS Mabensfis d Cori Neural Networks with at least one hidden layer
are universal approximators.

© 1989 Springer-Veriag New Yark Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenk /- . .
U Given any continuous function g(x) and some € >0,
S , there exists a Neural Network fg(x) with one hidden
h., = = layer (with a reasonable choice of non-linearity, e.g.
T _ sigmoid) such that Vx, Ig(x)-fo(x) | < €.)

A number fd liverse application areas are with the '--of
g:v:mlf of an n-dimensional real variable, x & R”, by fini u:lnca:c ombin:

foette o In other words, the neural network can approximate

where y; € R" and a;, § € R are fixed. (T is the transpose of y so that yx is the inner
product of y and x.) Here the univariate function ¢ depends heavily on the context

of the application. Our major concern is with so-called sigmoidal o's: a ny CO nti n u O u s f u n Ct i O n .

1 as t— +oo,
Hm_‘{ﬂ as - —co.

n neural network theory as the activation function

e s o e ke This result holds even if the function has many inputs.

* Date received: October 21, 1988, Date revised: February 17, 1989. This research was supporied 19

in part by NSF Grant DCR-8619103, ONR Cantract N00D-86-G-0202 and DOE Gmm DE-FGﬂz-
TY OF ALABAMA®

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

What if we go Deeper?

B

* If one hidden layer suffices to approximate any function, why use
more layers and go deeper?

Two Caveats:

1) First, this doesn't mean that a network can be used to exactly compute any function.
Rather, we can get an approximation that is as good as we want. By increasing the
number of hidden neurons we can improve the approximation.

2) the class of functions which can be approximated in the way described are
the continuous functions. If a function is discontinuous, i.e., makes sudden, sharp
jumps, then it won't in general be possible to approximate using a neural net.

¥

a more precise statement of the universality theorem is that
neural networks with a single hidden layer can be used to
approximate any continuous function to any desired precision.

20
Sevgi Z. Gurbuz (szgurbuz@ua.edu) /ERSITY OF ALABAMA®

Cost Functions for Training

A&

%%
ZaAN\\N

Layer 1 Layer 2 G(Z) Layer 3 Layer 4

¥yt

Training data: Need a cost function to say how well
(x), y@), (x@, y@),....., (x(M), yim)), é the approximation for given
parameters © 21

Sevgi Z. Gurbuz (szgurbuz@ua.edu) " UNIVERSITY OF ALABAMA®

How to Define Cost?

I D

* |t depends on the application and NN structure
— Regression
— Binary classification (Logistic Activation)
— Multi-class classification (K-binary) (Logistic Activation)
— Standard Multi-class (Softmax Activation)

4 Each case has a different cost function A
(again basically depending on the probabilistic view of
the data and Maximum likelihood estimation of
_ parameters))

Sevgi Z. Gurbuz (szgurbuz@ua.edu) INIVERSITY OF ALABAMA®

Example: Cost in Regression

o6 _ Single output
"y ER

input layer

hidden layer 1 hidden layer 2 Y
Linear output Unit

Assuming vy are independent and

1< | | Gaussian distributed with mean
J(@) = §Z(f(x(l); 0) — y®)2 é f(x®©;@). This cost is the same
i=1 obtained in Maximum Likelihood
Estimation of ®

23
Sevgi Z. Gurbuz (szgurbuz@ua.edu) IE UNIVERSITY OF ALABAMA®

Why? Take Derivative at Output

Derivative at the
output node will be
back-propagated to
update 0. Hence it is
important.

input layer

hidden layer 1 hidden layer 2

M
1 . .
—_— — (3;1) _ (l) 2](@) . ,- .
J(©) 2 ;zl(z y) # Eﬁl) — (Z(S) _ y(l))

The error (f(x(; @) — y®) for each data sample is actually

the derivative at the output node wrt z

Sevgi Z. Gurbuz (szgurbuz@ua.edu) UNIVERSITY OF ALABAMA®

Another Example: Binary
Classification

output layer

)
hidden layer 1 hidden layer 2 ! Logistic Unit

input layer

This time output is either y=0 or y=1 (Binary!) [
The output unit is a logistic unit ~ _—5

SUNSE S C E T

) el X 25

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®

Cost Function for Binary Classification

J(©) = - %[Z yDlog f(xP;0) + (1 — y®D)log(1 - f(xV;0))
=1

ati . J(©) _ i), i
Derivative at the output node: 0 = f(x(), @) - y()
1 m
J(0) =—-— 2 yDlogh® + (1 - yD)log(1 — k)| RO = 1
mis 14e—20
=1 e
J(©) —y® 1-y® pO_yO |
—=—— 4 — = — :
dh® ~ h@® T1-h® p®O(1-pO J(O) ; ;
dh® . . dz®
_ = h((1-p®) , _
dz® (Same as for linear regression)

26

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

ITY OF ALABAMA®

Standard Multi-Class Classification

Output Layeris a
softmax layer

Layer 1 Layer 2 Layer 3 Layer 4

Softmax assigns decimal probabilities to each class in a multi-class problem. Those
decimal probabilities must add up to 1.0. This additional constraint helps training
converge more quickly than it otherwise would.
2®
e’ softmax
(i) activation o (WTx1b)

Lie? -
k p(y = jlx) = =
EkeK e(wk X—f—bk)

k =1 to K number of classes

@) Network outputs are interpreted as probabilities
h:’ =
J

Sevgi Z. Gurbuz (szgurbuz@ua.edu) /ERSITY OF ALABAMA?®

Cost for Standard Multiclass

. L cccsssSS
S _
j@ == > > 5 logh’
[i=1 k=1 i
Derivation is a little longer but for 0
.o J®) w» o
softmax case the derivative wrt the = h, .

. : (l)
activation and the output layer is dz

similar: just the error

Regularized Cost:

Jo(0) = J(8) + 5 Z(@ %

Sevgi Z. Gurbuz (szgurbuz@ua.edu) ERSITY OF ALAB/

MATHEMATICS OF TRAINING:
1. Gradient Descent
2. Backpropagation

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®

Gradient Descent: How to Find
Maxima/Minima

15

10

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMP;‘Z

Gradient Descent

* Want to minimize J(f, f;) over parameters 6, 6,

5?,192 J(Qo, (91)

Outline:
* Start with some §,, #; (could be arbitrary)
» Keep changing 0,0, toreduce J(fy,01) until

we hopefully end up at a minimum

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

GD in Multiple dimensions

= ‘- ‘1 “' " -h-l.
i\
bk +Ary P
Irj-{-"#&ﬂ 1] l|' *l**' .‘l ‘: _"‘:‘i‘i:’. rr":ﬁ*’ﬁt"‘%ﬂ‘l\#‘ rll|. .'- - :

L
AR
"""I:. b-.

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMP;‘;

Simply Gradient Descent

Start with arbitrary 6, 6,

repeat until convergence {

0
0; :=0,; an(Bo 61) (forj=0andj=1)

¥
ol ! X{arm‘?f (‘QAQ (5‘\'4\3 5.‘2’2>
J(® ;} cv‘;,‘{j"" ” J (%1,?

SOt A

(=
— N
FQ b)f}a

0,29, l(Po”")

—>
) ("‘9? 91 >0
Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMP;‘;

g ‘ _B,_JLGJ\
X 90, 9,9,

Effect of Learning Rate (Step Size)

Learning Rate o small:

R

o Tov mon iludion;
1o]e\\,\d 4he Miaimum

o o sod] DGD s slow |

R

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Learning Rate a too large:

| vv\oua not
%7’ e

THE UNIVERSITY OF ALABAMP;‘:

Effect of Learning Rate (Step Size)

I
Learning Rate a fixed or variable

n- Ot s Cons der &ﬂwl

+ M‘(f]/\+ deceore o

ovesr hme -

0.
)
— N + Dipfrent & n®, or
ince grodiont aeks smelles A g@nwﬁ o (i

U\‘JQOAQ 00 The Q\Vo‘me'l'ff' suitable wil |

%Q)(ol @ven s worl - Pul s
. F e ’ aom S“‘:” NN a&Jan@l ekﬂ-l
~ Fixed ™ |

acame f we necd 4
Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMP;‘Z

How to choose a
* For sufficiently small a , J(0) should
decrease at every iteration
* Very small a converges slowly
* Very large a might not converge

 Test different a:
— start small, then gradually increase

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

When to stop?

* Declare that the algorithm has converged
when the cost J(0) decreases by less than a
predefined error in one iteration

Sevgi Z. Gurbuz (szgurbuz@ua.edu) UNIVERSITY OF ALABAMA®

Summary of Backpropagation

1. Define a training set .2, which consists of N training samples with the corre-
sponding desired outputs

= Ix(n),d(n);n=1,2,...,N}.

{)_

2. Random initialization of the network weights w

Set W =x,n=1,30"V=11=1,2,.,L
3. Forward propagation of training sample x(#)

[[(-1
v = z Wiy V()

=0

{f)(- ga”) ({0)

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®

Backpropagation (cont’d)

4. Calculate the local gradient for all neurons. Equations (3.20) and (3.25).
L .@}{LJ(VEFL)(H)) if /=1L

oy D
sm=4¢

o DOV st oy T (n) else
5. Compute gradient vector of weights according to (3.28)

o0& () {r 1)
. {f) = 0,7y

6. Weight update according to (3.16)

o0&
Dot = w0 =7
3,0

_ﬂ
7. lterate m — n+ 1 and repeat steps 3—6. until stopping critarion is met.

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®

DNN ARCHITECTURES

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®

Convolutional Neural Networks

I s

e Consist of a number of convolutional and
subsampling layers optionally followed by fully
connected layers.

Convolution

] Max.
Pooling

. Max.
Convolution a Fully Class

Pooling . :
| Convolution Pooling Connected Predictions

A .
= e £
- — Ty
LIy i
. =
-- e | | e

41

Sevgi Z. Gurbuz (szgurbuz@ua.edu) UNIVERSITY OF ALABAMA?®

Auto-Encoders (AEs)

* Neural network that takes unlabeled data and
tries to learn the identity function, i.e.
optimizes weights such that output
approximates input.

Matrix to
Vector |—>»
Conversion

(QOOo0oooogoooooon |

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Convolutional Auto-Encoders
(CAEs)

I L ssSS
 CAEs combine the benefits of convolutional
filtering in CNN’s with unsupervised pre-
training of autoencoders

DDDDDDDDDDDDDDDDDDDDDDDD

||% ﬂll

a? Unpooling

b

Encoder

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Residual Neural Networks

e Residual units include a short cut path

— If no new information is learned by adding layers, identity mapping
can be used

Input

)

Fully Connected Layers "

)

T T

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®

Next Time...

... Examples from radar applications

Sevgi Z. Gurbuz (szgurbuz@ua.edu) THE UNIVERSITY OF ALABAMA®

	ECE 693 – Special Topics:�AI for Radar System Design
	Slide Number 2
	How Do Biological Systems Learn?
	The Human Brain
	Speed and Distributed Processing
	Seeing with your Tongue
	Human Echolocation
	Our Hypothesis in NN
	Neural Network Structure
	Activation Functions
	Slide Number 11
	Artificial Neural Network
	First (Input) Layer
	Propagate to 2nd Layer
	Activations of 2nd Layer
	Let’s Rewrite in Matrix Form
	Number of Parameters in a DNN
	Keep Propagating
	What Can DNNs Represent?
	What if we go Deeper?
	Cost Functions for Training
	How to Define Cost?
	Example: Cost in Regression
	Why? Take Derivative at Output
	Another Example: Binary Classification
	Cost Function for Binary Classification
	Standard Multi-Class Classification
	Cost for Standard Multiclass
	Slide Number 29
	Gradient Descent: How to Find Maxima/Minima
	Gradient Descent
	GD in Multiple dimensions
	Simply Gradient Descent
	Effect of Learning Rate (Step Size)
	Effect of Learning Rate (Step Size)
	How to choose α
	When to stop?
	Summary of Backpropagation
	Backpropagation (cont’d)
	Slide Number 40
	Convolutional Neural Networks
	Auto-Encoders (AEs)
	Convolutional Auto-Encoders (CAEs)
	Residual Neural Networks
	Next Time…

