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BIOLOGICAL MOTIVATIONS
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How Do Biological Systems Learn?

Study of neural computation inspired by the observation:
• Biological learning systems are built of very complex webs of interconnected 

neurons
• Each unit takes real-valued inputs (possibly from other units)
• Produces a single real valued output (which becomes the input to many 

other units)
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A colored scanning electron micrograph (SEM) 
of a neuron (nerve cell).

Image from S. Srihari
More than 10 billion neurons in human brain
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The Human Brain

• Densely interconnected network 
of 1011 (100 billion) neurons

• Each connected to 104 (10,000) 
others

• Fastest neuron switching time is 
10-3 seconds
– Slow compared to computer 

switching speed: 10-10 secs
• Activity excited or inhibited 

through connections to other 
neurons
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Speed and Distributed Processing

• Humans can make certain decisions (visually recognize your 
mother) in 10-1 secs

• Implies that in 10-1 sec interval cannot possibly have more than a few 
hundred steps, given switch speed

• Highly parallel/distributed processing operations should exist 
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Auditory Cortex

Figure by Andrew Ng.
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Seeing with your Tongue 
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Human Echolocation
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Our Hypothesis in NN
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Idealization of A Neuron

Neuron Firing
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Neural Network Structure
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𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑥𝑥𝑛𝑛

𝒛𝒛 = �
𝒊𝒊=𝟏𝟏

𝒏𝒏

θ𝒊𝒊𝒙𝒙𝒊𝒊 + 𝒃𝒃

θ1

θ2

θ3

θ𝑛𝑛

1 𝑏𝑏

𝝈𝝈(𝒛𝒛)

Inputs Weights

Linear 
combination

Non-linear 
activation

𝒚𝒚 = 𝝈𝝈(𝒛𝒛)
Neuron output
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Activation Functions
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(a) (b) (c)

Sigmoid Tangent Hyperbolic Rectified Linear Unit (ReLU)

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧
𝜎𝜎 𝑧𝑧 = tanh(𝑧𝑧) 𝜎𝜎 𝑧𝑧 = max(0, 𝑧𝑧)
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DEEP NEURAL NETWORKS
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Artificial Neural Network
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Layer 1 Layer 2 Layer 3 Layer 4

Feed Forward Neural Network Structure: 
• The connections between the nodes do not form a cycle. No loops
• The information moves in only one direction, forward, from the input nodes, through the hidden 

nodes (if any) and to the output nodes  

Input Layer
Hidden Layers Output Layer
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First (Input) Layer

13

“activation” of unit i in layer  j

Layer 1 Layer 2 Layer 3 Layer 4

𝑎𝑎3
(2)

First layer (Input Layer):

• First layer activations are same as the 
inputs

• 𝑎𝑎1
(1) = 𝑥𝑥1

• 𝑎𝑎2
(1) = 𝑥𝑥2

• 𝑎𝑎3
(1) = 𝑥𝑥3

𝒂𝒂(𝟏𝟏) = 𝒙𝒙𝑥𝑥1

𝑥𝑥2

𝑥𝑥3
𝒂𝒂(𝟏𝟏) =

𝑎𝑎0
1

𝑎𝑎1
1

𝑎𝑎2
1

𝑎𝑎3
1

=

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
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Propagate to 2nd Layer
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𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎3
(2) = σ(𝜃𝜃30

1 𝑎𝑎0
1 + 𝜃𝜃31

1 𝑎𝑎1
1 + 𝜃𝜃32

1 𝑎𝑎2
1 + 𝜃𝜃33

1 𝑎𝑎3
1 )

𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎0
(1)

𝑧𝑧3
(2) = 𝜃𝜃30

1 𝑎𝑎0
1 + 𝜃𝜃31

1 𝑎𝑎1
1 + 𝜃𝜃32

1 𝑎𝑎2
1 + 𝜃𝜃33

1 𝑎𝑎3
1

𝑎𝑎3
(2) = σ(𝑧𝑧3

(2))

Bias parameterBias node 𝑎𝑎0
(1) = 1

𝑧𝑧3
(2) = 𝜃𝜃30

1 𝜃𝜃31
1 𝜃𝜃32

1 𝜃𝜃33
1

𝑎𝑎0
1

𝑎𝑎1
1

𝑎𝑎2
1

𝑎𝑎3
1

= (𝜽𝜽𝟑𝟑,:
(𝟏𝟏))𝑇𝑇𝒂𝒂 𝟏𝟏

𝑎𝑎3
(2) = σ(𝑧𝑧3

(2)) = σ((𝜽𝜽𝟑𝟑,:
(𝟏𝟏))𝑇𝑇𝒂𝒂 𝟏𝟏 )
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Activations of 2nd Layer
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Let’s calculate all the activations in the next layer

𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎0
(1)

Bias node 𝑎𝑎0
(1) = 1

𝑧𝑧3
(2) = 𝜃𝜃30

1 𝑎𝑎0
1 + 𝜃𝜃31

1 𝑎𝑎1
1 + 𝜃𝜃32

1 𝑎𝑎2
1 + 𝜃𝜃33

1 𝑎𝑎3
1 𝑎𝑎3

(2) = σ(𝑧𝑧3
(2))

𝑧𝑧1
(2) = 𝜃𝜃10

1 𝑎𝑎0
1 + 𝜃𝜃11

1 𝑎𝑎1
1 + 𝜃𝜃12

1 𝑎𝑎2
1 + 𝜃𝜃13

1 𝑎𝑎3
1

𝑧𝑧5
(2) = 𝜃𝜃50

1 𝑎𝑎0
1 + 𝜃𝜃51

1 𝑎𝑎1
1 + 𝜃𝜃52

1 𝑎𝑎2
1 + 𝜃𝜃53

1 𝑎𝑎3
1 𝑎𝑎5

(2) = σ(𝑧𝑧5
(2))

𝑎𝑎1
(2) = σ(𝑧𝑧1

(2))

𝑎𝑎0
(2) = 1

Θ(1) 𝒛𝒛(𝟐𝟐) Θ(1) 𝒂𝒂 𝟏𝟏
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Let’s Rewrite in Matrix Form

16

𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎0
(1)

Bias node 𝑎𝑎0
(1) = 1 matrix of weights controlling function mapping 

from layer  j  to layer (j+1)

𝒂𝒂 𝟏𝟏 =

𝑎𝑎0
1 = 1
𝑎𝑎1
1

𝑎𝑎2
1

𝑎𝑎3
1

𝒛𝒛(𝟐𝟐) =

𝑧𝑧1
(2)

𝑧𝑧2
(2)

𝑧𝑧3
(2)

𝑧𝑧4
(2)

𝑧𝑧5
(2)

= Θ(1)𝒂𝒂(𝟏𝟏)

Θ(1)

If the network has sj units in layer j and sj+1 units 
in layer (j+1) then the size of Θ(𝑗𝑗)is sj+1 x (sj +1)

Θ(1) =

𝜃𝜃10
1 𝜃𝜃11

1 𝜃𝜃12
1

𝜃𝜃30
1 𝜃𝜃31

1 𝜃𝜃32
1

𝜃𝜃13
1

𝜃𝜃33
1

𝜃𝜃50
1 𝜃𝜃51

1 𝜃𝜃52
1 𝜃𝜃53

1

𝒂𝒂(𝟐𝟐) = σ(𝒛𝒛(𝟐𝟐))

Elementwise
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Number of Parameters in a DNN
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matrix of weights controlling 
function mapping from layer  j  to 
layer (j+1)

Layer 1 Layer 2 Layer 3 Layer 4

If the network has sj units in layer j and sj+1
units in layer (j+1) then the size of Θ(𝑗𝑗)is sj+1
x (sj +1)

Θ(1)

Θ(2)

Θ(3)

5 x 4 = 20

5 x 6 = 30

4 x 6 = 24

Total number of parameters: 

20 + 30 + 24 = 74
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Keep Propagating

18

Forward propagation: 
For a given state of parameters Θ(1), Θ(2) and Θ(3) we can calculate all the 
activations in each layer:

First layer activations are the input 

features x=

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

Second Layer Activations

Third Layer Activations

Output Layer Activations

𝜎𝜎

𝜎𝜎

𝜎𝜎
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What Can DNNs Represent?

19

• Two questions: 
– What is the representational power of this family of functions? 
– Are there functions that cannot be modeled with a Neural Network?

19

Neural Networks with at least one hidden layer 
are universal approximators.

Given any continuous function g(x) and some ϵ > 0, 
there exists a Neural Network fΘ(x) with one hidden 
layer (with a reasonable choice of non-linearity, e.g.

sigmoid) such that ∀x, ∣g(x)− fΘ(x) ∣ < ϵ . 

In other words, the neural network can approximate 
any continuous function. 

This result holds even if the function has many inputs.
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What if we go Deeper?

20

• If one hidden layer suffices to approximate any function, why use 
more layers and go deeper?

Two Caveats:
1) First, this doesn't mean that a network can be used to exactly compute any function. 

Rather, we can get an approximation that is as good as we want. By increasing the 
number of hidden neurons we can improve the approximation.

2) the class of functions which can be approximated in the way described are 
the continuous functions. If a function is discontinuous, i.e., makes sudden, sharp 
jumps, then it won't in general be possible to approximate using a neural net.

a more precise statement of the universality theorem is that 
neural networks with a single hidden layer can be used to 
approximate any continuous function to any desired precision.
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Cost Functions for Training

21

Layer 1 Layer 2 Layer 3 Layer 4

Θ(1)

Θ(2) Θ(3)

x

Θ

y
y

y = fΘ(x)
Training data:
(x(1), y(1) ), (x(2), y(2) ),….., (x(m), y(m) ),

Need a cost function to say how well 
the approximation for given 
parameters Θ
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How to Define Cost?

22

• It depends on the application and NN structure
– Regression
– Binary classification (Logistic Activation)
– Multi-class classification (K-binary)  (Logistic Activation)
– Standard Multi-class (Softmax Activation)

Each case has a different cost function
(again basically depending on the probabilistic view of 

the data and Maximum likelihood estimation of 
parameters)
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Example:  Cost in Regression

23

Single output
𝑦𝑦 ∈ 𝑅𝑅

Linear output Unit

Θ(3)

𝐽𝐽 Θ =
1
2
�
𝑖𝑖=1

𝑀𝑀

(𝑓𝑓 𝑥𝑥 𝑖𝑖 ;Θ − 𝑦𝑦(𝑖𝑖))2

Assuming 𝑦𝑦(𝑖𝑖) are independent and 
Gaussian distributed with mean 
𝑓𝑓 𝑥𝑥 𝑖𝑖 ;Θ . This cost is the same 
obtained in Maximum Likelihood 
Estimation of Θ
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Why? Take Derivative at Output

24

𝐽𝐽 Θ =
1
2
�
𝑖𝑖=1

𝑀𝑀

(𝑧𝑧(3,𝑖𝑖) − 𝑦𝑦(𝑖𝑖))2 𝐽𝐽 Θ
𝑑𝑑𝑧𝑧

(𝑖𝑖) = (𝑧𝑧(3,𝑖𝑖) − 𝑦𝑦(𝑖𝑖))

Derivative at the 
output node will be 
back-propagated to 
update Θ. Hence it is 
important. 

The error ( 𝑓𝑓 𝑥𝑥 𝑖𝑖 ;Θ − 𝑦𝑦(𝑖𝑖)) for each data sample is actually
the derivative at the output node wrt z
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Another Example:  Binary 
Classification

25

This time output is either y=0 or y=1 (Binary!)
The output unit is a logistic unit

Logistic Unit
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Cost Function for Binary Classification

26

𝐽𝐽 Θ = −
1
𝑚𝑚

�
𝑖𝑖=1

𝑚𝑚

𝑦𝑦(𝑖𝑖) log𝑓𝑓 𝑥𝑥 𝑖𝑖 ;Θ + 1 − 𝑦𝑦 𝑖𝑖 log(1 − 𝑓𝑓 𝑥𝑥 𝑖𝑖 ;Θ )

Derivative at the output node: 𝐽𝐽 Θ
𝑑𝑑𝑧𝑧(𝑖𝑖) = 𝑓𝑓 𝑥𝑥 𝑖𝑖 ;Θ - 𝑦𝑦(𝑖𝑖)

𝐽𝐽 Θ = −
1
𝑚𝑚

�
𝑖𝑖=1

𝑚𝑚

𝑦𝑦(𝑖𝑖) logℎ(𝑖𝑖) + 1 − 𝑦𝑦 𝑖𝑖 log(1 − ℎ(𝑖𝑖))

𝐽𝐽 Θ
𝑑𝑑ℎ(𝑖𝑖) =

−𝑦𝑦(𝑖𝑖)

ℎ(𝑖𝑖) +
1 − 𝑦𝑦(𝑖𝑖)

1 − ℎ(𝑖𝑖) =
ℎ(𝑖𝑖) − 𝑦𝑦(𝑖𝑖)

ℎ(𝑖𝑖)(1−ℎ(𝑖𝑖)

ℎ(𝑖𝑖) = 1

1+𝑒𝑒−𝑧𝑧(𝑖𝑖)

𝑑𝑑ℎ(𝑖𝑖)

𝑑𝑑𝑧𝑧(𝑖𝑖) = ℎ(𝑖𝑖)(1-ℎ(𝑖𝑖))

𝐽𝐽 Θ
𝑑𝑑𝑧𝑧(𝑖𝑖) = ℎ(𝑖𝑖) − 𝑦𝑦(𝑖𝑖)

(Same as for linear regression)
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Standard Multi-Class Classification

27

Layer 1 Layer 2 Layer 3 Layer 4

Output Layer is a 
softmax layer

Softmax assigns decimal probabilities to each class in a multi-class problem. Those 
decimal probabilities must add up to 1.0. This additional constraint helps training 
converge more quickly than it otherwise would.

ℎ𝑗𝑗
(𝑖𝑖) =

𝑒𝑒𝑧𝑧𝑗𝑗
(𝑖𝑖)

∑𝑘𝑘𝐾𝐾 𝑧𝑧𝑘𝑘
(𝑖𝑖)

Network outputs are interpreted as probabilities

k = 1 to K number of classes

softmax
activation



Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Cost for Standard Multiclass

28

𝐽𝐽 Θ = − �
𝑖𝑖=1

𝑚𝑚

�
𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑘𝑘
(𝑖𝑖) logℎ𝑘𝑘

(𝑖𝑖)

Derivation is a little longer but for 
softmax case the derivative wrt the 
activation and the output layer is 
similar: just the error 

𝐽𝐽 Θ

𝑑𝑑𝑧𝑧𝑘𝑘
(𝑖𝑖) = ℎ𝑘𝑘

(𝑖𝑖) − 𝑦𝑦𝑘𝑘
(𝑖𝑖)

Regularized Cost:

𝐽𝐽𝑅𝑅 Θ = 𝐽𝐽(Θ) +
λ
2𝑚𝑚

�(Θ𝑖𝑖𝑗𝑗𝑙𝑙 )2
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MATHEMATICS OF TRAINING:
1. Gradient Descent
2. Backpropagation

29
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Gradient Descent:  How to Find 
Maxima/Minima

30
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Gradient Descent

• Want to minimize                over parameters 

31

Outline:

• Start with some              (could be arbitrary)

• Keep changing              to reduce                     until 

we hopefully end up at a minimum
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GD in Multiple dimensions

32
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Simply Gradient Descent

33

Start with arbitrary 
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Effect of Learning Rate (Step Size)

34

Learning Rate α small: Learning Rate α too large: 
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Effect of Learning Rate (Step Size)

35

Learning Rate α fixed or variable 
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How to choose α

• For sufficiently small α , J(θ) should 
decrease at every iteration

• Very small α converges slowly
• Very large α might not converge
• Test different α: 

– start small, then gradually increase 

36
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When to stop?

• Declare that the algorithm has converged 
when the cost J(θ) decreases by less than a 
predefined error in one iteration

37
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Summary of Backpropagation

38
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Backpropagation (cont’d)
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DNN ARCHITECTURES

40
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Convolutional Neural Networks

41

• Consist of a number of convolutional and 
subsampling layers optionally followed by fully 
connected layers.
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Auto-Encoders (AEs)

• Neural network that takes unlabeled data and 
tries to learn the identity function, i.e.
optimizes weights such that output 
approximates input.

42
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Convolutional Auto-Encoders 
(CAEs)

• CAEs combine the benefits of convolutional
filtering in CNN’s with unsupervised pre-
training of autoencoders

43
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Residual Neural Networks

• Residual units include a short cut path
– If no new information is learned by adding layers, identity mapping 

can be used

44
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Next Time…

… Examples from radar applications

45
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