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Micro-Doppler Features

• Physical features

• Discrete Cosine Coefficients

• Speech Processing Inspired Features
–  Linear Predictive Coding (LPC)

–  Mel-Frequency Cepstral Coefficients (MFCC)
2

Y. Kim and H. Ling, “Human

Activity classification based on

micro-Doppler features Using 

a Support Vector Machine,”

IEEE Trans. GSRS, 2009.

Need to design

features that 

reflect underlying

phenomenology 

of signal
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Operational Dependence of Pre-

Defined Features

• Factors effecting feature discriminitivity:

– Radar parameters (e.g. TX frequency)

– Radar-target geometry (angle)

– Dwell time

– SNR

• How can we improve efficacy 

    of features in different scenarios?

– Adaptive feature selection

– Adaptive feature design

3

S.Z. Gurbuz, B. Erol, B. Cagliyan, B. Tekeli,

“Operational Assessment and Adaptive 

Selection of Micro-Doppler Features,”

IET RSN, 2015.
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MFCC

• Mel-Frequency Cepstral Coefficients have been 

popular as features for micro-Doppler classification

–  Problem:  mel-frequency scale designed to model human 

hearing and is irrelevant to physics of radar micro-Doppler

4

Preprocessing, 

Windowing
FFT

LogarithmInverse DCTMFCC
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Data-Driven Feature Design

• e.g. if a hyperbolic function is chosen to specify filter 
spacing, optimize parameters a, b, and c to maximize 
classification performance 

5

Preprocessing, 

Windowing

Optimize filter parameters 

using training data

LogarithmInverse DCTMFCC

FFT
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Effect of Warping on Filter Bank

6
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Performance Gains

• Significant performance improvement over MFCC for 

classification of four activities: 

–  walking

–  running 

–  creeping

–  crawling

7

B. Erol and S.Z. Gurbuz, “Hyperbolically 

warped cepstral coefficients for improved 

micro-Doppler classification,” IEEE Radar 

Conference, 2016.
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Filterbank Optimization

• Compare hyperbolic warped with genetic 

algorithm optimized filter bank

8
HWCC GA-Optimized FWCC
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Experimental Dataset: 4 GHz CW

9
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Sample Spectrograms

10
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Sample Spectrograms, cont.
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GA-Optimized Filter Bank

12
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Performance of GA-FWCC

13

94.1%
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Classification With Pre-Defined Features

• Physical Features

• Transform Based Features

– Discrete Cosine Transform

• Speech-Processing Features

– Cepstral Coefficients and Linear Predictive Coding

• A total of 127 features are supplied as input to the 
multi-class SVM classifier with polynomial kernel.

14



Sevgi Z. Gurbuz (szgurbuz@ua.edu)

         

Multi-Class SVM Performance
15

Overall Accuracy:  69.7%
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Deep Learning Architectures

• Deep neural networks build upon past 

research on artificial neural networks (ANNs) 

by increasing the overall size of the network 

using many layers of neurons.

–  Autoencoder

–  Convolutional Neural Network

–  Convolutional Autoencoder

16
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Autoencoders

• An autoencoder (AE) is a feed-forward neural network that aims to 

reconstruct the input at the output under certain constraints.

• For a given input vector x, the encoder computes a nonlinear mapping of the 

inputs as

– σ denotes a non-linear activation function, 

– W denotes weights and 

– b denotes the biases of the encoder.

17
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Autoencoders (cont’d)

• The encoded features are then decoded to 

reconstruct the given input vector x using

• Here, �𝑊𝑊 and �𝑏𝑏 denotes weights and biases of 

the decoder. During unsupervised pre-

training, the network tries to minimize the 

reconstruction error

18



Sevgi Z. Gurbuz (szgurbuz@ua.edu)

         

Autoencoders (cont’d)

• After unsupervised pre-training, the decoder 

is removed from the network and the 

remaining encoder components are trained in 

a supervised manner by adding a softmax 

classifier with 12 neurons after the encoder. 

• Encoder layers have 200-100-50 neurons and decoder layers 

have 50 100 200 neurons. After unsupervised pre-training the 

decoder part is removed and, a softmax layer is added at the 

end of the encoder. 

• Hyperbolic tangent activation is used for non-linearity.

19
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Autoencoder Performance

20

Overall Accuracy:  84.6%
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Convolutional Neural Networks(CNN)

• CNNs are the current state of the art for image 
classification.

• Unlike Autoencoders, CNNs can learn locally 
connected features, which is a fundamental 
requirement for classification of images. 

• CNN architectures generally consist of three 
elements

– convolutional layers, pooling layers and fully 
connected layers

21
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CNN (cont’d)

• The CNN architecture implemented with three convolutional 

layers comprised of 32 3x3 filters each, and two fully

connected layers with 150 neurons/layer.

• Rectified Linear Unit activation is used for non-linearity. The 

optimization computed using the ADAM algorithm. After each 

fully connected layer, a dropout operation is applied with a 

probability of 0.5

22
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CNN Performance

23

Overall Accuracy:  86.4%
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Convolutional Autoencoder

• Convolutional autoencoders combine the benefits of 

convolutional filtering in CNN’s with unsupervised pre-

training of autoencoders.

• Thus, for a given input maxrix P, the encoder computes

– where σ denotes activation function, * represents 2D convolution, Fn is nth 

2D convolutional filter and b denotes encoder bias

24
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Convolutional Autoencoder (cont’d)

25

• In this work, a filter concatenation 

technique is also applied to capture 

features of different resolutions from the 

input. Two convolutional filters of different 

sizes are used:

– 9x9 filters capture general features

– 3x3 filters capture fine details
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Convolutional Autoencoder (cont’d)

• Similar to AE the reconstruction can be obtained using

• Unsupervised pre-training can be applied to the 
network, which aims to minimize following equation

• After unsupervised pre-training the decoder part is 
removed and 2 fully connected layers and a softmax 
classifier are added at the end of encoder.

26
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Performance of CAE

27

94.2%
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Comparative Results

28
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TRANSFER LEARNING

29
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Approaches for Training under Low 

Sample Support

30

Transfer Learning

Randomly Initialized 
DNN

Training

ImageNet

DNN Pre-Trained on
Data from Domain A

Fine-Tuning

DNN Fine-Tuned on
Data from Domain B

RF Data

Unsupervised Pre-Training
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Transfer Learning vs. 

Convolutional Autoencoders

31

M.S. Seyfioglu, S.Z. Gurbuz, “Deep Neural Network Initialization Methods for Micro-Doppler Classification With 

Low Training Sample Support, IEEE Geoscience and Remote Sensing Letters, Dec. 2017.

• Comparison of Initialization Approaches

– CNN:  random 

– Transfer Learning:  

• Data from diff. domain

– CAE:  

• unsupervised pre-training

• Fine tune with real data

     afterwards
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What Do DNNs Learn?

32

M.S. Seyfioglu, S.Z. Gurbuz, “Deep Neural Network Initialization Methods for Micro-Doppler Classification With 

Low Training Sample Support, IEEE Geoscience and Remote Sensing Letters, Dec. 2017.
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ONE POSSIBLE SOLUTION:

ACQUIRE DATA FROM MULTIPLE RADARS

33
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How Can We Exploit 

“Datasets of Opportunity” ?

• Different sources of real RF data:

– In an RF sensor network:

• Different frequency

• Different angle

• But observing the same participant

– Similar experiments conducted elsewhere

• Same/different frequency/angle

• Different participants

– RF datasets of motion classes, frequency, angle, 
and participants

34
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Cross-Frequency Training of RF Data

35

Three RF Sensors:
• 77 GHz TI IWR 1443

• 24 GHz Ancortek SDR-KIT

• <10 GHz XeThru X4M03
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Cross-Frequency Classifciation with 

Transfer Learning from VGGnet

36

❑ VGG16 net with top layer modification
- Global average pooling followed by 2 fully connected layers

- Drop out: 0.5

- 77 GHz: batch size 8,Learning rate 2e-4, two Dense layers of size 256, Decay 1e-6, Adam Optimizer

- 24 GHz: batch size 32,Learning rate 1e-4, two Dense layers of size 256, Decay 1e-6, Adam Optimizer

- 10 GHz: batch size 8,Learning rate 2e-4, two Dense layers of size 128, Decay 1e-6, Adam Optimizer

Performance degrades 

while training and 

testing with different 

frequency data
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Cross-Frequency Classification with 

Convolutional Auto-Encoder (CAE)

37

❑ 11 different classes:

- 60 samples per class for 77 & 10 GHz

- 150 samples per class for 24 GHz

❑ CAE:  Total of 5 layers

-   When decoder removed, 2 dense layers 

followed by a soft-max layer added

- Number of filters in each layer: 64

- Filter Size: 3x3 & 9x9 filters are 

concatenated
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MULTI-MODAL FUSION

38
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Multi-Frequency Radar Network

39
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Difference in Target and Clutter 

Signatures

40
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Observations of mD Signatures

41

77 GHz FMCW

BW = 4 GHz

BW = 1.5 GHz

BW = 3 GHz

25 GHz FMCW

10 GHz UWB
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Visualization of Feature Space with 

t-SNE

42
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Cross-Frequency Fusion

43

Modality Tuning:

1. Freeze the shared layers and 

      train the sensor specific layers. 

2.   After some number of epochs, 

      unfreeze sensor specific layers

      and train the entire network

      end-to-end.

L. Castrejon, Y. Aytar, C. Vondrick, H. Pirsiavash, and A. 

Torralba, ´ “Learning aligned cross-modal representations 

from weakly aligned data,” in 2016 IEEE CVPR, 2016, pp. 

2940–2949.
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Comparison with Other Types of 

Fusion

44

• More challenging multi-frequency

   (77/25/10 GHz) dataset:

   → Recognition of 20 ASL Signs

  50 samples / class

  5 fluent signers: 2 deaf +

    3 Child-of-Deaf Adults (CODAs)

Surpasses 

alternative 

types of 

fusion
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