

ECE 693 – Special Topics: AI for Radar System Design

Radar Micro-Doppler Classification with Limited Data

Dr. Sevgi Zubeyde Gurbuz szgurbuz@ua.edu

Feb. 11, 2022

THE UNIVERSITY OF

Micro-Doppler Features

- Discrete Cosine Coefficients
- Speech Processing Inspired Features
 - Linear Predictive Coding (LPC)
 - Mel-Frequency Cepstral Coefficients (MFCC)

Need to design features that reflect underlying phenomenology of signal

Operational Dependence of Pre-Defined Features

- Factors effecting feature discriminitivity:
 - Radar parameters (e.g. TX frequency)
 - Radar-target geometry (angle)
 - Dwell time
 - SNR
- How can we improve efficacy of features in different scenarios?
 - Adaptive feature selection
 - Adaptive feature design

S.Z. Gurbuz, B. Erol, B. Cagliyan, B. Tekeli, "Operational Assessment and Adaptive Selection of Micro-Doppler Features," IET RSN, 2015.

MFCC

- Mel-Frequency Cepstral Coefficients have been popular as features for micro-Doppler classification
 - Problem: mel-frequency scale designed to model human hearing and is irrelevant to physics of radar micro-Doppler

Data-Driven Feature Design

• e.g. if a hyperbolic function is chosen to specify filter spacing, optimize parameters a, b, and c to maximize classification performance $f_{HH} = a \tanh(f_{Hz} - b)/c$

THE UNIVERSITY OF ALABAMA®

Effect of Warping on Filter Bank

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Performance Gains

- Significant performance improvement over MFCC for classification of four activities:
 - walking
 - running
 - creeping
 - crawling

B. Erol and S.Z. Gurbuz, "Hyperbolically warped cepstral coefficients for improved micro-Doppler classification," IEEE Radar Conference, 2016.

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Filterbank Optimization

• Compare hyperbolic warped with genetic algorithm optimized filter bank

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Experimental Dataset: 4 GHz CW

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

THE UNIVERSITY OF ALABAMA®

Sample Spectrograms

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Sample Spectrograms, cont.

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

THE UNIVERSITY OF ALABAMA®

GA-Optimized Filter Bank

THE UNIVERSITY OF ALABAMA®

Performance of GA-FWCC

94.1%

%	c1	c2	c3	c4	c5	c6	c7	c8	c9	c10	c11
c1	92.9	0	0	0	7.1	0	0	0	0	0	0
c2	0	100	0	0	0	0	0	0	0	0	0
c3	0	0	100	0	0	0	0	0	0	0	0
c4	24.8	0	0	60	7.6	0	7.6	0	0	0	0
c5	0	0	0	17.4	82.6	0	0	0	0	0	0
c6	0	0	0	0	0	100	0	0	0	0	0
c7	0	0	0	0	0	0	100	0	0	0	0
c8	0	0	0	0	0	0	0	100	0	0	0
c9	0	0	0	0	0	0	0	0	100	0	0
c10	0	0	0	0	0	0	0	0	0	100	0
c11	0	0	0	0	0	0	0	0	0	0	100

Classification With Pre-Defined Features

- Physical Features
- Transform Based Features
 Discrete Cosine Transform
- Speech-Processing Features
 - Cepstral Coefficients and Linear Predictive Coding
- A total of 127 features are supplied as input to the multi-class SVM classifier with polynomial kernel.

Multi-Class SVM Performance

15

%	Walking	Wheel chair	Limping	Cane	Walker	Falling	Crutches	Creeping	Crawling	Jogging	Sitting	F.C
Walking	93.2	0	0	0	0	0	0	1.7	2.8	2.3	0	0
Wheelchair	0	76.2	5.3	9.5	5.8	0	1.4	1.3	0.5	0	0	0
Limping	0	9.1	62.9	21.1	4.1	0	2.6	0.2	0	0	0	0
Cane	0	13	11.9	61.9	13.2	0	0	0	0	0	0	0
Walker	0	5.6	5.3	9.9	77.1	0	2.1	0	0	0	0	0
Falling	20.2	0.6	0.6	0	0	53.1	0	0	1.9	0	1.3	22.3
Crutches	0.4	2.8	3	1.1	0	0	90.3	0	2.4	0	0	0
Creeping	29.3	0	0	0	0	0	0	42.4	22.5	5.8	0	0
Crawling	29.6	5.1	6.4	0	0.9	0	0.9	16.1	29.9	11.1	0	0
Jogging	4.3	0	0	0	0	0	0	3.1	2.5	90.1	0	0
Sitting	6.5	0	0	0	0	5.9	0	0	0	0	79.9	7.7
F.C	3.1	0	0	0	0	8.7	0	0	1.5	1.6	4.7	80.4

Overall Accuracy: 69.7%

Deep Learning Architectures

 Deep neural networks build upon past research on artificial neural networks (ANNs) by increasing the overall size of the network using many layers of neurons.

- Autoencoder
- Convolutional Neural Network
- Convolutional Autoencoder

THE UNIVERSITY OF ALABAMA®

Autoencoders

• An autoencoder (AE) is a feed-forward neural network that aims to reconstruct the input at the output under certain constraints.

inputs as

- σ denotes a non-linear activation function,
- W denotes weights and

$$e_i = \sigma(Wx_i + b).$$

b denotes the biases of the encours.

THE UNIVERSITY OF ALABAMA®

17

Autoencoders (cont'd)

• The encoded features are then decoded to reconstruct the given input vector x using

 $z_i=\sigma(\widetilde{W}e_i+\widetilde{b}).$

• Here, \widetilde{W} and \widetilde{b} denotes weights and biases of the decoder. During unsupervised pretraining, the network tries to minimize the reconstruction error $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (x_i - z_i)$

THE UNIVERSITY OF ALABAMA®

Autoencoders (cont'd)

- After unsupervised pre-training, the decoder is removed from the network and the remaining encoder components are trained in a supervised manner by adding a softmax classifier with 12 neurons after the encoder.
- Encoder layers have 200-100-50 neurons and decoder layers have 50 100 200 neurons. After unsupervised pre-training the decoder part is removed and, a softmax layer is added at the end of the encoder.
- Hyperbolic tangent activation is used for non-linearity.

Autoencoder Performance

20

Overall Accuracy: 84.6%

%	Walking	Wheel chair	Limping	Cane	Walker	Falling	Crutches	Creeping	Crawling	Jogging	Sitting	F.C
Walking	90.9	0	0	0	0	0	0	4.6	0	4.5	0	0
Wheelchair	0	93.2	3.2	0.1	3.5	0	0	0	0	0	0	0
Limping	0	0	84.6	6.9	8.3	0	0.2	0	0	0	0	0
Cane	0	0.6	9.4	69.9	20.1	0	0	0	0	0	0	0
Walker	0	0	0.5	6.1	93.4	0	0	0	0	0	0	0
Falling	0	0	0	0	0	88.9	0	0	0	0	0	11.1
Crutches	6.2	0	0.6	0	0	0	91.9	0	1.3	0	0	0
Creeping	0	0	0	0	0	0	0	65.6	34.4	0	0	0
Crawling	0.4	0	0	0	0	0	0	22.1	65.1	12.4	0	0
Jogging	0	0	0	0	0	0	0	0	0	100	0	0
Sitting	0	0	0	0	0	20.7	0	0	0	0	79.3	0
F.C	0	0	0	0	0	8.1	0	0	0	0	0	91.9

Convolutional Neural Networks(CNN)

- CNNs are the current state of the art for image classification.
- Unlike Autoencoders, CNNs can learn locally connected features, which is a fundamental requirement for classification of images.
- CNN architectures generally consist of three elements
 - convolutional layers, pooling layers and fully connected layers

CNN (cont'd)

- The CNN architecture implemented with three convolutional layers comprised of 32 3x3 filters each, and two fully connected layers with 150 neurons/layer.
- Rectified Linear Unit activation is used for non-linearity. The optimization computed using the ADAM algorithm. After each fully connected layer, a dropout operation is applied with a probability of 0.5

CNN Performance

23

Overall Accuracy: 86.4%

%	Walking	Wheel chair	Limping	Cane	Walker	Falling	Crutches	Creeping	Crawling	Jogging	Sitting	F.C
Walking	100	0	0	0	0	0	0	0	0	0	0	0
Wheelchair	0	100	0	0	0	0	0	0	0	0	0	0
Limping	0	0	87.5	8.4	4.1	0	0	0	0	0	0	0
Cane	0	0	0	71.4	28.6	0	0	0	0	0	0	0
Walker	0	0	0	4.2	95.8	0	0	0	0	0	0	0
Falling	0	0	0	0	0	60	0	0	0	0	0	40
Crutches	0	0	10	0	0	0	90	0	0	0	0	0
Creeping	15.4	0	0	0	0	0	7.7	46.1	15.4	15.4	0	0
Crawling	0	0	0	0	0	0	0	14.3	85.7	0	0	0
Jogging	0	0	0	0	0	0	0	0	0	100	0	0
Sitting	0	0	0	0	0	0	0	0	0	0	100	0
F.C	0	0	0	0	0	0	0	0	0	0	0	100

Convolutional Autoencoder

- Convolutional autoencoders combine the benefits of convolutional filtering in CNN's with unsupervised pretraining of autoencoders.
- Thus, for a given input maxrix P, the encoder computes

 $e_i = \sigma(P * F^n + b)$

where σ denotes activation function, * represents 2D convolution, Fⁿ is nth
 2D convolutional filter and b denotes encoder bias

THE UNIVERSITY OF ALABAMA®

Convolutional Autoencoder (cont'd)

- In this work, a filter concatenation technique is also applied to capture features of different resolutions from the input. Two convolutional filters of different sizes are used:
 - 9x9 filters capture general features
 - 3x3 filters capture fine details

Convolutional Autoencoder (cont'd)

26

• Similar to AE the reconstruction can be obtained using

$$z_i=\sigma(e_i*\widetilde{F}^n+\widetilde{b}).$$

• Unsupervised pre-training can be applied to the network, which aims to minimize following equation

$$E(\theta) = \sum_{i=1}^{m} (x_i - z_i)^2$$

 After unsupervised pre-training the decoder part is removed and 2 fully connected layers and a softmax classifier are added at the end of encoder.

Performance of CAE

94.2%

%	c1	c2	c3	c4	c5	c6	c7	c8	c9	c10	c11
c1	100	0	0	0	0	0	0	0	0	0	0
c2	0	100	0	0	0	0	0	0	0	0	0
c3	0	0	94.5	0	0	0	0	0	0	5.5	0
c4	8.1	0	0	91.9	0	0	0	0	0	0	0
c5	0	0	0	6.9	93.1	0	0	0	0	0	0
c6	0	0	0	0	0	100	0	0	0	0	0
c7	0	0	0	0	0	0	91.5	0	0	0	8.5
c8	0	0	0	0	0	0	0	100	0	0	0
c9	0	0	0	0	0	0	0	0	100	0	0
c10	0	0	0	0	0	0	0	0	0	100	0
c11	0	4.9	0	0	0	0	22.4	0	7.2	0	65.5

Comparative Results

		Fraditiona	l	AE		CNN			CAE			
Gait	Precision	Recall	Accuracy	Precision	Recall	Accuracy	Precision	Recall	Accuracy	Precision	Recall	Accuracy
Walking	0.93	0.5	93.2	0.9	0.93	90.9	1	0.87	100	1	0.95	100
Wheel chair	0.76	0.68	76.2	0.93	0.99	93.2	1	1	100	1	1	100
Limping	0.63	0.66	62.9	0.85	0.86	84.6	0.87	0.90	87.5	0.92	1	92.3
Cane	0.62	0.6	61.9	0.7	0.84	69.9	0.71	0.85	71.4	0.91	0.92	90.7
Walker	0.77	0.76	77.1	0.93	0.75	93.4	0.96	0.74	95.8	1	0.91	100
Falling	0.53	0.78	53.1	0.89	0.75	88.9	0.6	1	60	0.89	1	89.2
Crutches	0.90	0.92	90.3	0.92	0.99	91.9	0.9	0.92	90	1	0.93	100
Creeping	0.42	0.65	42.4	0.65	0.71	65.6	0.46	0.76	46.1	0.65	0.89	65.2
Crawling	0.3	0.46	29.9	0.65	0.64	65.1	0.86	0.85	85.7	0.91	0.80	91.7
Jogging	0.9	0.81	90.1	1	0.86	100	1	0.87	100	1	1	100
Fastly Sitting	0.8	0.93	80	0.79	1	79.3	1	1	100	1	0.91	100
Falling from Chair	0.8	0.73	80.4	0.91	0.89	91.9	1	0.71	100	1	0.98	100
Average	0.698	0.71	69.7	0.846	0.85	84.6	0.863	0.87	86.4	0.941	0.94	94.1

TRANSFER LEARNING

THE UNIVERSITY OF ALABAMA®

Approaches for Training under Low Sample Support

Transfer Learning vs. Convolutional Autoencoders

- Comparison of Initialization Approaches
 - CNN: random
 - Transfer Learning:
 - Data from diff. domain
 - CAE:
 - unsupervised pre-training
- Fine tune with real data afterwards

M.S. Seyfioglu, S.Z. Gurbuz, "Deep Neural Network Initialization Methods for Micro-Doppler Classification With Low Training Sample Support, IEEE Geoscience and Remote Sensing Letters, Dec. 2017.

What Do DNNs Learn?

M.S. Seyfioglu, S.Z. Gurbuz, "Deep Neural Network Initialization Methods for Micro-Doppler Classification With Low Training Sample Support, IEEE Geoscience and Remote Sensing Letters, Dec. 2017.

ONE POSSIBLE SOLUTION:

ACQUIRE DATA FROM MULTIPLE RADARS

THE UNIVERSITY OF ALABAMA®

How Can We Exploit "Datasets of Opportunity" ?

- Different sources of real RF data:
 - In an RF sensor network:
 - Different frequency
 - Different angle
 - But observing the same participant
 - Similar experiments conducted elsewhere
 - Same/different frequency/angle
 - Different participants
 - RF datasets of motion classes, frequency, angle, and participants

Cross-Frequency Training of RF Data

Three RF Sensors:

- **77 GHz** TI IWR 1443
- 24 GHz Ancortek SDR-KIT
- <10 GHz XeThru X4M03

THE UNIVERSITY OF ALABAMA®

Cross-Frequency Classifciation with Transfer Learning from VGGnet

VGG16 net with top layer modification

- Global average pooling followed by 2 fully connected layers
- Drop out: 0.5
- 77 GHz: batch size 8,Learning rate 2e-4, two Dense layers of size 256, Decay 1e-6, Adam Optimizer
- 24 GHz: batch size 32,Learning rate 1e-4, two Dense layers of size 256, Decay 1e-6, Adam Optimizer
- 10 GHz: batch size 8,Learning rate 2e-4, two Dense layers of size 128, Decay 1e-6, Adam Optimizer

Training	Testing	Accuracy (%)	
	10 GHz	14.28	
77 GHz	24 GHz	16.66	
	77 GHz	89.23	Performance degrades
	24 GHz	85.57	while training and
24 GHz	10 GHz	15.55	testing with different
	77 GHz	11.13	frequency data
	10 GHz	83.00	
Xethru	24 GHz	14.21	
	77 GHz	9.00	36

Cross-Frequency Classification with Convolutional Auto-Encoder (CAE)

11 different classes:

- 60 samples per class for 77 & 10 GHz
- 150 samples per class for 24 GHz

CAE: Total of 5 layers

- When decoder removed, 2 dense layers followed by a soft-max layer added
- Number of filters in each layer: 64
- Filter Size: 3x3 & 9x9 filters are concatenated

Pre-train	Fine Tune	Test	Testing Accuracy	Pre-train	Fine Tune	Test	Testing Accuracy
	77 GHz	77 GHz	91.5%	24 CH-	77 GHz	77 GHz	83.8%
		24 GHz	22.5%	24 0 12	10 GHz	10 GHz	81.6%
77 GHz		10 GHz	18.9%			10 GHz	91.8%
	24 GHz	24 GHz	74.4%		10 GHz	77 GHz	24.1%
	10 GHz	10 GHz	75.5%	10 GHz		24 GHz	18.8%
		24 GHz	91.2%		77 GHz	77 GHz	80.0%
24 GHz 24 GHz	77 GHz	28.5%		24 GHz	24 GHz	79.1%	
		10 GHz	40.5%				

MULTI-MODAL FUSION

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

THE UNIVERSITY OF ALABAMA®

Multi-Frequency Radar Network

3 Radars operate at different transmit frequencies:	 TI IWR1443 FMCW ra Ancortek SDR-Kit 25 (XeThru 10GHz UWB in 	dar GHz FMCW mpulse radar
11 Human activity classes	 6 participants, 10 iter each activity 660 samples per sens 	rations of or
Walking Towards	Limping	Kneeling
Walking Away	Short step walking	Crawling
Sitting on a chair	Scissor gait walking	Bending
Picking up an object	Walking on Toes	

Difference in Target and Clutter Signatures

Observations of mD Signatures

Visualization of Feature Space with t-SNE

THE UNIVERSITY OF ALABAMA®

Cross-Frequency Fusion

Modality Tuning:

- 1. Freeze the shared layers and train the sensor specific layers.
- 2. After some number of epochs, unfreeze sensor specific layers and train the entire network end-to-end.

L. Castrejon, Y. Aytar, C. Vondrick, H. Pirsiavash, and A. Torralba, ´ "Learning aligned cross-modal representations from weakly aligned data," in 2016 IEEE CVPR, 2016, pp. 2940–2949.

Training Type	Network	Accuracy
No Modality Tuning	Cross Modal DNN	93.00%
With Modality Tuning	Cross Modal DNN	98.46%

Comparison with Other Types of Fusion

- More challenging multi-frequency
 - (77/25/10 GHz) dataset:
 - → Recognition of **20 ASL Signs**
 - > 50 samples / class
 - 5 fluent signers: 2 deaf +
 3 Child-of-Deaf Adults (CODAs)

Fusion Type	Accuracy	Surpass
Multi-Frequency Fusion DNN	95.53%	alternat
w/No Modality Tuning	83.67%	types of
Feature Level Fusion	79.59%	fusion
Decision Fusion	75.00%	

