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- Motion Capture Data (MoCap): 
full-fidelity 3D recording of raw physical 
signal from multiple articulators 

- ELAN software: video of multiple ASL 
paragraphs annotated by proficient 
signers 

- Extract data for Gloss Timestamps 
- Why Machine Learning? 

- Applicability to simple classification 
problems (Gurbuz et al., 2020)
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- Short term goals: Create a system for 
interaction with smart environments 
(similar to “Hey Google”) for Sign 
Language users  

- Long Terms goals: Identify dynamic 
components of ASL signal that are 
critical to information transfer

- Prior research (Malaia et al., 2012; 2016; 
Borneman et al., 2018) indicated that 
variability of motion in ASL signal is 
critical for information transfer. 

- Spectrotemporal information from 
dominant hand motion during signing 
is informative to signers 
(comprehensible w/o handshapes, 
non-manual markers, etc.) 

- ML acts as a method of testing multiple 
hypotheses simultaneously by 
narrowing down salient portions of the 
signal (cf. explainable AI) 

- Capturing entropy fluctuations 
might require alternative 
approaches i.e. :

- FFT data (real, imaginary, 
amplitude) with more input data

- Higher-order displacement 
derivatives (acceleration, jerk, snap)

Maximum Accuracy of Machine Learning Methods

Random 
Forest

K-Nearest 
Neighbor LDA SVM

Max & Min 
Velocities 50.7785% 60.2941% 66.1765% 60.2941%

FFT of 
velocities 53.3304% 61.7647% 67.6471% 66.1765%

Alignment of Annotations & MoCap data with Video

- MoCap: 60 
frames per 
second

- Increasing 
Offset with 
Proceeding 
Time

- Identify 
Coordinates for 
each sign & 
transition time 
frame

Implement Data sets into Machine Learning
- Transform Raw Data of signs & transitions to velocity vectors  

Figure 3: 4 common methods of Machine Learning. Random 80% 
of data was used to train while 20% was used to test. Percentages 

represented accuracy of test data

Figure 1: Annotated video in ELAN Software 
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Sign Lagngauge Uesrs Can Comumniacte simliralry to how 
you can raed tihs snetnece. 

How can signs be parsed out from continuous time 
series data in order to create a computerized 

environment?  

Figure 2: 3D models of same sign at beginning 
and ending of video
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