Maxwell's Equations:

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{D}=P_{v} & \text { Gauss's law } \\
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \text { Faraday's law } \\
\vec{\nabla} \cdot \vec{B}=0 & \underbrace{\frac{\partial t}{\partial t}}_{J_{d}} \quad \text { Anper's law } \\
\vec{\nabla} \times \vec{H}=\vec{J}+\frac{\rightharpoonup}{\partial}
\end{array}
$$

Maxwell's Equations for time harmonics:

$$
\begin{aligned}
& \vec{\nabla} \cdot \overrightarrow{\tilde{D}}=\tilde{\rho}_{v} \\
& \vec{\nabla} \times \overrightarrow{\tilde{E}}=-j \omega \overrightarrow{\widetilde{B}} \\
& \vec{\nabla} \cdot \overrightarrow{\widetilde{B}}=0 \\
& \vec{\nabla} \times \stackrel{\widetilde{H}}{ }=\overrightarrow{\widetilde{J}}+\underbrace{j \omega \stackrel{\rightharpoonup}{D}}_{\overrightarrow{J_{d}}}
\end{aligned}
$$

Maxwell's Equations in integral forms:

$$
\begin{aligned}
& \oint_{s} \vec{D} \cdot d s= \varphi \\
& \oint_{c} \vec{E} \cdot \overrightarrow{d l}=-\int \frac{\partial \vec{B}}{\partial t} \cdot \overrightarrow{d s} \Rightarrow V_{\text {en f }}=-N \frac{d \phi}{d t}=-N \frac{d}{d t} \int \vec{B} \cdot \overrightarrow{d s} \\
& \oint_{c} \vec{B} \cdot \overrightarrow{d l}=0 \\
& \oint_{c} \vec{H} \cdot \overrightarrow{d l}= I+I_{d}=\int \vec{J} \cdot \vec{d} s+\int \vec{J}_{d} \cdot \vec{d} s=\int \vec{J} \cdot \vec{d} s+\int \frac{\partial \vec{D}}{\partial t} \cdot \overrightarrow{d s} \\
& \begin{array}{c}
\text { Displacement } \\
\text { current }
\end{array}
\end{aligned}
$$

Maxwell's Equations for EM wave in charge free-medium:

$$
\begin{aligned}
& \vec{\nabla} \cdot \overrightarrow{\tilde{E}}=0 \\
& \vec{\nabla} \times \overrightarrow{\widetilde{E}}=-j \omega \mu \overrightarrow{\tilde{H}} \\
& \vec{\nabla} \cdot \overrightarrow{\tilde{H}}=0 \\
& \vec{\nabla} \times \overrightarrow{\tilde{H}}=j \omega \varepsilon_{c} \overrightarrow{\tilde{E}}
\end{aligned}
$$

where $\varepsilon_{c}=\varepsilon^{\prime}-\underbrace{j} \varepsilon^{\prime \prime}$
loss term

Coulomb's law: $\quad \vec{E}=\frac{9\left(\vec{R}-\vec{R}_{1}\right)}{4 \pi \varepsilon\left|\vec{R}-\vec{R}_{1}\right|^{3}} \quad ; \quad V=\frac{9}{4 \pi \varepsilon\left|\vec{R}-\overrightarrow{R_{1}}\right|}$
For charge distributions:
volume: $\vec{E}=\frac{1}{4 \pi \varepsilon} \int_{v} \hat{R} \frac{\rho_{v} d v}{R^{2}} ; \quad V=\frac{1}{4 \pi \varepsilon} \int_{v} \frac{\rho_{v} d v}{R}$
Surface: $\quad \vec{E}=\frac{1}{4 \pi \varepsilon} \int_{s} \hat{R} \frac{\rho_{s} d s}{R^{2}} ; \quad V=\frac{1}{4 \pi \varepsilon} \int_{s} \frac{\rho s d s}{R}$
line : $\quad \vec{E}=\frac{1}{4 \pi \varepsilon} \int_{l} \hat{R} \frac{\rho_{l} d l}{R^{2}} ; \quad v=\frac{1}{4 \pi \varepsilon} \int_{l}^{s} \frac{\rho_{l} d l}{R}$
Voltage: $V_{b}-V_{a}=-\int_{a}^{b} \vec{E} \cdot \overrightarrow{d e} ; \quad \vec{E}=-\vec{\nabla} V$
Poisson's equation: $\nabla^{2} V=-\frac{\rho_{v}}{\varepsilon}$ Laplace equ: $\nabla^{2} v=0$ when $\rho_{v}=0$
current density: $\vec{J}=\sigma \vec{E} \quad, \quad \vec{J}_{d}=\frac{\partial \vec{D}}{\partial t}$
Current: $I=\int \vec{J} \cdot \overrightarrow{d s}$ for volume

Resistance:

$$
R=\frac{V}{I}=\frac{-\int \vec{E} \cdot \overrightarrow{d l}}{\int_{\vec{J} \cdot \vec{d} s}=\frac{-\int \vec{E} \cdot \overrightarrow{d l}}{\int_{s} \sigma \vec{E} \cdot \overrightarrow{d s}} \text { 㰯 }}
$$

Capacitance:

$$
c=\frac{Q}{v}=\frac{\int \rho d v}{-\int \vec{E} \cdot \overrightarrow{d l}} ; \text { we also have : } \quad R C=\frac{\varepsilon}{\sigma}
$$

Power: $\quad P=\int_{v} \vec{E} \cdot \vec{J} d v=\int_{v} \sigma|E|^{2} d v$

Electrostatic Potential energy: $\quad W_{e}=\frac{1}{2} \int_{v} \varepsilon E^{2} d v$
Magnetostatic Potential energy: $\quad W_{m}=\frac{1}{2} \int_{V} C H^{2} d V$
Force: $\quad \vec{F}=-\vec{\nabla} W_{e}$ when Q is constant

Boundary Conditions

$$
\frac{\varepsilon_{2}, \sigma_{2}}{\varepsilon_{1}, \sigma_{1}} \frac{P_{s}++++}{D^{\text {exit er }} / \int \mathrm{J}_{5} \odot 000} \frac{\mathrm{H}_{2}}{/ \mathrm{J}_{1}}
$$

For electric field: Tangent component: $E_{t}^{e x}=E_{t}^{e n} \Rightarrow \frac{D_{t}^{x}}{\varepsilon_{2}}=\frac{D_{t}^{e n}}{\varepsilon_{1}}$
Normal Component: $\stackrel{\otimes}{D}_{n}-\stackrel{e n}{D}_{n}=\rho_{s}$

For magnetic field: Tangent component: $H_{1 t}-H_{2 t}=J_{s}$
Normal Component: $B_{1 n}=B_{2 n}$ or $\mu_{1} H_{1 n}=\mu_{2}^{N} H_{2 n}$
For current density: Tangent component: $\frac{J_{1 t}}{\sigma_{1}}=\frac{J_{2 t}}{\sigma_{2}}$
Normal Component: $J_{1 n}=J_{2 n}$ \& $J_{1 n}\left(\frac{\varepsilon_{1}}{\sigma_{1}}-\frac{\varepsilon_{2}}{\sigma_{2}}\right)=\rho_{s}$

- Force by magnetic field:

$$
\begin{aligned}
& \vec{F}_{m}=q \vec{V} \times \vec{B} \\
& \vec{F}_{m}=I \int \overrightarrow{d l} \times \vec{B} \quad \text { if uniform } \vec{F}_{m}=I \vec{l} \times \vec{B}
\end{aligned}
$$

Biot_Savart Law :

$$
\begin{align*}
& \vec{H}=\frac{I}{4 \pi} \int \frac{\overrightarrow{d l} \times \hat{R}}{R^{2}} d \overrightarrow{d e} / \vec{R} J^{d \vec{H}} \\
& \vec{H}=\frac{1}{4 \pi} \int \frac{\vec{J} \times \hat{R}}{R^{2}} d v \\
& \vec{H}=\frac{1}{4 \pi} \int \frac{\vec{J}_{s} \times \hat{R}}{R^{2}} d s
\end{align*}
$$

For longe wire : $\vec{H}=\frac{I}{2 \pi r} \hat{\Phi}$

Magnetic flux: $\phi=\int \vec{B} \cdot \overrightarrow{d s}$ (We, Weber) Magnetic flux Linkage: $\Lambda=N \phi$
Inductance: $L=\frac{\lambda}{I}=\frac{N \Phi}{I}(H$, Henry)
Phase velocity: $u_{p}=\frac{1}{\sqrt{\mu \varepsilon}}=\frac{c}{\sqrt{{ }^{\mu}{ }_{r} \varepsilon_{r}}}=\frac{C}{n}$ where $c=\frac{1}{\sqrt{\rho_{0} \varepsilon_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; n=\sqrt{\rho_{r} \varepsilon_{r}} ;$ For non-magn: $n=\sqrt{\varepsilon_{r}}$
For an $E($ or $H)$ wave in the form of $\vec{E}=\vec{E}_{0} C n(\omega t+\beta x+\Phi): \beta=\frac{\omega}{u_{p}}$ (β is same as k).
Wave equations in charge-free medium:
$\begin{cases}\nabla^{2} \stackrel{\rightharpoonup}{E}-\gamma^{2} \stackrel{\rightharpoonup}{\tilde{E}}=0 & \text { where } \gamma=-\omega^{2} \mu \varepsilon_{c} \quad \text { and } \varepsilon_{c}=\varepsilon-j \frac{\sigma}{\omega} \\ \nabla^{2} \overrightarrow{\vec{H}}-\gamma^{2} \overrightarrow{\tilde{H}}=0 & \text { For lossless medium } \sigma=0 \rightarrow \varepsilon_{c}=\varepsilon \rightarrow \gamma=-k^{2} \quad k=\omega \sqrt{\mu \varepsilon}\end{cases}$
For loss-less medium: $\quad \overrightarrow{\tilde{H}}=\frac{1}{\eta} \hat{k} \times \overrightarrow{\tilde{E}} \quad$ and $\overrightarrow{\tilde{E}}=-\eta \hat{k} \times \overrightarrow{\vec{H}} ; \hat{k}$ is direction of travel.
Impedance: $\eta=\sqrt{\frac{c}{\varepsilon}} \quad$ Refection Coff: $\Gamma=\frac{E_{0}^{r}}{E_{0}^{i}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}} ; \tau=1+\Gamma ; S=\frac{|+|\Gamma|}{1-|\Gamma|}$
Snell's Law: $\theta_{i}=\theta_{r} ; n_{1} \operatorname{Sin} \theta_{1}=n_{2} \operatorname{Sin} \theta_{2}$ Critical Angle: $\operatorname{Sin} \theta_{c}=\frac{n_{1}}{n_{2}}$
Parallel Polarization: $\Gamma_{11}=\frac{\eta_{2} C_{n} \theta_{t}-\eta_{1} C_{a} \theta_{i}}{\eta_{2} C_{n} \theta_{t}+\eta_{1} C_{n} \theta_{i}}$

Brewster Angle: $\sin \theta_{B_{11}}=\sqrt{\frac{1-\left(\eta_{2} / \eta_{1}\right)^{2}}{1-\left(\varepsilon_{1} / \varepsilon_{2}\right)^{2}}} \xlongequal{\text { For non-magnetic }} \frac{1}{1+\frac{\varepsilon_{1}}{\varepsilon}}$ or $\tan \theta_{B}=\frac{n_{2}}{n_{1}}$
Vector Algebra:
$\vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B}) \quad \vec{C}_{R}^{A}{ }_{B}^{B}$
$\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$ "bac-cab" rule!
Cartesian to cylindrical: $\hat{r}=\hat{x} \operatorname{Ca} \varphi+\hat{y} \operatorname{Sin} \varphi ; \hat{\phi}=-\hat{x} \operatorname{Sin} \phi+\hat{y} C_{a} \phi ; \hat{z}=\hat{z}$
For vector $\vec{A}: A_{r}=A_{x} C_{a} \varphi+A_{y} \operatorname{Sin} \varphi, A_{\varphi}=-A_{x} \operatorname{Sin} \varphi+A_{y} \operatorname{Con} \varphi ; A_{z}=A_{z}$

Cylindrical to cartesian: $\hat{x}=\hat{r} \cos \varphi-\hat{\phi} \sin \varphi ; \hat{y}=\hat{r} \sin \varphi+\hat{\phi} \operatorname{Con} \varphi ; \hat{z}=\hat{z}$

$$
\text { For vector } \vec{A}: \quad A_{x}=A_{r} \operatorname{Ca\varphi }-A_{\varphi} \operatorname{Sin} \varphi ; A_{y}=A_{r} \operatorname{Sin} \varphi+A \varphi \operatorname{Con} \varphi, A_{z}=A_{z}
$$

Cartesian to spherical:

$$
\hat{R}=\hat{x} \operatorname{Ca} \varphi \operatorname{Sin} \theta+\hat{y} \operatorname{Sin} \varphi \operatorname{Sin} \theta+\hat{z} \operatorname{Cos} \theta ; \hat{\theta}=\hat{x} \operatorname{Cos} \theta \operatorname{Ca} \varphi+\hat{y} \operatorname{Ca} \theta \operatorname{Sin} \varphi-\hat{z} \operatorname{Sin} \theta ; \hat{\phi}=-\hat{x} \operatorname{Sin} \phi+\hat{y} C_{a} \phi
$$

spherical to Cartesian:

$$
\dot{x}=\hat{R} \operatorname{Sin} \theta \operatorname{Cac} \varphi+\hat{\theta} \operatorname{Co} \theta \operatorname{Cos} \varphi-\hat{\phi} \operatorname{Sin} \varphi ; \hat{y}=\hat{R} \operatorname{Sin} \theta \operatorname{Sin} \varphi+\hat{\theta} \operatorname{Ca} \theta \operatorname{Sin} \varphi+\hat{\phi} C_{a} \varphi ; \hat{z}=\hat{R} C_{a} \theta-\hat{\theta} \operatorname{Sin} \theta
$$

Cartesian: $\vec{\nabla}=\hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}$
Cylindrical: $\vec{\nabla}=\hat{r} \frac{\partial}{\partial r}+\hat{\phi} \frac{1}{r} \frac{\partial}{\partial \phi}+\hat{z} \frac{\partial}{\partial z}$
spherical: $\vec{\nabla}=\hat{R} \frac{\partial}{\partial R}+\hat{\theta} \frac{1}{R} \frac{\partial}{\partial \theta}+\hat{\phi}$ RlSinat
Gradient: $\vec{\nabla} T=\frac{\partial T}{\partial x} \hat{x}+\frac{\partial \xi}{} \hat{y}+\frac{\partial F}{\partial} \hat{z}$

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{E} \triangleq \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E z}{\partial z} & \int_{v} \vec{\nabla} \cdot \vec{E} d v=\int_{s} \vec{E} \cdot \overrightarrow{d s} \\
\vec{\nabla} \times \vec{E}=\left|\begin{array}{ll}
x^{*} \hat{y} \hat{B} \\
\partial / \partial x \partial / \partial y \partial z \\
E_{x} E_{y} E_{z}
\end{array}\right| & \int_{s}(\vec{\nabla} \times \vec{E}) \cdot \overrightarrow{d s}=\oint_{c} \vec{E} \cdot \overrightarrow{d l}
\end{array}
$$

Laplacian: $\nabla^{2} v=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}$
Cylindrical: $\nabla^{2} v=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \varphi^{2}}+\frac{\partial^{2} v}{\partial z^{2}}$
Spherical: $\nabla^{2} v=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial v}{\partial r}\right)+\frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial v}{\partial \theta}\right)+\frac{1}{R^{2} \sin ^{2} \theta} \frac{\partial^{2} v}{\partial \varphi^{2}}$

Transmission Line Formulas:
V and I wave equations: $\frac{d^{2} \tilde{V}}{d z^{2}}-\gamma^{2} \tilde{V}(z)=0 ; \frac{d^{2} \tilde{I}}{d z^{2}}-\gamma^{2} \tilde{I}(z)=0$
Propagation constant: $\gamma=\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega c^{\prime}\right) \quad R^{\prime}, L^{\prime}, c^{\prime}$ values are per unit length. $\gamma=\alpha+j \beta \quad \alpha$:attenuation constand ; β : phase constant $(=k)$

$$
\left\{\begin{array}{l}
V(z)=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} \\
I(z)=I_{0}^{+} e^{-\gamma z}+I_{0}^{-} e^{\gamma z}=\frac{V_{0}^{+}}{Z_{0}} e^{-\gamma z}-\frac{V_{0}^{-}}{Z_{0}} e^{\gamma z}
\end{array}\right.
$$

For loss less line: $\gamma=j \beta$

$$
Z_{0}=\sqrt{\frac{R^{\prime}+j \omega L^{\prime}}{G^{\prime}+j \omega C^{\prime}}}=\frac{V_{0}^{+}}{I_{0}^{+}}=-\frac{V_{0}^{-}}{I_{0}^{-}} \quad \text { For lossless line: } Z_{0}=\sqrt{\frac{L^{\prime}}{C^{\prime}}} ; \beta=\omega \sqrt{L^{\prime} C^{\prime}} ; \alpha=0
$$

For lossless TEM line : $\beta=\omega \sqrt{\mu_{\varepsilon}}(=k)$ and $u_{p}=\frac{1}{\sqrt{\mu \varepsilon}}=\frac{C}{\sqrt{\mu_{r} \varepsilon_{r}}}$ and if $\mu=\mu_{0}: \lambda=\frac{\lambda_{0}}{\sqrt{\varepsilon_{r}}}$

$$
\Gamma=\frac{V_{0}^{-}}{V_{0}^{+}}=\frac{-I_{0}^{-}}{I_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{z_{L}-1}{z_{L+1}}
$$

For loss less $\gamma=j \beta$, and using $V_{0}^{-}=\Gamma V_{s}^{+}$, we can write:

$$
\left\{\begin{array}{l}
\tilde{V}(z)=V_{0}^{+}\left(e^{-j \beta z}+\Gamma e^{j \beta z}\right) \\
\tilde{I}(z)=\frac{V_{0}^{+}}{Z_{0}}\left(e^{-j \beta z}-\Gamma e^{j \beta z}\right)
\end{array}\right.
$$

standing wave Ratio: $S=\frac{|\tilde{V}| \text { max }}{\mid \tilde{V} /_{\text {min }}}=\frac{1+|\Gamma|}{1-|\Gamma|}$
Input impedance: $Z_{\text {in }}(z)=Z_{0} \frac{Z_{L}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{L} \tan \beta l}$

$$
V_{0}^{+}=\frac{\tilde{V}_{g} Z_{\text {in }}}{Z_{\text {in }}+Z_{g}} \frac{1}{e^{j \beta l}+\Gamma e^{-j \beta L}}
$$

Short circuit line: $Z_{\text {in }}^{\text {sc }}=j Z_{0} \tan \beta l$
Open circuit line: $Z_{\text {in }}^{o c}=-j z_{0} \operatorname{Cot} \beta l$
Quarter_wave Transformer: $\quad Z_{\text {in }}=\frac{Z_{0}^{2}}{Z_{L}} \quad \ell=\frac{\lambda}{4}+n \frac{\lambda}{2}$

Smith Chart: $z_{L}=\frac{1+\Gamma}{1-\Gamma} ; \quad y_{L}=\frac{1}{z_{L}}=\frac{1-\Gamma}{1+\Gamma}$

