Name:

Homework 11, due Monday 10/07/2013

Please use the Smith Chart to answer the following questions. Please submit the Smith Chart showing your solution drawings with your homework.

1. Find $\Gamma=0.5 \mathrm{e}^{\mathrm{j} \pi / 4}$
2. Find $\Gamma=0.6-\mathrm{j} 0.3$
3. If the reflection coefficient at the load is $\Gamma=0.6-\mathrm{j} 0.3$, what is the normalized load impedance Z_{L} ?
4. What is the input impedance of a transmission line of length $\lambda / 3$ terminated with a normalized load of $\mathrm{z}_{\mathrm{L}}=2.25-\mathrm{j} 2.2$?
5. What is the SWR in a transmission line terminated with a normalized load of $\mathrm{z}_{\mathrm{L}}=2.25$ j2.2?
6. If the reflection coefficient at the load is $\Gamma=0.5 \mathrm{e}^{\mathrm{j} 135}$, what is the reflection coefficient at distance of $\lambda / 3$ away from the load?
7. If the reflection coefficient at the load is $\Gamma=0.5 \mathrm{e}^{\mathrm{j} 135}$: What is the input impedance at distance of $\lambda / 3$ away from the load? What is SWR?
8. If the reflection coefficient at the load is $\Gamma=5 \mathrm{e}^{\mathrm{j} 135}$, at what distance from the load the voltage is maximum? What is the value of Γ as this point? Note: This location is also where the current is minimum.
9. If the reflection coefficient at the load is $\Gamma=5 \mathrm{e}^{\mathrm{j} 135}$, at what distance from the load the voltage is minimum? What is the value of Γ as this point? Note: This location is also where the current is maximum.
