Name:
Homework 8, due Wednesday 9/25/2013.

Problem 1: A transmission line has $R^{\prime}=4.2 \mathrm{~m} \Omega / \mathrm{m}, L^{\prime}=2.1 \mu \mathrm{H} / \mathrm{m}, C^{\prime}=5.5 \mathrm{pF} / \mathrm{m}$, and $\mathrm{G}^{\prime}=0.26 \mathrm{nS} / \mathrm{m}$. The frequency is 1 kHz . Find (a) the characteristic impedance of the line Z_{0}, (b) propagation constant γ, (c) phase velocity u_{p}, and (d) wavelength λ.

Problem 2: A coaxial cable has its conductors made of copper $\left(\sigma_{c}=5.8 \times 10^{7} \mathrm{~S} / \mathrm{m}\right)$ and its dielectric made of polyethylene ($\varepsilon_{\mathrm{r}}=2.25, \mu_{\mathrm{r}}=1$). If the radius of the outer conductor is 3 mm , determine the radius of the inner conductor so that $\mathrm{Z}_{0}=75 \Omega$.

Problem 3: On a distortion-less transmission line, the voltage wave is given by:

$$
\mathrm{V}(\mathrm{x})=120 \mathrm{e}^{0.0025 \mathrm{x}} \cos \left(10^{8} \mathrm{t}+2 \mathrm{x}\right)+60 \mathrm{e}^{-0.0025 \mathrm{x}} \cos \left(10^{8} \mathrm{t}-2 \mathrm{x}\right)
$$

Where x is the distance from the load. If $\mathrm{Z}_{\mathrm{L}}=300$, find (a) attenuation constant α, (b) phase constant β, (c) phase velocity u_{p}, (d) characteristic impedance Z_{0}, and (e) the current at x I(x).

Problem 4: A transmission line has a characteristic impedance of $\mathrm{Z}_{0}=65+\mathrm{j} 38 \Omega$, a propagation constant of $\gamma=0.7+\mathrm{j} 2.5 \mathrm{~m}^{-1}$, and length of $\mathrm{x}=0.8 \mathrm{~m}$. Find the input impedance and voltage standing wave ratio of the line if the end of the line is (a) open-circuited, (b) short circuited, (c) impedance matched (d) connected to a load with $\mathrm{Z}_{\mathrm{L}}=\mathrm{j} 27 \Omega$.

