Smith Chart Tutorial

ECEN 3613 Electromagnetic Field

Daryoosh Vashaee, Oklahoma State University

Find $\Gamma=0.5 \mathrm{e}^{\mathrm{j} \pi / 4}$

Find $\Gamma=0.6-\mathrm{j} 0.3$

If the reflection coefficient at the load is $\Gamma=0.6-\mathrm{j} 0.3$, what is the normalized load impedance z_{L} ?

What is the input impedance of a transmission line of length $\lambda / 3$ terminated with a normalized load of $z_{\mathrm{L}}=2.25-\mathrm{j} 2.2$?

What is the SWR in a

 transmission line terminated with a normalized load of $\mathrm{z}_{\mathrm{L}}=2.25-\mathrm{j} 2.2$?

If the reflection coefficient at

 the load is $\Gamma=0.5 \mathrm{e}^{\mathrm{j} 135}$,What is the reflection coefficient at distance of $\lambda / 3$ away from the load?

If the reflection coefficient at

 the load is $\Gamma=0.5 \mathrm{e}^{\mathrm{j} 135}$:What is the input impedance at distance of $\lambda / 3$ away from the load?

What is SWR?

If the reflection coefficient at the load is $\Gamma=0.5 \mathrm{e}^{\mathrm{j} 135}$, at what distance from the load the voltage is maximum? What is the value of Γ as this point?

Note: This location is also where the current is minimum.

> If the reflection coefficient at the load is $\Gamma=0.5 \mathrm{e}^{\mathrm{j} 135}$, at what distance from the load the voltage is minimum? What is the value of Γ as this point?

Note: This location is also where the current is maximum.

