
Homework #1

ECEN 5060, Computational Semiconductor Physics

A semiconductor device is characterized by the idealized energy band diagram shown in the figure. It is known that E_g =1.12eV, n_i =10¹⁰ cm⁻³, k_B T=0.0259eV, μ_n =1345 cm²/Vs and μ_p =1345 cm²/Vs at both x=x_a and x=x_b. E_F is the Fermi energy, and E_i is at the middle of the bandgap.

- (a) Sketch the electronic potential inside the semiconductor as a function of x.
- (b) Sketch the electric filed inside the semiconductor as a function of x.
- (c) What is the magnitude of the electron drift current density at $x=x_a$?
- (d) Is there an electron drift current density at $x=x_b$? If there is drift current, what is the direction of the current?
- (e) Is there an electron diffusion current density at $x=x_b$? If there is diffusion current, what is the direction of the current?
- (f) What is the magnitude of the total current density at $x=x_b$?

Note: Electron and hole concentrations can be approximated from $n=n_ie^{\frac{E_F-E_i}{k_BT}}$ and $p=n_ie^{\frac{-E_F+E_i}{k_BT}}$.