Applied Quantum Mechanics
Homework #4, due Monday Feb 4, 2008

Problem 1: Read pp. 140-143 of the book.

Problem 2: (Levi , Problem 3.5) Calculate the transmission and reflection flux coefficient for an electron
of energy E, moving from left to right, impinging normal to the plane of a semiconductor heterojunction
potential barrier of energy V,, where the effective electron mass on the left-hand side is m; and the
effective electron mass on the right-hand side is m,.

If the potential barrier energy is Vy=1.5eV and the ratio of effective electron mass on either side of
heterointerface is m;/m,=3, at what particle energy is the transmission flux coefficient unity? What is the
transmission flux coefficient in the limit that particle energy E > o0 ?

Hint: Use what you learned in problem 1!

Levi, pp. 140-143:

3.8.2

Scattering from a potential step when | # m>

In this case, we assume that m; varies from region to region. At the boundary
between regions 1 and 2 we require continuity in the wave function ¥ and the derivative
(1/mj)-dyr/dx, so that
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135 3.8 Transmission and reflection of unbound states

Inadequacies in our model force us to choose a boundary condition that ensures con-
servation of current j, o ep,/m rather than dyr, /dx|,, = dyr,/dx|,, (more accurate
models satisfy both of these conditions).

These conditions and Eqn (3.81) and Eqn (3.82) give, for x, = 0,

A+B=C+D (3.100)
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If we know that the particle is incident from the left, then A = 1 and D = 0, giving

1+B=C (3.102)
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We now solve for the transmission probability |C|? and the reflection probability
|B|%. The result is
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Compared with Eqn (3.96) and Eqn (3.97), the ratio m / m, appearing in Eqn (3.104)
and Eqn (3.105) gives an extra degree of freedom in determining transmission and
reflection probability. It is this extra degree of freedom that will allow us to engineer
the transmission and reflection probability in device design. Having established this,

we now proceed to calculate probability current density for an electron scattering from
a potential step.

IC|* = (3.104)

3.8.3 Probability current density for scattering at a step

Probability current density for transmission and reflection is different from transmission
and reflection probability. We will be interested in calculating the incident current Jj,
reflected current Jr, and transmitted current Jt, shown schematically in Fig. 3.10.

From our work in Section 3.8.2, the solution for the wave function will be of the
form

¥ = Aelf¥ 4 Be Rt (3.106)
Y = Ce't Dk (3.107)
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Fig. 3.10. Sketch of a one-dimensional, rectangular potential step. In region 1 the potential energy is
V, and particle mass is m,. In region 2 the potential energy is V5 and particle mass is n,. The
transition between region 1 and region 2 occurs at position x = x,,. Incident probability current
density Jj, reflected probability current density Jg, and transmitted probability current density Jt

are indicated.

For a particle incident from the left, we had |A|?> = 1, |D|?> = 0. Adopting the

boundary conditions

Vilx=0 = ¥2lx=0
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gives reflection probability

B = (1 — miky/mak)?
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and transmission probability
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We now calculate current using the current operator
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The incident current is
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The reflected current is

—ehk
Jr=——|BJ
nmg
and the transmitted current is
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The reflection coefficient for the particle flux is
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where the minus sign indicates current flowing in the negative x direction. This is the
same as the reflection probability given by Eqn (3.105), because the ratio of velocity
terms that contribute to particle flux is unity. The transmission coefficient for the particle
flux is
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where we note that Trans + Refl = 1. The fact that Trans + Refl = 1 is expected since
current conservation requires that the incident current must equal the sum of the trans-
mitted and reflected current.

_lmpedance matching for unity transmission across a potential step

In this section we continue our discussion of particle scattering at the potential step
shown schematically in Fig. 3.10. Suppose we want a flux transmission probability of
unity for a particle of energy £ > V; approaching the potential step from the left. Since
momentum p = hk = mv we can identify velocity v; = hk;/m; as the physically
significant quantity in the expression for the transmission coefficient. Substituting v;
into Eqn (3.116) gives
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If Trans = 1, then Eqn (3.117) can be rewritten
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which shows that unity transmission occurs when the velocity of the particle in the
two regions is matched? in such a way that v/v; = 1. In microwave transmission line
theory, this is called an impedance matching condition. To figure out when impedance
matching occurs as a function of particle energy, we start with

vy mk _ mi 2m2hz(E —V») 172 . mi(E —V,) 2 (3 119)
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so that impedance matching (v2/v| = 1) will occur when
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Clearly, for an electron incident on the potential step with energy E, the value of
E for which Trans = 1 depends upon the ratio of effective electron mass in the two
regions and the difference in potential energy between the steps. To see what this means
in practice, we now consider a specific example.

For a potential step of 1 eV we set V, =0 eV and V, = 1 eV. We assume that
the electron mass is such that m; = 10 x m3, so that the particle flux transmission
coefficient Trans = 1 when
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Hence the particle energy when Trans = 1 is

E=]7,0=l.llev (3.123)
When m, = 2 x m,, the particle flux transmission coefficient Trans = 1 when
m_L-Ve _EF-1_1 (3.124)
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so that the particle energy is £ = 2.00 eV.

We can also calculate Trans in the limit when energy E goes to infinity. In this case
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For the case m| /my = 10
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and when m, /mj; = 2 one finds
Trans|g oo = (V2) (3.128)
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