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Field-based design of a resonant
dielectric antenna for coherent
spin-photon interfaces: supplemental
document

This document provides supplementary information for “Field-based design of a resonant di-
electric antenna for coherent spin-photon interfaces.” We present the transition from far field to
near field and illustrate the transfer matrix model for estimating the near field of the dielectric
perturbation. We also show the optimization process such as curving the mirror to better match
the phase front of the dipole source. Finally, we provide the antenna parameters of our final
designs.

1. TRANSITION FROM FAR FIELD TO NEAR FIELD

We calculate the far-field distribution for a given near-field distribution ~H(x, y) and ~E(x, y) on
the surface S (Fig. S1). In the color plot of Fig. S1(b-g), we normalized all the field component
distributions by their maximum absolute value.

Fig. S1. (a) The near field at the point P(x, y, 0) on the surface S and far field at the

point O(ro, θ, φ). (b) Normalized target far field |~etar| = |~Etar(θ, φ)|/ max(|~Etar(θ, φ)|).

(c-g) Normalized target near field |~entar| = |~Entar(x, y)|/ max(|~Entar(x, y)|), target elec-
tric near-field x-component |ex| = |Ex(x, y)|/ max(|Ex(x, y)|), target electric near-field
y-component |ey| = |Ey(x, y)|/ max(|Ey(x, y)|), target magnetic near-field x-component
|hx| = |Hx(x, y)|/ max(|Hx(x, y)|), and target magnetic near-field y-component |hy| =
|Hy(x, y)|/ max(|Hy(x, y)|), respectively.

The equivalent sources in the plane S can be expressed with the surface electric current ~Js =

~n × ~H = −~xHy +~yHx and surface magnetic current ~Ms = −~n × ~E = ~xEy −~yEx [1]. Here~n = ~z

are unit vectors that are perpendicular to the surface. ~E and ~H = ~B/µ0 are the electric and
magnetic fields, respectively. The 2D Fourier transformation (FT2) of the field f (x, y) is

FT2( f (x, y)) =
∫ ∫

dxdy f (x, y)ei(kx x+kyy), (S1)

where kx = k sin θ cos φ, ky = k sin θ sin φ, k = 2π
λ , and λ is the free space wavelength. The

radiation vectors ~N and~L are expressed with the 2D Fourier transform of the surface current ~Js



and ~Ms ,

~N =
∫

S

~Jsei(kx x+kyy)dS = FT2(~Js), (S2)

~L =
∫

S

~Msei(kx x+kyy)dS = FT2( ~Ms). (S3)

Here (x, y, 0) are the coordinates of the point P in the plane S. In homogeneous isotropic media,

the retarded potential ~A and the second retarded potential ~F are

~A = µ0

∫

S

~Jse−ikr

4πr
dS = µ0

−eikro

4πro

~N, (S4)

~F = ε0

∫

S

~Mse−ikr

4πr
dS = ε0

−eikro

4πro

~L, (S5)

where r is the distance between the surface element dS and the point O, and ro is the distance
between the origin (0, 0, 0) and the point O. The derivation here follows that in the reference [1].

The monochromatic far field can be expressed in terms of retarded potentials as ~E = −iω~A −
iω
k2 ∇(∇ · ~A)− 1

ε0
∇× ~F, ~H = −iω~F − iω

k2 ∇(∇ · ~F)− 1
µ0
∇× ~A. Here ω is the angular frequency,

ε0 is the permittivity of vacuum, and µ0 is the magnetic permeability in vacuum. Under the
assumption that all terms in the fields decaying faster than 1/ro can be neglected, the electric

field components at an arbitrary point O are Eθ = ηHφ = −i e−ikro

2λro
(ηNθ + Lφ) and Eφ = −ηHθ =

i e−ikro

2λro
(−ηNφ + Lθ), where η =

√

µ0

ε0
and (ro, θ, φ) represent the coordinates of the point O in the

spherical coordinate system. The θ and φ components of the radiation vector ~N and~L are

Nθ = (Nx cos φ + Ny sin φ) cos θ = −FT2(H⊥) cos θ, (S6)

Nφ = −Nx sin φ + Ny cos φ = FT2(H‖), (S7)

Lθ = (Lx cos φ + Ly sin φ) cos θ = FT2(E⊥) cos θ, (S8)

Lφ = (−Lx cos φ + Ly sin φ) = −FT2(E‖), (S9)

where Nx = −FT2(Hy), Ny = FT2(Hx), Lx = FT2(Ey), and Ly = −FT2(Ex) . The field relations
are

E‖ = Ex cos φ + Ey sin φ, (S10)

H‖ = Hx cos φ + Hy sin φ, (S11)

E⊥ = −Ex sin φ + Ey cos φ, (S12)

H⊥ = −Hx sin φ + Hy cos φ. (S13)

Thus, we can find the relations

ηNθ + Lφ = −FT2(ηH⊥) cos θ − FT2(E‖), (S14)

− ηNφ + Lθ = −FT2(ηH‖)− FT2(E⊥) cos θ. (S15)

For a plane wave propagating with polar angle θ, it follows that ηH⊥ cos θ = E‖ and ηH‖ =
−E⊥ cos θ. Then we have

FT2(ηHx) = FT2(ηH‖) cos φ − FT2(ηH⊥) sin φ, (S16)

FT2(ηHy) = FT2(ηH‖) sin φ + FT2(ηH⊥) cos φ, (S17)

FT2(Ex) = FT2(E‖) cos φ − FT2(E⊥) sin φ, (S18)

FT2(Ey) = FT2(E‖) sin φ + FT2(E⊥) cos φ. (S19)

We can recover Hx, Hy, Ex, and Ey once we know the target near field Eθ and Eφ using the
following equations:

FT2(ηHx) = FT2(ηH‖) cos φ− FT2(ηH⊥) sin φ = −iλroeikro (−Eφ cos φ− Eθ sin φ/ cos θ), (S20)
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FT2(ηHy) = FT2(ηH‖) sin φ+ FT2(ηH⊥) cos φ = −iλroeikro (−Eφ sin φ+ Eθ cos φ/ cos θ), (S21)

FT2(Ex) = FT2(E‖) cos φ − FT2(E⊥) sin φ = −iλroeikro (Eθ cos φ − Eφ sin φ/ cos θ), (S22)

FT2(Ey) = FT2(E‖) sin φ + FT2(E⊥) cos φ = −iλroeikro (Eθ sin φ + Eφ cos φ/ cos θ). (S23)

For a target far field ~Etar(θ, φ) = Er(θ, φ)~r + Eθ(θ, φ)~θ + Eφ(θ, φ)~φ in spherical coordinates, we
can obtain the H⊥, E⊥, H‖ and E‖ using the inverse Fourier transform and then obtain Hx, Hy, Ex,

and Ey as the target near field. For a target polarized paraxial Gaussian field ~Etar(θ, φ) =

E0 exp(− tan2 θ/0.42)~y = E0 exp(− tan2 θ/0.42)× (sin θ sin φ~r+ cos θ sin φ~θ + cos φ ~φ), we have

Er(θ, φ) = ηHφ(θ, φ) = E0 sin θ sin φ · exp(− tan2 θ/0.42), (S24)

Eθ(θ, φ) = ηHφ(θ, φ) = E0 cos θ sin φ · exp(− tan2 θ/0.42), (S25)

Eφ(θ, φ) = −ηHθ(θ, φ) = E0 cos φ · exp(− tan2 θ/0.42), (S26)

where E0 is the target field amplitude. We show an example of such a target far field ~Etar(θ, φ)

to calculate the related target near field ~Entar(x, y) with x and y components in Fig. S1(b-g).
We notice that max(|Ey(x, y)|)/ max(|Ex(x, y)|) = 190 in the calculation. As a result, |Ey(x, y)|

and |Hx(x, y)| will be the primary components in the target near field for such a target far field
~Etar(θ, φ) = E0 exp(− tan2 θ/0.42)~y.

2. TRANSFER MATRIX MODEL

To test the mode overlap between the antenna far field and target far field, we need to do 3D
FDTD simulations as shown in the main text. When the target far field has a Gaussian distribution
and is polarized in the y direction, we know the target near field will have the primary electric
field component of Ey and the primary magnetic field component of Hx with circular symmetric
amplitude. As a result, we can simplify the model using 2D FDTD simulation in x-z plane and

attempt to match the near field along the x-axis, ~Entar(x, z0) = Ey(x, z0)~y, where z0 is the near

field monitor z coordinate. Then, we can match the far-field distribution of ~Etar(θ, 0). Here, we
use a transfer matrix model (TMM) to predict the antenna near field. The TMM uses a scalar
approximation (the electric field only has a y component) and single-mode approximation, (the
field distribution immediately after transmission or reflection is identical to the incident slab mode
distribution). The TMM provides a good initial design to increase the mode overlap between
the antenna near field and target near field in 3D FDTD simulations [2]. The recipe for using the
transfer matrix model to predict the antenna near field with slot scattering layers is:

Fig. S2. (a) The single-slot model setting in the x-z cross-section. The center of a diamond slab
with H = 150 nm thickness is located at z = 0 µm. The center of the air slot with width w is
located at x = 0 µm in the slab. The slab mode complex input field amplitude E+ is recorded at
(1), the complex reflected field amplitude E− at (2), the complex transmitted field amplitude E′+

at (3), and the complex scattered field amplitude Es at (4). (b) The multi-slot model showing the
effect of cascading many slots. The ith slot with width wi and location xi will have complex input
and output fields amplitude from left side (E+

i , E−
i ) and right side (E′+

i , E′−
i ) in the slab. Every

slot (i = 1, 2, ...) has the complex scattering near fields amplitude Esi(x − xi, z0, wi).
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1. Calculate the fundamental TE slab (y-polarized) mode propagating in +x direction to know
the effective wave vector keff without a slot. The slab should be thin enough to support only a
single mode in the z direction.

2. Calculate the transmission coefficient t(w) and reflection coefficient r(w) of different slot
widths w.

3. Calculate the scattering near field for a single slot, which has a center located at x = 0 µm.
Repeat the calculation with different slot widths w, and to obtain a lookup table of scattering near
fields Es(x, z0, w), Hs(x, z0, w).

4. For a slot array design with n slots, each slot has a location xi and width wi (i = 1, 2, ..., n).
We can obtain the transfer matrix Ti [defined in Eq. S29] from xi and wi that connects the fields’
y-component on either side of the slot (E+

i , E−
i , E′+

i , and E′−
i ) as illustrated in Fig. S2(a). The

propagation of the slab mode between neighboring slots i and i+ 1 is described by the propagation
matrix Θi, which is defined in Eq. S30.

5. By coherently adding the scattered fields from all the slots, we obtain the antenna near-field

distribution ~Enear(x, z0).

Let us consider each step in the recipe in more details: In step 1, we determine the fundamental
TE slab mode E0(xs − w/2, z)~y at monitor (1) without a slot as illustrated in Fig. S2(a). The slab
mode is given by E(x, z)~y = E0 exp(ikeffx) f (z)~y, where f (z) is a dimensionless field distribution
along the z direction. For a slot width w in step 2, we obtain the complex input field amplitude
E+ = E0 exp[ikeff(−xs)] using the parameters in step 1. The complex reflection field amplitude
is E− = Er exp[ikeff(x0 − w/2)] using the data at monitor (2). The complex transmission field
amplitude is E′+ = Et exp[−ikeff (x0 − w/2)] using the data at monitor (3). Then, we calculate
the transmission coefficient t(w) = E′+/E+ and the reflection coefficient r(w) = E−/E+.

In step 3, we obtain Es(x, z0)~y from the near-field monitor (4) when the input field is propagat-
ing from left to right. The location of the source in the FDTD simulation is adjusted for each slot
width such that E+(−w/2, 0)~y is the same in all the simulations. We note that the scattering near
field is asymmetric and is thus given by Es(−x, z0)~y for an input mode propagating from right to
left.

Fig. S3. Simulation setting for the holes model. The center of a diamond slab with H = 150 nm
thickness is located at z = 0 µm. The center of the air holes with diameter d is located at x = 0 µm
in the slab. A periodic condition exists in y direction with the periodic length L. Here, four
monitors ((1), (2), (3), (4)) record the fundamental TE slab mode input, reflection, transmission,
and scattering near field, respectively.

In step 4, we build the equation for linking the input and output field y-component from the
left side (E+

i , E−
i ) and right side (E′+

i , E′−
i ) for the ith slot in the slab. Since the transmission

coefficient and reflection coefficient will remain the same when considering the left to right
transmission and right to left transmission, the equations are
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E′+
i = t(wi)E+

i + r(wi)E′−
i , (S27)

E−
i = r(wi)E+

i + t(wi)E′−
i , (S28)





E+
i

E−
i



 = Ti





E′+
i

E′−
i



 =





1
t(wi)

− r(wi)
t(wi)

r(wi)
t(wi)

t(wi)
2−r(wi)

2

t(wi)









E′+
i

E′−
i



 , (S29)





E′+
i

E′−
i



 = Θi





E+
i+1

E−
i+1



 =





exp(−ikeff(xi+1 − xi)) 0

0 exp(ikeff(xi+1 − xi))









E+
i+1

E−
i+1



 . (S30)

Here, we have a boundary condition at the nth slot that E′−
n = 0 indicating there is no source

input outside the slab. Then we can express all the fields in terms of E′+
n .

In step 5, the contribution to the near field from the ith slot will be Esi = (E+
i /E′+

n )Es(x −

xi, z0) + (E+
i /E′+

n )Es(−x − xi, z0) + E′−
i /E′+

n )Es(x − xi, z0) + (E′−
i /E′+

n )Es(−x − xi, z0). The to-
tal contribution from all the slots to the near field can be written as

~Enear(x, z0) =
n

∑
i=1

Esi~y. (S31)

The core code for the transfer matrix model is also uploaded on Github: https://github.com/

LinsenLi97/Field-based-design. For a design using holes rather than slots, a similar TMM recipe is
used. The ith layer of holes is placed at xi, with hole diameter di and separation Li(i = 1, 2, ..., n).
The hole separation L will be the same as the periodic length in the y direction of the 3D FDTD
simulation illustrated in Fig. S3. Here, we define the hole diameter-to-distance ratio p = d/L.
As with the slots, we use FDTD simulations with a single scatter layer to obtain a lookup table
of the transmission coefficient t(d, p), the reflection coefficient r(d, p), and the scattering near
field y-component Es(x, z0), Hs(x, z0) for different values of the parameters d and p. Since the
slot design lookup table will only relate to the slot width w, the holes design has an additional
degree of freedom to tune the results.

Fig. S4. (a) Comparison between the normalized target near field |~entar| (cyan) and the normalized
near field |~enear| calculated using the TMM (red) or a 2D FDTD simulation (blue). (b) Plots of the
phase, arg(~enear ·~y), of each field in (a). (c) The x-z cross-section of the diamond slab with the
normalized electric field Re(Ey(x, z))/ max(|Ey(x, z)|) overlaid; the black line shows the edge of
the dielectric material.

In the TMM, we calculate the power transmitted in both the x and z direction

Pz =
∫ x0

−x0

[Re[Ex(x, z0)H∗
y (x, z0)− Ey(x, z0)H∗

x (x, z0)]dx, (S32)
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Px =
∫ z0

−z0

[Re[Ey(x, z0)H∗
z (x, z0)− Ez(x, z0)H∗

y (x, z0)]dz. (S33)

As a result, we know Pz and Px in the TMM and calculate the z direction power ratio,

Tz =
Pz

Px + Pz
. (S34)

The 1D mode overlap κ1D between the antenna near field ~Enear(x) and the target near field
~Entar(x) is

κ1D = |
∫ x0

−x0

~enear ·~e
∗

ntardx|, (S35)

where ~enear is the normalized antenna near field that satisfies
∫ x0

−x0
|~enear|2dx = Tz. ~enear =

Cnear~Enear(x), where Cnear is a normalization factor. ~entar is the normalized target near field that

satisfies
∫ x0

−x0
|~entar|2dx = 1. ~entar = Cntar~Entar(x), where Cntar is a normalization factor. Fig. S4

shows a comparison of the antenna near field~enear calculated with both TMM and a 2D FDTD
simulation. The overlap κ1D is 99.2% using the TMM with the antenna structure in Fig. S4(c),
while κ1D = 99.0% using the 2D FDTD simulation. Though the phase, arg(~enear · ~y), is not
matching well for x > 1.5 µm, the overlap remains large since the amplitude is small in that
region.

3. MIRROR CURVING

We start with a y-polarized dipole in an unpatterned slab and obtain the electric field distribution
Ey(x, y)~y. Then, we add dielectric perturbations that follow the phase fronts of the dipole

Fig. S5. (a) arg(Ey(x, y)) distribution and the same phase front perturbation layer predicted with
the curved model. (b) The σphase of the perturbation layer at different xi predicted by the curved
model (solid blue line with left y-axis), the σphase of the circle model at different xi (dashed blue
line with left y-axis), the fitting of ai with different xi (solid red line with right y-axis). The inset
shows the use of the arc whose center is not at origin to fit the same phase front region.

field arg(Ey(x, y)) as illustrated in Fig. S5(a). Thus the mode will normally incident on each
perturbation layer. Here, we apply the curved model to fit the phase front by using an arc whose
center is not at the origin as shown in the inset of Fig. S5(b). The center of the arc is located
at (x, y) = (−aixi, 0) and the arc radius is (1 + ai)xi, where ai is the fitting curvature for the

perturbation layer located at x = xi. We use the standard deviation σphase =
√

1
N ∑

N
j=1(φj − φ̄)2

to evaluate the error of the predicted same phase front region in Fig. S5(b), where φ̄ = 1
N ∑

N
j=1 φj

and φj = arg(Ey(xj, yj)) is the phase at the discrete sampling points (xj, yj) on the fitting arc
(j = 1, ..., N). The fitting parameter ai is the optimized curvature by minimizing σphase for the
perturbation layer located at x = xi. Compared with the simple circle model where the center of
the arc is located at the origin (0, 0), the curved model has several times smaller σphase. The σphase

will be larger for the perturbation layer closer to the dipole source. But using the curved model,
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the σphase at xi = 0.5 µm can be 0.3◦, which means only 0.5 nm standard deviation for the same
phase location with a 637 nm dipole source wavelength. The curved model is ten times better
than the simple circle model in σphase when xi < 0.5 µm. The curvature of the perturbation layer
can be easily changed with a different ai for various locations xi. It will also be easy to place the
holes array with the same separation of holes on the arc, which is considered as the same phase
front region with negligible σphase.

4. ANTENNA DESIGN FOR GAAS QUANTUM DOT

Besides designing the antenna for diamond color centers, we can also start the antenna design
with other dielectric membranes. Here, we show the simulation results for the antenna design for
a GaAs quantum dot as shown in Fig. S6. Bullseye antennas have been fabricated for the quantum
dot in the GaAs membrane with a SiO2/Au bottom reflection layer [3]. A collection efficiency
of 90% was obtained within a NA = 0.65 and a Purcell factor of 20 in the GaAs antenna design.
In our design, we achieve a Purcell Factor of 316 while the mode overlap with the NA = 0.4
Gaussian far field mode is 93%, corresponding to the 87% spin-photon interface efficiency η
(collection efficiency 93% within NA = 0.65). The detailed parameters for the antenna are shown
in Table S3. The resonant wavelength can be tuned by scaling all the dimensions of the antenna
structure as shown in Fig. S6(c). This can be used for designing different antenna structures
for the quantum dots with various wavelengths. The direct scaling will not reduce η more than
15%. We can redo the optimization to make the efficiency higher for a specific quantum dot
wavelength.

Fig. S6. (a) Illustration of the GaAs dielectric antenna structure, along with a plot of log10(|~efar|
2)

showing the far-field distribution. (b) Purcell factor spectrum of the antenna structure. The inset
is a linear-scale plot of Re(Ey)/ max(|Ey|) corresponding to the black square region in (a). (c) The
antenna resonance wavelength λ and efficiency η as a function of the changes in scaling factor of
the whole antenna structure.

5. SIMULATION PARAMETERS AND OPTIMIZATION

The optimization is done using the commercially available software Lumerical with a user-defined
gradient descent algorithm. The optimized parameters for the antenna structure in the main text
are given in Table S1 and Table S2. In the parameter table, a1 is the fitting curvature of the first
perturbation layer closest to the central dipole source and a2 is the fitting curvature of the next
perturbation layer. The following perturbation layer curvatures a(x) are determined by their
locations a(x) = a2x2

x . For the holey antenna, 4N is the number of holes in each perturbation
layer.
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Table S1. Diamond slot antenna design. (Fp = 154, η2 = 0.90 → ηNV = 0.74 ; ηSnV = 0.89)

Global Slot Location Slot Width

x0 5 µm x1 0.369 µm w1 41 nm

y0 5 µm x2 0.560 µm w2 41 nm

H 150 nm x3 0.771 µm w3 66 nm

z0 1 µm x4 0.993 µm w4 89 nm

zmin 330 nm x5 1.204 µm w5 92 nm

a1 1.12 x6 1.439 µm w6 96 nm

a2 1.08 x7 1.640 µm w7 58 nm

theta 75◦ x8 1.808 µm w8 50 nm

x9 1.975 µm w9 55 nm

x10 2.312 µm w10 48 nm

x11 2.631 µm w11 58 nm

x12 2.939 µm w12 60 nm

x13 3.268 µm w13 90 nm

x14 3.611 µm w14 73 nm

x15 3.928 µm w15 93 nm

x16 4.294 µm w16 111 nm

x17 4.663 µm w17 120 nm

Table S2. Diamond holey antenna design. (Fp = 420, η2 = 0.87 → ηNV = 0.81 ; ηSnV = 0.86)

Global Holes Location Holes Diameter N

x0 5 µm x1 0.392 µm d1 70 nm n1 5

y0 5 µm x2 0.564 µm d2 80 nm n2 6

H 150 nm x3 0.776 µm d3 110 nm n3 8

z0 1 µm x4 0.999 µm d4 160 nm n4 8

zmin 335 nm x5 1.211 µm d5 150 nm n5 10

a1 1.16 x6 1.448 µm d6 140 nm n6 12

a2 1.08 x7 1.650 µm d7 100 nm n7 17

theta 90◦ x8 1.819 µm d8 80 nm n8 18

x9 1.988 µm w9 80 nm n9 19

x10 2.327 µm d10 70 nm n10 20

x11 2.647 µm d11 130 nm n11 22

x12 2.958 µm d12 140 nm n12 23

x13 3.289 µm d13 160 nm n13 24

x14 3.634 µm d14 160 nm n14 25

x15 3.953 µm d15 160 nm n15 26

x16 4.320 µm d16 160 nm n16 28

x17 4.692 µm d17 140 nm n17 29
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Table S3. GaAs holey antenna design. (Fp = 316, η2 = 0.87 → ηGaAs = 0.87)

Global Holes Location Holes Diameter N

x0 5 µm x1 0.402 µm d1 77 nm n1 5

y0 5 µm x2 0.557 µm d2 72 nm n2 6

H 150 nm x3 0.795 µm d3 126 nm n3 8

z0 1 µm x4 0.998 µm d4 135 nm n4 8

zmin 370 nm x5 1.214 µm d5 144 nm n5 10

a1 1.16 x6 1.452 µm d6 126 nm n6 12

a2 1.08 x7 1.654 µm d7 90 nm n7 17

theta 90◦ x8 1.823 µm d8 72 nm n8 18

x9 1.992 µm w9 72 nm n9 19

x10 2.332 µm d10 63 nm n10 20

x11 2.654 µm d11 117 nm n11 22

x12 2.965 µm d12 126 nm n12 23

x13 3.297 µm d13 144 nm n13 24

x14 3.643 µm d14 144 nm n14 25

x15 3.963 µm d15 144 nm n15 26

x16 4.331 µm d16 144 nm n16 28

x17 4.704 µm d17 126 nm n17 29

REFERENCES

1. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the q factor in photonic
crystal microcavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).

2. P. Markos and C. M. Soukoulis, Wave propagation: from electrons to photonic crystals and
left-handed materials (Princeton University Press, 2008).

3. J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li,
and X. Wang, “A solid-state source of strongly entangled photon pairs with high brightness
and indistinguishability,” Nat. Nanotechnol. 14, 586–593 (2019).

9


