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Abstract— This paper presents a new scheme fo esti-
mate the user mobility by incorporating the aggregate
history of mobile users and system parameters. With this
approach, each user’s position within the location area is
differentiated by zone partition for more accurate pre-
diction. In order to provide the flexibility of tradeoff be-
tween quality demand and computation complexity, the
estimation is adjusted dynamically according to the con-
straint of prediction order. Then an adaptive algorithm
is developed to predict the future position of mobile ter-
minals in terms of location probabilities, while consider-
ing each terminal’s movement direction, residence time,
and path information. Simulation results demonstrate
that the signaling cost for location tracking under delay
bound is greatly reduced based on the estimated user mo-
bility pattern.
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[. INTRODUCTION

With the increasing demand for access to Internet and the
advance technologies of wireless systems, it is envisioned
that mobile users are able to enjoy the same quality that
available to fixed users when they move from one position to
another. The mobility support, which enables mobile users
to communicate with others regardless of their locations, is
related to the mobility pattern of the mobile terminals {MTs).
The user mobility pattern is very important in wireless net-
works because it is the fundamental information for location
tracking and the enhancement of Quality of Service (QoS).
For example, the information of user mobility can be used
to efficiently allocate the radio channels to each MT,red uc-
ing the hand-off dropping probability caused by the shortage
of bandwidth and yielding maximum system throughput [5],
[9]. Also many mobility management schemes utilize the
user mobility pattern to improve system performance by re-
ducing signaling cost under delay bound 3], [6].
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In order to capture the user mobility pattern, we need to
consider the user historic records and path availability in the
observation areas. Some of the existing methods are aimed
to find the most probable cell or a cluster of cells without
considering the historic records, which may overlook some
probable cells [4], [10]. Another issue is that most of the
previous solutions do not take the path information into ac-
count, preventing them from practical application [2], [8].
Also, it is critical to consider the computation scalability for
real-time applications in mobiie environment.

In this paper, we propose a new method to estimate the
yser mobility in terms of location probabilities for each MT,
The rest of this paper is organized as follows. In Section II,
a system model is presented in which new concepts of zone
and prediction order are introduced. In Section III, an al-
gorithm is developed for calculating the number of probable
cells and predicting the future cells. It is also used to derive
location probabilities for a set of cells instead of choosing
the most probable cell. In Section IV, we describe the sim-
ulation model and the parameters in our experiments. The
effect of the proposed scheme on location tracking is shown
in Section IV. Finally, we conclude the paper in Section V.,

II. THE CONCEPTS OF ZONE PARTITION AND
PREDICTION ORDER

A typical wireless network is composed of a wirelined
backbone and a number of base stations (BSs). A mobile
switching center (MSC) contrels a set of BSs, manages the
resoutces as well as the signaling exchanges. If an MT is
moving from one cell to a cell which belongs to another
MSC, location registration and identity authorization may be
involved. In order to predict the fisture locations of an MT,
we should differentiate an MT’s current position in a large
area. Here, we extend the shadowing cluster concept, which
was introduced in [9]. For the two-dimensional topology,
hexagons are used to denote the cells; thus, each cell has six
neighbors and the probability of an MT leaving along one
side is assumed to be %. However, this is unfair for the MTs
with an active connection and a specific destination.
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Therefore, we propose the zone partition concept within
the coverage of an MSC to predict the MTs” position in
smaller granularity. There may be varying number of zenes
in 1eal environment, depending on geographic circumstances
and network architectures. As an example, the service area
of each MSC is divided into n zones (n = 7)as shown in
Fig. 1. The MT’s current position is closely related to its next
position because of the continuity of an MT’s movement. [f
an MT is currently in zone 2, #t is likely to move into zone
0,1,3 and even to the coverage area of MSC-C in the next
moment. In such a way, we incorporate the MT’s movement
direction and position (zone) in estimating an MT’s mobility
pattern.

N
LocationAre

Fig. 1. Zone Pattition.

An MT’s current resident cell can be determined in sev-
eral ways. First, when an MT initiates a call, it sends routing
request to the serving MSC through the serving BS. As a
result, the network knows in which cell the cailing MT is re-
siding. Second, when an incoming call arrives at an MT, the
network first locates the MSC with which the called MT has
registered. Then the MSC pages the BSs in its controlling
area so as to find which BS is serving the called MT. Thus,
the called MT’s current cell is known to the network, Third,
the MT’s location can also be cbtained through location ser-
vices management provided by wireless systems [1].

Furthermore, we introduce the concept of prediction order
because it is necessary to know how many cells are covered
in the prediction. If the estimated cells cover only the cells
of the first ring, which are adjoining to the MT’s current cell,
then it is called first order prediction. Similarly, the second
order prediction is associated with those cells that are adja-
cent to the cells in thé first ring and those cells covered in the
first order prediction as in Fig. 2. Prediction order is a very
heipful parameter in balancing the computation complexity
and the prediction accuracy, For the first order prediction,
only six cells are considered, i.e., the computation is sirnple.
If the second order prediction is required, there are eighteen
cells to be considered. Correspondingly, the complexity of
computation Ricreases, which is demonstrated in Section [11.

{8} The First-order Prediction (b} The Second-order Prediction

Fig. 2. Prediction Order.

HI. ESTIMATION ALGORITHM AND PROCEDURE

In this section, we discuss how to identify those cells in
which an MT will probably move into and how to determine
their location probabilities. Let B, ;(#), be the location prob-
abilities of the cells that an MT will move into. 1f an MT x
is currently in cell ¢, then

Boilt) = [Prinlt) Pagalt) Posalt) - Posn(t)], (O

whete Py ; ;{t) m (2), is the probability that an MT, =, cur-
rently in cell ¢, will be in cell j and N is the total number
of cells for prediction. l-iz,;(t) depends on the MT's his-
toric records, current position, velocity, and moving direc-
tion. Therefore, Py i,;() has the general form

Py i i(t) = F(ve(8), 70 (8),1:(2), 62 (2)), 2

where v, (2) is the velocity of the MT =z, ,(¢) is the prob-
ahility density function {pdf) of the MT’s residence time in
a cell. 1, (%) is used to specify the current MT’s zone posi-
tion and the moving direction, 8;(f), is defined as the degree
from the current direction clockwise or counter-clockwise.
Based on these parameters, the computation can be divided
into following steps: 1) Determine the MT’s current and fu-
ture zone partitions; 2) Calculate the number of cells for es-
timation; and 3) Compute the location probabilities.

A, Estimation of Zones

The coordinate system shown in Fig. 3 is defined with its
origin at the current location of the MT, i.e., the MT is always
in its origin and its previous direction is the positive direction
of the X axis. Y axis is obtained by turning 90° counter-
clockwise from the X axis.

Assume an MT is moving from point O (Zgjto ward A;
thus, its next position may be in zone 1, Z;. In general, the
future zone, Case k (1 < k < n — 1) can be determined as

[ if8,(t) 2 0

VA =
k {n—l——fw—’éfﬂ] if6,(t) <0
~ Caseltogn -}~ Z) t0 Z,, 1,

&)
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Fig. 3. Coordinate System with Zone Partition.

where n is the total number of zones and #y is the angle of
each zone. It is possible that more than one zone will be in-
volved in estimating location probabilities because it is dif-
ficult to differentiate an MT’s position around the boundary
of zones as the dark region shown in Fig. 3. Thus, we ex-
tend the possible zones for Case k (n < k < 2n — 1) by the
following expression:

16:(t) | (mod 7)< §-6o )
~+ Case n —+ Z,,_) and Z
|8:(t) — 60| (modw)<3-6o
~r Casen +1— Zy and Z,

106)—(n—2)-6] (modm)<i by
~Case2n—1— Z,_cand Z,_4

B. Calculation of Cells Number

We compute the number of cells that an MT may have
traveled during the time window AT'. Let v, (0) be the aver-
age velocity of an MT and consider that the MT traversed a
cell with an average time of its residence time. The pdf of an
MT?s residence time is assumed to be Gamma distribution,
which has Laplace transform @, (s) with the mean value

1/ and the variance V., ie., @z 1(s) = (ﬁ-};)

5= ﬁ, Given the mean residence time, E,[T] = %, the

-
, where

travel order, 0. (t), that an MT may reach along one direc-
tion is cbtained by
AT .

0.(t) = fm]- &)

To ensure the cell coverage required by the prediction or-
der, 0.(t), we must consider the maximum number of cells
needed by both travel order and the prediction order. We de-
note N {max{o.(£),0.(§)} = r : t,k), which is rewritten
as N,{r : t,k) in short, as the number of probable cells in
the mobility profiies with order r at time ¢ for Case k. The
most simple scenario is o, (t) = 0, (t) = 1, the number of
the probable cells for Case ! in (3), No(r = 1 :¢,1),is then
determined by

ISP T X0Y
Nor=1:4,1) =[5 220, ®)

Similarly, we can have a general form for calculating the
number of probable cells for other cases, N, (r : £, k), that is

k—1+[6. %00 £ 2.6 20]
ifl<k<n-—-1
2-(k—14J6. 28 4 19.6. %0

ook ko6 ool

ifrn<k<2n—~-1.

N(r:t,k) =

™
C. Prediction of Location Probabilities

Consider a particular cell, the number of paths or travel
routes through this cell is finite. Then the path informa-
tion can be recorded in a frace records matrix (TRM) of
L x M, where L is the total number of records and M is
the total number of cells that an MT has traversed in the
period of observation. The element 2,5 (@ = 1,2,...,L;
8 =1,2,..., M), of the TRM, denotes whether the MT has
traversed a cell, 2,5 = 1 or not, 2,5 = 0, respectively.

Given this matrix Z, the probability of going through each
cell can be estimated by comparing with path database (PD),
which is a part of the digital map. Morecover, we assume
that an aggregate historic path database DX is available to
retrieve in the network administration center. Each record
in this database is the previous path that the MT z has tra-
versed. Then Py ; (¢} in (2), forj = 1,2,--- ,N(r : £, k),
is computed by the following procedures:

« Step 1: Select a value 0 < pp < 1 as the initial point for
computing the location probabilities. .

« Step 2: Start from the bottom line of TRM and take the
last two non-zero elements of the TRM to make a temporary
path P as shown in Fig. 4(a).

« Step 3: Compare the path P to the equal or close segment
in PD as shown in Fig. 4(b). There may be a set of cells that
can be the next cell along with path P, which is represented
by a set PS. Each element of this set, X; € P2 is aprobable

cell in Fig. 4 (c), and it gives a possible path, P(X;).
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Fig. 4. Prediction of Location Probabilities,

o Step 4: Estimate location probabilities, P ; ;(£), under
the process shown in Fig. 5. This algorithm starts from ex-
amining each cell in the set of possible cells, X; € PS and
the total number of cells in this set is N;(r : ¢, k) from (7).
If a probable cell, X;,is in the first order prediction and the
its cotresponding path, P{X;), can be found in the historic
path database DX, then the cell X; has the highest location
probability. This emphasizes the importance of prediction
coustraints and the user history. After that, as the probable
cells are getting farther away from the MT’s current position,
and they are not relevant to the historic paths, the location
probabilities decrease. This process continues until all cells
in the possible set are scrutinized.

As aresult, a sequence of location probabilities is obtained
in terms of py, where py can be solved by applying the fol-
lowing expression:

> Poii(t)=1 ®)
—
FE(PS | Nalrit k)

IV. PERFORMANCE ANALYSIS

There are many ways to evaluate the effectiveness of the
proposed scheme [5], [6], [9]. Here we show the effect
of these results on location tracking in wireless networks.
In current wireless systems, location tracking is realized
through paging process, in which an MSC sends polling
message to BSs to determine the serving cell of the called
MT. Paging cost is concerned with network resource because
the paging message is sent via down-link channels; thus, it
should be reduced as much as possible. On the other hand,
paging delay affects the latency of service delivery, which
is regarded as one of the QoS parameters. Therefore, the
paging cosi must be reduced under delay bound.

Po = initial value of the highest probability
P := femporary path of TRM
PF 1= set of probable cells in PD along path P
P{X;) = possible path of cell X; € PS
Nofr i t, k) = Ny(max{o,(2), O:(t)} =7 : ¢, k)
Py ;(t} := location probability a1 cell § givenan MT 2
is currently in cell i
Py = threshold of probability computation
while n < No(r: ¢, k) do
for all X; € P% do
if X; € Ni(1: 1, k) and P(X;) € D¥ then
Pz.l’J (t) =Po
else
case : X; € Mo(2:t, k) and B(X;) € DE
Pryy(t) =1po
case : X; € N(2: ¢, £)and P(X;) ¢ DE
Prislt) = gmo
case: X; ¢ (M{1: ¢, k)UN(2: L, k) and P(X,) € DF
Prgilt) = im
others :
foralir > 2do
while P,I,'J(t) < Pg do
case: X, € No{r: 4,k)
Pois() = (3 'po
case: X, ¢ Ni(r:t,k)
Pris(t) = ('m0
end while
end for
end if
end for
end while

Fig. 5. Estimation of Location Probabilities (Step 4).

We consider that the MTs move with varying speed and di-
rections (7], [11]. The initial velocity of an MT is assumed
to be a random variable with Gaussian probability density
function truncated in the range of [0, 112km/h] and the ve-
locity increment is taken to be a uniformly distributed ran-
dom variable in the range of :40% of the average velocity,
80km/h. As for the residence time distribution, the values
of p is taken with 1.65 [12].

The most important feature of this simulation is that we
use an actual digital map instead of mathematical models.
The cell radius is assumed to be 2km in our simulation. The
full area of the segmentation map is covered by this type
of cells. For 8:(2) = £n /3, and 6.(t) = +m/2, we first
determine the probable zones using (3) and (4}, limiting the
probable cells in a particular region. Then the number of
probable cells is computed by using (5) and (7) in Section II1.
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Fig. 6. Comparison of Paging Costs

The paging costs resulted from the location probabilities
of first and second order prediction are compared to that of
uniform distributions without prediction. The numerical re-
sults of paging costs are given in Fig. 6, in which paging
costs are measured by the number of cells to be searched
before finding the MT.W hen the variation of moving direc-
tion is high, the improvement of paging costs is more visible
as shown in Fig. 6(a). For example, when §; = 3, the
reduction in paging costs due to the location probabilities
is not as large as that of @, = +%. This means that it is
more important to predict location probabilities if the MTs
are moving randomly,i. €., the movement of the MTs is not
uniformly distributed in the location area. If the prediction

order is higher, the paging costs can be significantly reduced
compared to without prediction. Specifically, if the MTs are
moving very fast and they may go to other cells in a short
time, it is more difficult to locate the MT. Accordingly, the
prediction of MTs’ location probabilities is more effective
and important.

V. CONCLUSION

In this paper, we presented a predictive scheme for esti-
mating user mobility in wireless networks, We proposed the
concept of zone partition which helps to identify the MTs’
position inside a location area. Also, the prediction order is
introduced to dynamically detertnine the probable cells with
respect to the computation complexity and the QoS require-
ments. Based on an MT’s zone partition and the prediction
order,an adaptive algorithm is developed to incorporate the
MTs’ historic recerds and the path information. In addition,
this method takes the moving direction and MTs’ residence
time into account for better prediction. The simulation re-
sults demonstrated that the signaling cost of location track-
ing under delay bound can be significantly reduced with the
user mobility prediction.
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