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Abstract — Battery capacity of mobile terminals and
radio bandwidth are both limited and precious resources
in wireless networks. In this paper, we present a thor-
ough performance study of energy-based admission con-
trol scheme to make the best use of these two resources
for effective mobile communications. In order to re-
duce energy consumption of each terminal, we introduce
a Victim Selection Algorithm(VSA) and a Beneficiary Selec-
tion Algorithm (BSA)for acquiring bandwidth and releas-
ing bandwidth, respectively. To avoid potential compro-
mise of quality of service (QoS) due to the concern of en-
ergy consumption in connection admission control, we fur-
ther propose an adjustment algorithm to statistically meet
the demands for QoS. The performance of the proposed
schemes is evaluated with respect to energy consumption
rate of each successfully transmitted bit, throughput and
call blocking probabilities for a variety of traffic such as
Poisson and self-similar, multi-class traffic.

Key Words: Wireless networks, Quality of Service, energy
consumption, and connection admission control.

I. I NTRODUCTION

Wireless networks have revealed a significant impact on the
information and communication technology as more and more
people are accustomed to depending on mobile devices for
voice and data communications. However, a majority of mo-
bile terminals operate on batteries, such as cellular phones,
portable digital assistants (PDAs), and laptops in situations
with no available power supply. Thus, energy efficiency is
of particular interest in the design of wireless networks due to
limited battery capacity. Along with the increasing trend of
using mobile devices as a means of communication, the bat-
tery life of a mobile terminal becomes one of the bottlenecks
to supporting high-quality multimedia services or huge data
transmission, even affects roaming capability. The demand for
universal wireless access, along with the development of wire-
less applications including location-aware services and mobile
transactions, has motivated the research in supporting quality
of service (QoS) with energy conservation in a variety of wire-
less networks.

Specifically, connection admission control (CAC) is one of
the most important approaches to providing QoS parameters
in wireless networks since radio bandwidth will be allocated

for mobile communications. Many solutions have been pro-
posed to dynamically allocate bandwidth based on different
criteria, including system priority, capacity, mobility, and in-
terference [6, 10, 13, 19, 24, 30]. With the common agree-
ment that handoff requests should have higher priority than
new arrivals because the termination of an existing connec-
tion is worse than not accepting a new request, guard channel
schemes are proposed [6, 19, 21] in which handoff requests
have higher priority than new incomings. To this end, the main
design challenge is how to satisfy the minimum requirements
of call dropping/blocking probabilities, whereas maintaining a
high throughput.

Since the traffic and mobility patterns, especially for voice
communications in cellular networks, can be represented by
analytical models, prediction and mobility based approaches
are further designed to reserve bandwidth in a specified loca-
tion prior to the arrival of handoff requests [5, 7, 13, 24]. In
these schemes, a base station (BS) may need to collaborate
with other BSs or use only local information to make the de-
cision for resource reservation. The tradeoff between carried
traffic and QoS among multi-class traffic is pursued by using
different methods such as neural networks and pricing mod-
els. The admission control schemes for code division mul-
tiple access (CDMA) systems, are mostly focused on the in-
terference [2, 27], because the increased number of ongoing
services in a CDMA system can bring signal-to-interference
ratio (SIR) to an unacceptable level. Thus, power control is
emphasized in many research efforts, which are mainly con-
cerned with the improvement of system performance such as
capacity and throughput [1, 2, 26].

Although battery capacity of mobile terminals and radio fre-
quency bandwidth are both limited and precious resources in
wireless networks, it is hardly considered in the CAC algo-
rithms. At the physical layer, power management of a trans-
mitter is studied extensively using the knowledge of channel
fading and interference, thus dynamically changing transmis-
sion power [1, 3, 31]. For instance, joint source and chan-
nel coding with power control are exploited [8, 29] to prolong
the battery life of mobile terminals. At the system level, it is
suggested that energy consumption can be reduced by smartly
turning off mobile devices during idle time [14]. Therefore,
we will demonstrate that, besides power-control on uplinks
and downlinks, CAC algorithms can also be designed to con-
serve energy consumption. In other words, total transmis-



sion energy consumption can be minimized by adapting trans-
mission rate to channel conditions under the constraints of
QoS [9, 22]. Motivated by these important work, in this paper,
we develop a new admission control scheme in that it incor-
porates bandwidth allocation and energy conservation at the
network layer.

Our contributions in this paper are as follows. First, we
introduce a new parameter,energy consumption rate, which
describes the relationship between connection admission con-
trol (CAC) and energy consumption. Then, we propose an
energy-based connection admission scheme, includingvictim
selection algorithm(VSA), beneficiary selection algorithm
(BSA), andstochastic adjustment algorithm(SAA) for reduc-
ing energy consumption, while satisfying QoS requirements
of multi-class traffic.

The rest of the paper is organized as follows. In Section II,
we describe the system model and problem statement, in par-
ticular, the affect of admission control on energy consump-
tion. Section III presents our algorithm in acquiring band-
width from ongoing connections and re-allocating radio re-
sources upon a connection termination for high throughput.
The proposed solution is evaluated with regard to blocking
probabilities, the effect of stochastic adjustment, and energy
consumption for various scenarios in Section IV. Finally, sim-
ulation results for Poisson and self-similar traffic are provided
in Section V, followed by conclusions in Section VI.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. Multi-Class System Model

Unlike a single-class model, the multi-class system model
is very important in analyzing performance of a wireless net-
work because of the demand for various applications in mo-
bile environments [5, 7, 11, 24]. In particular, resource allo-
cation for multi-class users must consider the interaction be-
tween classes, e.g., the dropping probability of one class of
users may impact that of another class of users. We consider
a system model with multiple classes of traffic in which there
are a total ofC channels to serveK classes of services. Each
class of service can be characterized by four parameters: chan-
nel requirements, arrival distribution, channel holding time,
and QoS requirements, such as handoff dropping probabili-
ties. Specifically, there parameters are defined as follows:
C system capacity;
K number of classes,k = 1, 2 . . . , K;
bL
k lower bound of channel requirements in classk;

bU
k upper bound of channel requirements in classk;

λk mean arrival rate of traffic in classk;
µk mean service rate of traffic in classk;
βk requirement of new connections’ blocking probability of

services in classk;
δk requirement of handoff dropping probability of services

in classk;−→
β a vector with predefined call blocking probability of each

class, which means that the system needs to guarantee the

blocking probability of classk being less thanβk, and
−→
δ a vector with predefined handoff dropping probability of

each class, which means that the system needs to guar-
antee the dropping probability of classk being less than
δk.

In the general description of wireless systems, the band-
width is denoted by the total frequency bandwidth used in a
cell. On the other hand, logical channels are used for band-
width allocation in TDMA/CDMA systems such as radio net-
work controller (RNC) in Universal Mobile Telecommunica-
tions System (UMTS). To be consistent with the literature and
specifications, we use the number of channels for bandwidth
in this context. Given different types of services, the require-
ments of channels may be different. For example, multimedia
traffic may require from4 to 7 channels, even more, whereas
data services may require from2 to 5 channels. The defi-
nition a channel varies from system to system, but it is the
minimum unit for voice service. For example, in an orthogo-
nal frequency division multiplexing (OFDM) system, a chan-
nel can be considered as the minimum tones used to transmit
voice traffic. If a service requires a fixed number of chan-
nels, it becomes a special case in our model because we can
simply let bL

k = bU
k = the number of channels. For simplic-

ity of description, we assume the call-arrival process is the
Poisson process, and the channel-holding time is exponen-
tially distributed [24, 30]; therefore, we denoteλk andµk as
the mean arrival rate and service rate for classk, respectively.
While multimedia traffic requires more channels, it may suffer
a higher blocking probability because the request cannot be
admitted if channels are not enough, resulting higher block-
ing/dropping probability.

B. Connection Admission Control and Energy Consumption

Connection admission control (CAC) is a technique that
admits new requests and handles handoff connections intel-
ligently in wireless systems to avoid network congestion and
reduce blocking/dropping probabilities. The ultimate goal of
CAC is to allocate bandwidth, that is, to determine the trans-
mission rate of a mobile device while not degrading QoS pa-
rameters, which does not involve energy issue directly except
the power control for reducing SIR. Nevertheless, transmis-
sion rate is closely related to the energy consumption per bit.
In [4], it is explained that energy required to transmit a packet
can be significantly reduced by lowering transmission power
and transmitting the packet over a longer period of time; that
is, by reducing transmission rate, energy consumption can be
lowered. This is an important step to couple two problems
together.In this paper, we describe how energy consumption
is dependent on channel conditions, transmission time, and
bandwidth allocation.

The energy consumption is determined by the total trans-
mission time and corresponding transmission powers, which
are associated with channel conditions, coding and modula-
tion schemes. Let us denoteW as the total bandwidth con-
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trolled by a BS andN as the number of terminals in a cell. For
TDMA/CDMA systems, it is bandwidth that can be used by
all terminals. For FDMA systems, it is the summation of each
frequency channel. Let vector

−→
P = [P1, P2, . . . , Pi, . . . , PN ]

be the transmission power ofN terminals, wherePi is the
transmission power for terminali. Similarly, we denote the
transmission rate as vector

−→
R = [R1, R2, . . . , Ri, . . . , RN ],

whereRi is the transmission power of terminali. The chan-
nel gain for each user is represented by a vector

−→
H =

[h1, h2, . . . , hi, . . . , hN ]. Then, the energy-to-noise ratio,
Et

b/N , of mobile useri can be written as [23]

Et
b

N0
=

Et
b · hi∑

j 6=i hjPj

W + η0

(1)

whereEt
b is transmission energy per bit andNo is the noise

spectral density including thermal noise and interference.η0

is the white Gaussian noise level For existing wireless sys-
tems, we consider that bit error rate (BER),Pber, for BPSK
modulation as

Pber(Et
b) = Q(

√
2Et

b

N0
) =

2√
2π

∫ ∞√
2Et

b
N0

e−
x2
2 dx. (2)

Since the payload of a service request will be encapsulated
into frames during transmission, we need to knowframe error
rate (FER), which is determined by BER and coding schemes.
In this context, we useReed-Solomon(RS) code [29] as an
example because of its considerable use in wireless systems.
The RS coding scheme is represented byRS(n, k), wherek
is the length of source symbols andn − k is the length of
protection symbols, which is able to correct up tot = (n −
k)/2 symbol errors. Thus,symbol error rate, Ps(Et

b), and
frame error rate, Pfer(Et

b), usingRS(n, k) are given by [23]

Ps(Et
b) = 1− (1− Pber(Et

b))
n and (3)

Pfer(Et
b) =

n∑
j=t+1

(
n

j

)
Ps(Et

b)
j(1− Ps(Et

b))
n−j .

Then, the average number of transmissions,Ω(Pfer(Et
b)),

can be obtained by

Ω(Pfer(Et
b)) =

1
1− Pfer(Et

b)
. (4)

In addition, total transmission time for mobile terminali,
T i

total, depends on the total amount of data, number of retrans-
missions, and transmission rate. That is

T i
total =

φi

Ri(1− Pfer(Et
b))

(5)

whereφi is the total amount of data to be transmitted for mo-
bile terminali. Thus, thetotal energy consumption, Ei

total =

Et
b

1−Pfer(Et
b)
· φi, which illustrates that the total energy con-

sumption is dependent on data volume in transmission, energy
per bit, as well as transmission errors. In particular, the trans-
mission energy is proportional to the first item for fixed vol-
ume of information.

The ratio between the total energy consumption and the data
volume is the energy consumption for each bit, which is de-
fined as,energy consumption rate(ECR)Γ(Et

b),

Definition: Energy consumption rateis energy consumption
of each successfully transmitted bit given by

Γ(Et
b) =

Et
b

1− Pfer(Et
b)

. (6)

As an example, Fig. 1 shows energy consumption rate
versus transmission rate, which is rewritten asΓr(R̄) =

P̄
R̄−R̄·Pfer(P̄ /R̄)

from the above definition. Other parameters

include channel gainhi = 10−2 [17], P = 20 dBm, and
No = 5 × 10−9 WHz [23]. The similar curves hold true for
other experiments such asRS(128, 112), andP = 20 dBm.
This figure shows that transmission rate and energy consump-
tion are closely related over erroneous channels. For instance,
when transmission rate is lower than a threshold “A”, about
120 Kbps, energy consumption will not decrease any more,
but will increase dramatically as transmission rate decreases.
Also, the variation of energy consumption is not the same for
the same change in transmission rates. When we decrease the
bandwidth at “A”, “B”, and “C” by ∆RA, ∆RB , and∆RC ,
respectively, the increases in energy consumption are differ-
ent:∆ΓA, ∆ΓB , and∆ΓC . The increase in energy consump-
tion of terminal “A” is lowest and highest at terminal “C”.
Therefore, more reduction in energy consumption, (∆ΓC) can
be gained by increasing the bandwidth for terminal “C” than
the bandwidth increase for “A”.

We note that in reality, the transmission rate is not changed
continuously. For the convenience of illustration, we use the
slope to represent the changing rate. In a realistic situation,
we can consider the value of∆Γ for different mobile termi-
nals, which depends on the bandwidth of each logical chan-
nel. Since the same bandwidth variation may result in vari-
ous changes in energy consumption, the problem of energy-
based admission control is formulated how to select connec-
tions whose bandwidth can be reduced to accept more requests
and how to re-allocate bandwidth to active services so that the
average energy consumption of each terminal can be reduced.
In addition, how to avoid the QoS compromise for multi-class
traffic systems.

III. A N EW ADMISSION CONTROL SCHEME BASED

ON ENERGY CONSUMPTION

In this section, we present an adaptive scheme for connec-
tion admission control based on energy consumption. It dis-
tinguishes itself from the existing adaptive schemes in two as-
pects. First, in the connection setup phase, energy-based CAC
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Fig. 1. An Example of Energy Consumption vs. Transmission Rate.

calculates the transmission power in order to have the mobile
terminals operate at the minimum energy consumption rate
point with the constraint of transmission rate. Second, during
the transmission, the proposed scheme may change the trans-
mission rate of a connection to adapt to incoming or outgoing
requests upon energy status of mobile terminals. For exam-
ple in a CDMA system, different number of channels can be
achieved by allocating multiple spreading codes to the mobile
terminals. In addition to the energy conservation being con-
sidered in the admission control, a QoS adjustment algorithm
is proposed to stochastically adjust bandwidth allocation for
satisfying QoS requirements in multi-class systems.

A. Victim Selection Algorithm

When a new or handoff request from a terminal,t, arrives
at a point of attachment such as a base station, if the available
bandwidth,BWa, is greater than the minimum bandwidth re-
quirement,BWL[t], then the BS accepts this request as shown
in Fig. 2. Otherwise, the BS searches all ongoing services, i.e.,
a total number ofK users, to find avictim, j, whose derivative
of Γr(R) is the minimum through a so called.victim selection
algorithm (VSA). Through this algorithm, mobile terminals,
whose derivative of energy consumption rate is the minimum,
will be selected as “victims” and their transmission rate will be
reduced to minimize the change in energy consumption. The
BS will reduce the bandwidth,∆BW , from a chosen victim,
to a lower level to increase available bandwidth.

If a terminal already operates at its lower bound,BWL[i],
the bandwidth of this terminal cannot be reduced. As such,
this mobile terminal cannot be treated as a “victim.” This pro-
cedure will be repeated until the available bandwidth is greater
than the requested bandwidth for accepting terminal,t. If no
“victim” is available, VSA uses an adjustment algorithm de-
scribed in Section III-C to select those terminals that their QoS
are beyond their expectations.

1. While BWa < BWL[t]

2. do m← dΓr(R)
dR

of terminal,i = 1
3. j ← 1
4. for i← 2 to K

5. if for terminali, dΓr(R)
dR

< m
6. AND BW [i]−∆BW >= BWL[i]

7. then m← dΓr(R)
dR

of terminali
8. j ← i
9. if j == 1 AND BW [1]−∆BW < BWL[1]
10. if t is a new request
11. gotoQoS Adjustment-Blocking
12. else t is a handoff request
13. gotoQoS Adjustment-Dropping
14. else
15. BW [j]← BW [j]−∆BW
16. BWa ← BWa + ∆BW
17. ACCEPT t

Fig. 2. A Pseudocode of Victim Selection Algorithm (VSA).

B. Beneficiary Selection Algorithm

Once a connection is finished, the bandwidth for this session
will be released. In order to utilize the bandwidth efficiently,
we can reallocate the bandwidth to ongoing services. Theben-
eficiary selection algorithm(BSA) is designed to choose “ben-
eficiary” terminals because they will be allocated more band-
width, resulting maximum decrease in energy consumption.
For example, we can see in Fig. 1 that terminal “C” will be
the beneficiary for BSA because of the maximum decrease in
energy consumption resulting from the increase in transmis-
sion rate compared to the other two terminals, “A” and “B.” A
pesudocode of BSA is shown in Fig.3. The BS searches for a
potential beneficiary from a total number of ongoing services,
K, with ongoing services to determine a terminal,j, which
can benefit most by receiving more bandwidth, i.e.,Γr(R) is
the maximum. Definitely, a higher level ofBW [j] caused by
the increase,∆BW , will not exceed the upper bound of band-
width requirement,BWU [j], for the “beneficiary” terminal,
j.

1 . While BWa> 0

2 . do m← dΓr(R)
dR

of terminal,i = 1
3 . j ← 1
4 . for i← 2 to K

5 . if for terminali, dΓr(R)
dR

> m
6 . AND BW [i] + ∆BW <= BWU [i]

7 . then m← dΓr(R)
dR

of terminali
8 . j ← i
9 . if j == 1 AND BW [1] + ∆BW > BWU [1]
10. goto13
11. BW [j]← BW [j] + ∆BW
12. BWa ← BWa −∆BW
13. return

Fig. 3. A Pseudocode of Beneficiary Selection Algorithm (BSA).

C. Stochastic Adjustment Algorithm

For multi-class service systems, typically in current and fu-
ture wireless networks, bandwidth allocation needs to be cou-
pled with QoS requirements to achieve a balanced QoS guar-
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antee. Thus, we introduce astochastic adjustment algorithm
(SAA) in that a BS partially blocks the other classes’ traffic
before they come into the system; we call this operationpre-
block, even if the BS has resource available. In this way, the
BS reduces the total system traffic load by sacrificing certain
classes, thus creating a balance between the classes already
beyond the QoS requirement and the classes that are under
satisfied.

In the implementation of SAA, the BS will pre-block some
traffic according to a stochastic process like a uniform distri-
bution. For a blocked request of classk as shown in the pseu-
docode of SAA in Figure 4, the BS updates the number of
blocked requests of classk, NB[k], as well as the total number
of new requests, NTB[k]. Then, the BS examines whether the
blocking probability of classk, PB[k] exceeds its QoS specifi-
cation,βk. If the blocking probability is still under the QoS re-
quirement, the BS will not invoke any procedures. Otherwise,
the BS will search for a class,j, whose blocking probability,
PB[j], is beyond its QoS specification to randomly block sub-
sequent requests of classj so that the traffic load is reduced.
If a handoff request is dropped, then a similar procedure of
SAA will be implemented, except the dropping probabilities
are considered as a measurement instead of blocking proba-
bilities. Therefore, the QoS requirements are considered in
our bandwidth allocation scheme in addition to energy con-
servation.

1 . NB[k] ← NB[k] + 1
2 . NTB[k]← NTB[k] + 1
3 . if PB[k] ≤ βk

4 . return
5 . else
6 . While i <= K
7 . do
8 . if PB[i] <= PBU[i]
9 . break
10. if i > K
11. return
12. else
13. randomly block classi’s call request
14. NB[i] ← NB[i] + 1
15. NTB[i]← NTB[i] + 1

Fig. 4. A Pseudocode of Stochastic Adjustment Algorithm (SAA).

D. Discussion

The proposed scheme for admission control has several ad-
vantages. First, our approach reduces energy consumption by
CAC algorithms at the network layer, which is different from
many previous schemes at the medium access control (MAC)
layer. Second, the blocking probability and dropping proba-
bility incurred in our scheme are less than or equal to those of
other schemes for multi-class systems. Moreover, our solution
takes QoS into consideration, maintaining a balance among all
the classes of traffic.

For CDMA systems, when mobile terminals change their
power, the interference will also be changed. As a result,
the capacity of the system may also be changed over time.

However, this will not affect the application of the proposed
scheme because the transmission rate is changed based on the
number of channels rather than transmission power. In other
words, either the victims or the beneficiaries will use the same
transmission power as a result of power control schemes. It is
possible that the proposed CAC scheme can be combined with
power control algorithms, which is one of our future work.

One potential problem is that that decreasing bandwidth
will possibly increase channel holding time. This might fur-
ther increase the blocking probability because more terminals
are in service. In fact, the results are more likely to be mixed.
As the bandwidth of each user is decreased, more bandwidth
will be available for admitting new requests. To this end, the
blocking probability will be reduced. Moreover, to avoid high
blocking probability, the stochastic algorithm is used to ”sup-
press” this potential problem. From our simulation results, the
blocking probability of ”low-bound’ case is lower.

Additional overhead to calculate the energy consumption
rate for each terminal will be induced in the proposed scheme.
However, in reality, it is not necessary for the BS to calcu-
late for each terminal. We only need to compute the energy
consumption rate for every possible number of channels in ad-
vance. For example, as to data service, the number of channels
may range from2 to 5. Then, the BS only needs to know the
energy consumption rate for2, 3, 4, and5 channels, respec-
tively. In other words,4 points are enough for the BS, and
thus, the computation overhead can be greatly reduced. More-
over, the SAA may not work for those processes that do not
remain the same process after pre-blocking, such as Fractional
Brownian Motion process or other long range dependence pro-
cesses [16, 20]. We will investigate this problem in our future
work.

IV. PERFORMANCEANALYSIS

In this section, we analyze the performance of the pro-
posed scheme based on the Continuous Time Markov Chain
(CTMC). We do not consider handoff and new requests sepa-
rately because they are processed in a very similar way from
the point of view of energy conservation. In particular, we
focus on two cases:

• Case I: Channel holding time is independent of the num-
ber of channels, which is referred to asFixed Channel
Holding Time. This assumption is widely deployed in
existing work [24, 30], which is appropriate to describe
multimedia applications, such as on-line video transmis-
sion. For example, if we watch a 20-minute video clip
on-line with more bandwidth, we will see a bigger pic-
ture and/or higher resolution. Therefore, the bandwidth
allocation affects video quality rather than transmission
time.

• Case II: Channel holding time is dependent on the num-
ber of channels, which is referred to asDynamic Chan-
nel Holding Timeand it is often ignored by other works.
This assumption can be applied to most data transmis-
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sion, e.g., we want to download a 10-MB file. With more
bandwidth, the transmission time will be shorter and vice
versa. Since this is a common scenario in many network
applications, it is necessary to investigate this case. Al-
though it is difficult to reach a close-form formula for the
blocking probability, we will present the upper bound and
lower bound of the blocking probability for this case.

A. Markovian State Model

In addition to the notations described in Section II, we de-
note vector

−→
N = [n1, n2, . . . , nK ] to represent the number of

connections for each class, wherenk is the number of con-
nections of classk in the system. Then, each state represents
a possible combination of[n1, n2, . . . , nK ] in the system, and
the state space is the set of all possible states, which is denoted
by S as:

S := {
−→
N ∈ IK :

K∑
k=1

nk∑
i=1

bi
k ≤ C} and

bi
k ∈ [bL

k , bU
k ] (7)

whereI is a set of non-negative integers andIK is a set of
K − dimensional non-negative vectors. Also, we letSk be a
subset of the state space for which an arriving request of class
k is blocked, that is

Sk := {
−→
N ∈ IK : C − bL

k <
K∑

i=1

(bL
i × ni) ≤ C}. (8)

In order to keep track of the transmission rate of sessions in
each class, let

−→
E k be aK-dimensional vector of all ”0” except

for a ”1” of the kth element, e.g.,
−→
E 2 = [0, 1, 0, . . . , 0]. So,

we have two possible results after the change in the number of
connections due to bandwidth allocation, represented by two
indicators:

I+
k (
−→
N ) =

{
1 if

−→
N +

−→
E k ∈ S

0 otherwise
(9)

and

I−k (
−→
N ) =

{
1 if

−→
N −

−→
E k ∈ S

0 otherwise.

Let q(
−→
N1,

−→
N2) denote the probability transition rate from

state
−→
N1 to

−→
N2, and−→τ = [τ1, τ2, . . . , τK ] be the service rate

factor to describe the dependence of channel holding time on
the number of channels. If the channel holding time is inde-
pendent of the number of channels, then this factor is 1, mean-
ing the service rate will not be changed. Otherwise, the rate
factor equals the number of channels, which is applicable to
Case II. Therefore, we have

q(
−→
N,

−→
N +

−→
E k) = λk(

−→
N,

−→
N +

−→
E k ∈ S) (10)

q(
−→
N,

−→
N −

−→
E k) = nkτkµk(

−→
N,

−→
N −

−→
E k ∈ S)

q(
−→
N −

−→
E k,

−→
N ) = λk(

−→
N −

−→
E k,

−→
N ∈ S)

q(
−→
N +

−→
E k,

−→
N ) = (nk + 1)τkµk(

−→
N +

−→
E k,

−→
N ∈ S)

wherek = 1, 2, . . . ,K.

B. Blocking Probabilities

While we consider energy conservation in our CAC scheme,
we do not want to sacrifice QoS requirements. Thus, we focus
on discussing the blocking probabilities forCase IandCase
II without using QoS adjustment algorithm in this section.

B.1 Analysis for Fixed Channel Holding Time

Because of the adaptive bandwidth allocation, the number
of channels serving one connection may be changed due to
the application of VSA and BSA algorithms. However, in this
case we assume that the number of channels does not affect
channel holding time. In other words, for one session, the
number of channels, or transmission rate, is irrelevant to total
transmission time. Rather, its channel holding time is expo-
nentially distributed with mean1/µk. Hence, inside a class,
the service rate for each connection only depends on the num-
ber of terminals of the classed in the system.

Therefore, the global Markovian equilibrium balance equa-
tion can be expressed by[

K∑
k=1

λkI+
k (
−→
N ) +

K∑
k=1

nkτkµkI−k (
−→
N )

]
P (
−→
N )

=
K∑

k=1

λkI−k (
−→
N )P (

−→
N −

−→
E k)

+
∑K

k=1 (nk + 1)τkµkI+
k P (

−→
N +

−→
E k) (11)

whereP (
−→
N ) is the probability of each state

−→
N . The local

balance equation is represented as

λkI−k P (
−→
N −

−→
E k) = nkτkµkI−k P (

−→
N )

k = 1, . . . ,K, ∀
−→
N ∈ S (12)

Therefore, we can obtainP (
−→
N ) with ρk = λk/µk as follows:

P (
−→
N ) =

1
G(S)

K∏
k=1

ρnk

k

τnk

k nk!
,

−→
N ∈ S (13)

where

G(S) =
∑
−→
N∈S

K∏
k=1

ρnk

k

τnk

k nk!
. (14)

Then, the blocking probability of classk is equal to the sum
of probabilities of all states to be blocked, i.e., the states in
subsetSk given in (8). Hence, the blocking probability of
classk, Bk(−→τ ), can be written as

Bk(−→τ ) =
G(Sk)
G(S)

, and −→τ = [1, 1, . . . , 1] (15)

whereSk andS are given in (7) and (8), respectively.
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We should point out that even though the dynamics of the
number of channels for a terminal do not change the blocking
probability, it will make difference to the energy consumption
as illustrated in Section IV-D.

B.2 Analysis for Dynamic Channel Holding Time

Here we consider that the service rate is proportional to the
number of channels and denote the service rate of one channel
for classk asµk. Then, the overall service rate for classk,
µk(

−→
N ), is

µk(
−→
N ) =

nk∑
i=1

µkbi
k, ∀

−→
N ∈ S (16)

wherebi
k ∈ [bL

k , bU
k ] andS as given in (7).

Since it is difficult to obtain the close form expression
of blocking probabilities for this case, we discuss the upper
bound and lower bound of the blocking probability. With the
assumption above, we have

µU
k (
−→
N ) =

nk∑
i=1

µkbi
k ≤

nk∑
i=1

µkbU
k = nkbU

k µk (17)

µL
k (
−→
N ) =

nk∑
i=1

µkbi
k ≥

nk∑
i=1

µkbL
k = nkbL

k µk

Thus, we do not need to consider the random variablebi
k

in obtaining these bounds, but to use known parametersbU
k

andbL
k ; thus, a semi-Markov process is simplified to a CTMC.

Note that the vector−→τ is not a constant forCase IIbecause
the channel holding time is related to the number of channels.
In a similar way as in the previous subsection, we can obtain
the lower bounds of blocking probability as

BL
k (−→τL) =

G(Sk)
G(S)

, and −→τL = [bL
1 , bL

2 , . . . , bL
K ]. (18)

The upper bound,BU
k , has the same expression with the ex-

ception of substituting−→τU for −→τL in the above equation.

C. Blocking Probabilities with Stochastic Adjustment

When the blocking probability of classi cannot be satis-
fied, i.e., the blocking probability of classi is greater than
βi, a stochastic adjustment algorithm (SAA) shown in Fig. 4
is applied in which some traffic will be blocked on purpose
to reduce the traffic load of the whole system. Let vector
−→
M = [m1, · · · ,mk, · · · ,mK ] be the rate of arrival requests
blocked for each class, wheremk ≥ 0 is the blocked traffic
for classk.

Lemma 5.1: A Poisson process with an arrival rate ofλk

is still a Poisson process after pre-blocking with a rate ofmk,
and the new process is with arrival rateλk −mk.

Assume that a Poisson process is{N(t), t ≥ 0} and the pro-
cess after pre-blocking as{Nb(t), t ≥ 0}. First, we condition

onN(t)

P{Nb(t) = n} =

∞∑
i=n

P{Nb(t) = n|N(t) = i}P{N(t) = i}

=

∞∑
i=n

( i

n

)
(
λk −mk

λk
)n(

mk

λk
)i−neλkt (λkt)i

i!

(19)

The above expression can be simplified and we have

P{Nb(t) = n} = e(λk−mk)t [(λk −mk)t]n

n!
(20)

Therefore, we justify that{Nb(t), t ≥ 0} is a Poisson pro-
cess with the arrival rateλk −mk. The actual traffic load for
classk after pre-blocking isρk = λk−mk

µk
. Then the blocking

probability of classk becomesBk|Q, which is

Bk|Q = Bk(−→τ ) +
mk

λk
, (21)

whereBk can be obtained by using (15).
Next, we discuss how to determine

−→
M = [m1,m2, · · · ,mk]

through a pricing model. Let us define the price function of
classk, Πk as

Πk(m1,m2, . . . ,mK) = Fk(Bk|Q), k = 1, . . . ,K (22)

Consequently, the objective function of stochastic QoS adjust-
ment is to find vector

−→
M such that

min {
∑K

k=1 Πk(m1,m2, . . . ,mK) }
s.t. constraintX

mk ≥ 0, k = 1, . . . ,K (23)

Therefore, the solution of
−→
M can be obtained by using frac-

tional programming for a specific requirement ofX, which
varies with the systems. For example, consider that there are
2 service classes in the system: data service (k = 1) and
multimedia service (k = 2). The class of data service is
assigned a higher priority in terms of lower blocking proba-
bility. Then, we may chooseF1(B1|Q) = α × B1|Q and
F2(B2|Q) = B2|Q, where0 < α < 1. The price functionΠ1

andΠ2 can be written as

Π1(m1,m2) = αB1|Q, and

Π2(m1,m2) = B2|Q. (24)

The objective function of stochastic QoS adjustment becomes
findingm1,m2 such that

min { α B1|Q + B2|Q }
s.t. B1|Q ≤ B2|Q

m1 ≥ 0, m2 ≥ 0. (25)
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D. Energy Consumption

The average energy consumption,E, can be represented by
the product of the probability of each state,P (

−→
N ) and the

average energy consumption rateE(
−→
N ), that is

E =
∑
−→
N∈S

P (
−→
N )× E(

−→
N ) (26)

whereP (
−→
N ) in (13) can be obtained by substituting different

−→τ for Case IandCase IIas discussed in Section IV-B. In
order to acquireE(

−→
N ), we define the energy consumption rate

(ECR) matrix as

ECR =


a11 a12 . . . a1C

a21 a22 . . . a2C

...
...

...
...

aK1 aK2 . . . aKC

 (27)

where each element,aij , is the energy consumption rate of
classi with j channels, which can be obtained from energy
consumption rate, defined in (6). In wireless systems, the BS
is aware of the transmission rate of each session. For exam-
ple, in cdma2000 systems with bandwidth1.25MHz, single
channel with spreading factor64 can provide9.6 Kbps peak
transmission rate [18]. Therefore, based on energy consump-
tion rate and the number of channels of a certain transmission
rate,aij can be obtained.

For
−→
N ∈ S, we choosej ∈ [bL

k , bU
k ], k = 1, . . . ,K such

that

min
k=1,...,K

{
K∑

k=1

nk∑
i=1

akj } (28)

then the average energy consumption,E(
−→
N ), is given by

E(
−→
N ) =

∑K
k=1

∑nk

i=1 akj∑K
k=1 nk

. (29)

Then, by substitutingE(
−→
N ) in (26), total energy consumption

can be obtained. For simplicity, we assume a constant trans-
mission rate for a fixed number of channels, whereas in reality,
these rates may be varying from time to time. The computa-
tion of the above solution would not be scalable for a large
number of classes. However, by far, there exist only about3 to
5 classes of traffic. Therefore, the proposed solution is feasible
in real systems.

V. SIMULATION RESULTS

The performance of the proposed scheme is evaluated by
simulations with respect to blocking probabilities, throughput,
and energy consumption. The results of the proposed band-
width allocation scheme are compared with other schemes

such as Non-Prioritized Scheme (NPS) [19] and Adaptive RE-
source Allocation Scheme (AREAS) [15]. In addition to the
two cases of traffic discussed in Section IV, we also study
the effect of the proposed scheme on self-similar traffic as
the arrival process, which is modeled as long-range dependent
(LRD) traffic [28] due to the fact that traffic pattern of multi-
media services in wireless networks tends to be LRD [12].

We consider a system with the following parameters, which
is defined in the previous section.

• The total number of channels,C = 100.
• The number of service classes,K = 2.

Although in our experiments, only two classes of service are
considered, whereas the effectiveness of the proposed scheme
will not be affected by more classes. The other parameters
used in our simulation are shown in Table I.

TABLE I

SIMULATION PARAMETERS.

Parameters Class-A Class-B

Arrival Rate:λ (calls/min) [1,40] 10
Data Volume:φ (KByte) {60,180} {60,180}

Transmission Rate (Kbps/channel) 8 8
No. of Channels for NPS 7 3

No. of Channels for AREAS {4,7,9} {2,3,5}
No. of Channels for New Scheme {4,9} {2,5}

No. of Sources: M 100 100
Traffic density: R [0.1-1.5] 1

Power-Law: A 500 500
Power-Law:γ 1.5 1.5

A. Case I: Fixed Channel Holding Time

The blocking probabilities for Class-A and Class-B with the
comparison to other schemes are shown in Fig. 5. We can ob-
serve only four curves in the figure, although in fact, they are
the results of eight scenarios. This is because that the simu-
lation and analytical results of the proposed scheme (noted as
’New Scheme’ in the figure) match so closely that they can-
not be distinguished from each other. Moreover, the blocking
probabilities of the new scheme and AREAS for both classes
overlap, which results in only four separate curves in Fig. 5.
As would be expected, the blocking probabilities of adaptive
bandwidth allocation schemes are much lower than those of
the NPS, and they increase as the traffic load increases. The
blocking probability of Class-A is higher than the correspond-
ing blocking probability of Class-B, since the lower bound of
Class-B is smaller than that of Class-A. Thus, the new scheme
reduces energy consumption significantly, while it yields the
same blocking probability and throughput as that of AREAS.

The throughput of two classes as a function ofλA, the ar-
rival rate of Class-A, is plotted in Figs. 6 and 7. Even though
the blocking probability is increased, the throughput of three
schemes in Class-A is increased, whereas for Class-B, the
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throughput is decreased because of the constant arrival rate
and increasing arrival rate of Class-A traffic. Fig. 8 displays
the average energy consumption as a function ofλA. We can
see that the new scheme, which is an energy-based scheme,
consumes less energy compared to the other two schemes with
the same blocking probability. Since NPS does not change
bandwidth during transmission, the average energy consump-
tion remains unchanged. When the traffic load is light, the
energy consumption of AREAS is lower than that of NPS; and
during heavy traffic, AREAS is higher than NPS. However,
the proposed scheme always transmits at a lower energy con-
sumption rate; thus, the new scheme conserves more energy,
while not sacrificing call blocking probability for multi-class
traffic.
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Fig. 5. Case I: Call Blocking Probability.

B. Case II: Dynamic Channel Holding Time

In most of existing work, the channel holding time is con-
sidered as independent of the number of channels, which is
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Fig. 6. Case I: Throughput of Class-A.
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Fig. 7. Case I: Throughput of Class-B.
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Fig. 8. Case I:Average Energy Consumption.

our Case I. However, for many data and data applications,
more bandwidth means shorter transmission time, that is, the
channel holding time is dependent on the number of channels.
The call blocking probability of Class-A and Class-B are com-
pared in Figs. 9 and 10 as the increase ofλA. Unlike Fig. 5,
the blocking probability of the new scheme is lower than that
of AREAS for Case II, which means that the new scheme is
better. The upper and lower bounds of blocking probability,
along with the simulation results of the proposed scheme are
shown in Fig. 11 for Class-A traffic, and similar results for
Class-B are omitted due to the page limit. We can observe that
the blocking probabilities of both classes fall in between the
theoretical upper bound and lower bound.

At lower traffic load, the blocking probabilities of both
classes tend to approach upper bound (say, the arrival rate is
less than20 calls/min). And at higher traffic load, the block-
ing probabilities are close to the lower bound (say, the arrival
rate is greater than35 calls/min). As the traffic increases, two
bounds converge; especially, at high traffic load, the differ-
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ence between the upper bound and lower bound will be less
than10%.

The throughput as a function ofλA are shown in Fig 12. It
can be observed that even though the blocking probability in-
creases for Class-A, the new scheme yields a higher through-
put compared to other two schemes. For Class-B, the new
scheme also yields a higher throughput compared to the other
two schemes, but decreasing with the increase in arrival rate
of Class-A, even though the figures are omitted due to page
limit. The energy consumption is not shown here because it is
similar to that forCase I. This means that the new solution for
energy conservation is robust to the variation of the incoming
traffic, although there is a significant difference in the blocking
probability.probability.
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Fig. 9. Case II: Call Blocking Probability of Class-A.
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Fig. 10. Case II: Call Blocking Probability of Class-B.

C. Stochastic QoS Adjustment

Fig. 13 displays the result of stochastic QoS adjustment for
Case Ionly, because the results forCase IIare very similar
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Fig. 11. Case II: Bounds of Blocking Probability of Class-A.
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Fig. 12. Case II: Throughput of Class-A.

. We consider a dynamic adjustment of pre-blocking such as
m2 is changed from9 to 11 for high traffic withλA = 5, and
λB is changed from45 to65. From our simulations results, we
realize that blocking probability is affected significantly with
the change in arrival rate of Class-B. Meanwhile, the block-
ing probability of Class-A is further decreased. The blocking
probability of two classes become very close to each other,
which means a better QoS balance. The blocking probability
after adjustment in Fig. 13 is quite different. By sacrificing
Class-B, the blocking probability of Class-A has a significant
decrease. A close look at Fig. 13 reveals that the blocking
probability of Class-B changes very little with the increase of
the traffic load, which means that our adjustment is adaptive
to the traffic. Therefore, the proposed QoS adjustment algo-
rithm SSA is very effective in achieving a tradeoff QoS for
multi-class systems.
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Fig. 13. QoS Adjustment with Pricing Constraint.

D. Self-Similar Arrival Process

Since the call arrival process may not be Poisson process for
multimedia and data services [12], self-similar traffic, which
tends to be long-range dependence (LRD) [28], is considered
to be more appropriate. Without losing generality, we deploy
Power-on and Power-off mode to generate self-similar traffic
and the power-law distribution as [25]

p(t) =
{

γA−1e−
γt
A 0 ≤ t ≤ A

γe−γAγt−(γ+1) t > A.
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Fig. 14. Self-Similar Traffic: Blocking Probability of Class-A.

Figs. 14 and 15 depict the blocking probability of Class-
A and Class-B, respectively. It is easily noticed that the new
scheme results in lower blocking probability. However, for
self-similar arrival traffic, we take a longer time to obtain sta-
ble results than Poisson arrival traffic because self-similar traf-
fic is a long-range dependence traffic, and Poisson traffic is a
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Fig. 15. Self-Similar Traffic: Blocking Probability of Class-B.

short range dependence traffic. The average energy consump-
tion for self-similar traffic is very similar to that forCase I
andCase IIbased on our simulations. Thus, we conclude that
the effectiveness of energy conservation is not affected signif-
icantly by traffic patterns.

The throughput of self-similar arrival process is shown in
Figures 16 and 17, for Class-A and Class-B, respectively.
The results illustrate that the new admission control scheme
achieves higher throughput than those of other two schemes,
because for the same traffic load, the new scheme serve more
connections with lower blocking probability.
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Fig. 16. Self-Similar Traffic: Throughput of Class-A.

VI. CONCLUSIONS

In this paper, we considered the problem of how to mini-
mize the energy consumption through connection call admis-
sion control because both battery life and radio bandwidth
are limited resource in mobile communications. We intro-
duced a new parameter, energy consumption rate (ECR), by
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Fig. 17. Self-Similar Traffic: Throughput of Class-B.

exploring the connection between CAC and energy consump-
tion, which represents the energy consumed for each bit that is
successfully transmitted. We proposed a new admission con-
trol scheme which includes three parts: Victim Selection Al-
gorithm (VSA), Beneficiary Selection Algorithm (BSA), and
Stochastic Adjustment Algorithm (SAA), based on the fact
that the same variation in transmission rate may yield different
energy consumption of mobile terminals. The performance of
the new scheme is analyzed with respect to call blocking prob-
ability, throughput, and energy consumption. Furthermore, the
effectiveness of the proposed scheme is verified through exten-
sive simulations for a variety of traffic patterns in multi-class
systems.
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