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Abstract - Military wireless networks suffer from pri-  additional overhead of security services. As conditions in wire-
vacy and performance concerns due to their shared radio less networks change rapidly, static configuration of security
medium and off-the-shelf products. Therefore, robust and does not take them into account and leads to poor coordination
efficient security management is essential in these net-between security services and performance. Consequently,
works, especially for the transmission of sensitive data. there is a need for a dynamic security management which can
However, security solutions based on static-configuration adapt to the changing environment in wireless networks based
paradigm do not adapt to changing network conditions, on network performance. There are some existing studies
such as variations in wireless link characteristics, leading which have considered the dynamic configuration aspects of
to degradation in system performance. The rationale security in various other contexts.
for advocating dynamic security paradigm is to achieve  For instance, a user level dynamic authentication proto-
optimized network performance and security based on col, named Authenticast, is proposed in [15]. Authenticast
network conditions. Therefore, we propose a dynamic provides dynamic security by determining which parts of
security policy management (DSPM) in which security communication are carrying critical information. If non-critical
policies can be changed on the fly based on the networkcommunication can be transmitted unsecured or with lower
feedback about wireless link conditions. DSPM is analyzed security level, then the performance of the system can be
by using semi-Markov decision process to determine the improved. A similar protocol like Authenticast but provid-
optimal instances for switching security policies. The ing different security levels for encrypted MPEG, named
results show that DSPM provides enhanced security and SECMPEG, is discussed in [10]. SECMPEG includes the

improved performance than static security. capability to encrypt only the most important and significant
Keywords- Wireless networks, security, performance, semdata, in order to improve performance. As with [10], [7]
Markov decision process. also employs information, such as frame type, to select the
particular frames to be encrypted. Besides these, new system
. INTRODUCTION architectures to support dynamic security for wired networks

Wireless networks provide many salient features such lave been proposed in the past too. For example, a flexible
Internet everywhere and mobility support which enable usesscurity architecture with wide variety of security policies and
to interact with others regardless of location. However, amechanisms is proposed in [4]. It provides applications and
broadcast medium used in wireless networks poses many cheders the ability to create and enforce highly customized and
lenging issues, relating to the security for mobile users. Sinsiuational policies dynamically. In [5], authors propose using
interception and modification of data in broadcast medium dstributed firewalls with dynamic security policies to protect
very easy, it requires strong security solutions for wireledstranets from external and internal attacks. They implement
networks [12]. Therefore, many security solutions, some natiwsicro-firewall at each network node and all network nodes
to wireless networks and some adopted from wired networkegether decide the security policies updates.
are used such as Wired Equivalent Privacy (WEP) protocol,We notice that existing studies for dynamic security config-
802.1x framework with EAP support, SSL, IPSec and 802.11iration focus on analyzing information content for improving
However, configuration of the security policies in wirelesperformance and security in wired networks. However, these
networks has been static in a way that once a security solutstndies do not consider network conditions and their inter-
is configured, it does not change on the fly until modified bgction with the overhead associated with security services.
the system administrator as the need arises. It is due to the fact that these studies are based on wired

In addition, low delay-bandwidth product in wireless netnetworks where network conditions, such as link error rate,
works causes poor quality of service (QoS) experience fare highly stable. In addition, although these studies discuss
mobile users [8]. Moreover, lossy wireless links, high cordynamic configuration of security, but security policies can
tention in the network with the increase in number of userspt be altered while session is going on. Therefore, basic
and roaming scenarios create a challenging environment fondamentals of our work are very different from these studies.
providing required QoS. Besides, enabling security in wireleds our work aims wireless networks, where link conditions
networks leads to further degradation in performance due dbange very fast, we propose dynamic security management



by considering link conditions for improving performance andf packets successfully delivered per unit time. Throughput is
security in these networks. Our work is based on netwosffected depending upon how many packets are lost during
feedback which helps wireless clients in making decisiotiansmission. For example, if packet losses are high in a
regarding the dynamic configuration of security. Moreovewireless network, it will lead to low throughput. In addition,
our work focuses on providing dynamic security configuratiowe know that the probabilities, whether a packet is lost or
while user sessions are in progress. The main contributionssimccessfully transmitted, are dependent on packet size. When
this work are as follows. security policies are applied, extra bits are added to each
_ packet leading to increased packet size. Increased packet size
A. Contributions affects packet losses in two ways. First, a packet will have

We propose a dynamic security policy management (DSPMigher chance of collision due to its bigger size. Second, as
system which can provide adaptive performance and secufipk conditions in wireless networks changes rapidly causing
as required by a network. Adaptive behavior of the system\jgrying bit errors on a wireless, bigger packet size has higher
provided by switching security policies based on the netwoBhance of having bit errors. Therefore, extra bits added by
conditions such as bit error rates (BER) over links. We hawgcurity policies directly impact packet loss probability.
provided a generalized semi-Markov decision process modelassume that a client is configured with security poligy
to analyze DSPM, which helps in achieving optimized networliginal packet size i€, and per packet additional bits added
performance and security. The advantage of dynamic seculiy security policyp; is O(p;). Therefore, size of a transmitted
management can be described as follows. packet will bed+O(p;). Assume that BER in wireless network

« Dynamic security management provides a better contiisl denoted as. Then, the probability that packet is lost,

to system designers to achieve improved coordinati@®noted ag;,ss, can be obtained as follows.
between security and QoS.
« As the dynamic security management changes policies Dloss = 1 — (1 — 5)d+0(”") . (1)

during runtime, it enables adaptive and enhanced perfor-Equation (1) shows the relationship between packet loss

mance and security in wireless networks. robability and security policy overhead. Specifically, (1) im-
« As the demand for QoS is increasing rapidly by real-timg. y Y Policy oVt - 9P -atly, (4
lies that if one or more bits are in error, packet is considered

mobile applications, the dynamic management empow 03t It is due to the fact if packet is received with errors, the

better QoS experience _f(_)r mobile users by using fee{jbap(?al%cket is discarded at the destination.
from the network conditions.

« Since improved coordination between security servicdsl. DYNAMIC SECURITY POLICY MANAGEMENT (DSPM)
and QoS will lead to better resource management which,n this section, first we discuss different components as-
in turn, will improve network scalability. sociated with DSPM system. Then we present semi-Markov

The advantages of DSPM are supported by the observatiekgision process (SMDP) model to analyze DSPM. The cost in
based on our results. The observations show that as wirelggs model has been evaluated by computing the packet losses
link conditions degrade, DSPM adapts to a security polieyccurred during the configuration of different security policies.
with lower overhead. Whereas it is observed that as wireleBse analysis helps us in finding an optimal SMDP policy re-
link conditions improve, DSPM shifts to a stronger securitgarding the switching of security policies in changing wireless
policy. In addition, we notice that the length of time durationsnvironment. To avoid confusion, we clarify that SMDP policy
between two switching instances and packet size impact tBedifferent from a security policy. A security policy specifies
performance of DSPM. a security protocol or a combination of security protocols at

The rest of the paper is organized as follows. The relatiafifferent layers configured in a system. On the other side, a
between the overhead associated with security policies BMDP policy specifies actions which guide switching among
network performance is discussed in Section Il. In Sectiafifferent security policies. The notations followed in this paper
lll, we explain main components of DSPM, analyze DSPMre as given in [14].
as a semi-Markov decision process, define cost matrices and .
optimality equations, and describe value iteration algorithm: DSPM Architecture
The DSPM control algorithm and its implementation aspects Fig. 1 shows the main components of DSPM system which
are presented in Section IV. We demonstrate numerical res@@isists of a monitor, a decision-maker and a switching,
in Section V. Finally, Section VI provides conclusions alongodules. The monitor module collects statistics such as signal

with future work. strengths and BERs over wireless links, and provides the
feedback to the decision-maker at regular intervals. Whenever

Il. IMPACT OF SECURITY POLICIES ON NETWORK the decision-maker module obtains feedback from the moni-
PERFORMANCE toring system, it runs an algorithm to determine the decisions

In our work, we characterize network performance in wirgegarding the switching of security policies. The monitor and
less networks by considering throughput. Throughput, denotaecision-maker are executed as background processes so that
asn, is considered for quantifying the system performance #sey do not interfere with the ongoing data transmission in a
perceived by a wireless client, and is defined as the numlsgysstem. The decision-maker sends its decision to the switching



module. The switching module finally changes the current sassociated with it. The action set for a statedenoted as
curity policy if the decision sent by the decision-maker moduld, specifies the actions which are taken into consideration by
is positive. Since the switching module runs in foreground, ke decision-maker when the system is in stat#Ve assume
adds extra overhead to the ongoing data transmission. Itthsit action set associated with each state does not change with
because the data can not be transmitted until the configuratione. In this work, we assume that there are most two

of new security policy is completed. However in real scenariactions available for each state. Those two actions are defined
the time involved between consecutive decisions made by the "STW” and "NSW™”. " NSW” refers that security policy
decision-maker module is in the order of hours. Whereas, thleould not be switched, whereas™W” means that current
time involved in switching a security policy is in the ordessecurity policy should be switched to some other security
of seconds. By assuming that systems have enough bufferpsdicy. It is important to note that it is possible that some
packets are not lost and as the cost in our model are concerstdes may have both actions associated with them, whereas
with only packet losses but not delay, we ignore the switchirgher states may have just any one &f SW” and "SW”

time during the analysis. actions associated with them. However, each state will have
at least one action associated with theno¥; andY;, where

0 <i <k, in Fig. 2 are random variables showing state and
action at each decision epoch, respectively.

Now we discuss state transition probability matricBs
which describes how the transitions among different states take
place given a particular action. We introduce two probability
distribution functions to define state transition probability
matrices. Lep(p;+ /s, a) or p(pi/pi, €5, a) represent the prob-
ability that security policy in next state jg. given the current
Fig. 1. Dynamic Security Policy Management. state is(p;, ;) and actiona is chosen. In addition, let(e;)

denote the probability that BER is;. Then, state transition
probability matrices can be represented as follows.

B. Semi-Markov Decision Process Model

Her.e we 'f(.)rmulate the.problem of c_iy_namic switching OF%)(/)" ey /pn e ) = { plpir/pisej,a) -plej)  a=SW .
security pollc_les as a semi-Markov dep|5|on process (SMDP).\Pi"» "/ Pis &j» p(pi/pisej a)-plej) a=NSW
SMDP consists of state space, action set for each state, 2

decision rules, policies, decision epochs and cost functionsn (2), whena = NSW, thenp(p;/pi,<;,a) will be equal
[14]. In context of DSPM, the decision-maker module makes 1, and effectivelyP(p;, £, /pi,e;,, NSW) will be equal to
decisions regarding the switching of policies at differeni(e; ). (2) implies that security policy in next state depends
time instances called decision epochs based on the feedbagkn current state, whereas BER in next state is independent
obtained from the monitor module. Time instances fregn of current state.
to ¢, shown in Fig. 2 are the decision epochs. We assumeA SMDP policy, denoted as, specifies the decision rules to
that time duration between two decision epochs, denoted abe used at each decision epoch. A decision rule, denotéd as
follow general distribution so that it covers variety of situationspecifies the action chosen for each state S at the decision
in real scenarios. For example, system designers can choepechk. For exampledy (s) denotes the action chosen for state
to monitor system either at constant intervals or wheneverat decision epocl, whered,(s) € A;. Therefore a SMDP
some event occurs such as change in BERs or a speqffiticy = = {4, ds,...} is a set and consists of decision rules
number of packets are lost. However, by choosing the genai@be used at all decision epochs. Here, we consider stationary
distribution, we do not restrict our model to some specifiEMDP policies with deterministic Markovian decision rules.
situation. Further, time instanag is when the client enters Stationary SMDP policies are policies whefg = §Vk. It
the network and makes first decision to choose initial securityeans that action chosen at a particular state is same at
policy. Moreover, time instancg, represents when the clientall decision epoch. Since the action set associated with a
makes the last decision, and the client leaves the netwatate does not vary with time, therefore considering stationary
at time 7. Therefore, the total timg" represents the client SMDP policies is valid in our scenario. We denote the set of
residence time in a network. We assume fha exponentially all stationary SMDP policies byI. In addition, Markovian
distributed with rate\. decision rules are rules which depend upon previous states
The decision-maker module takes into account the stagasd action only through current state. Deterministic nature of
of the system while determining decisions. We represent tHecision rules ensures that an action is chosen with probability
state space in the system &swhere eachs € S contains 1. For details, readers can refer [14].
the current security policy configured in the system and theln addition, we define a cost rate functiefs) associated
current BER. For example, if current state of the system wth each states, which captures the packet losses occurred
s = (p,e) at decision epoclt, thenp is the security policy when system is in state Assuming source rate 4sand packet
and ¢ is the BER. Besides, every state has an action dess probability associated with stateis p;,ss(s), thenr(s)
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Fig. 2. DSPM as a Semi-Markov Decision Process.

will be equal toy - p;,ss(s). Therefore, if the time duration for cumulative cost over a decision epoch period will depend

decision epoclk is 7, and state is, Then, total cost incurred upon security policy and BER in that decision epoch period.

during the decision epoch period will be - r(s). Now we Therefore, cost function for state if action a is chosen, can

compute theexpected total costlenoted a$™(s), assuming a be computed as follows.

SMDP policyr is chosen and initial state s By using Fig.

2, v™(s) can be deduced as follows. (5,0) = Yo [ L1 - e=M)r(s') Pls'|s, alG(dt)
=(Yyes %r(s’)P[sﬂs,a]) fooo(l — e MG(dt).(8)

k—1
v (s) = ET {Z Tir(Xi) + (T — tk)T(th)} - (3 Now we discuss the algorithm to find a stationary determin-
=0 istic optimal SMDP policy. We use value iteration algorithm to
The first term in (3) computes the cost upto decision epoéihd an optimal policy which is used widely to solve Markov
k, and the second term computes the cost between decidii@eision processes [16]. We describe algorithm in Fig. 3 as
epochk and the exit time instancg. As T is distributed with given in [14], [16]. In this paper, the functioiw|| is defined
rate A, v™(s) can be expressed as follows as derived in [16RSmazscsv(s). Since ste in the algorithm correspondence
to contraction mapping;™(s) converges in norm to(s). Step
ie/\tic(Xi7)Q) . @) 2 in Fig. 3 find_s the optimal value of cost, whereas step
chooses an optimal action for each state.

v™(s) = ET {

=0

Where value_iteration _algorithm()

1
c(s',a) = E {(1 — e”)r(s”)} : (5) 1) Setv’(s) = 0 for each states € S. Choosee > 0 andn = 0.
A 2) For eachs ¢ S, computev™"!(s) as follows.
Here c(s', a) is the expected total cost between two deci-
sion epochswhen system is in staté and actioru is chosen. V"N = mingea,{c(s,a) +
It is important to note in (5) that the cost raterig”), where " N
. - . P G(dt
(s”) is the system state after the decision epoch. It is due XG:S/O e V() Pls'ls, a]G(dt)}
to the fact that the state change in our system takes place . _
immediately after the decision instance as shown in Fig. t%g' ;fte|l)1}2/ —v"[[ <€ go to stepd. Otherwisen = n + 1 and go
Now assuming thaG(t_) _represents the d,'Str'bUtlon for tlmezﬂ For eachs € S, compute the stationary optimal policy as follows.
duration between decision epochs, and is independent of the

states and actions. Then (4) can be written as follows [14].
0(s) = arg mingea,{c(s,a) +

vT(s) = c(s,a) + ) /OO e Mu™(s')P[s'|s,a]G(dt). (6) S/ZES/O e (s) Ps'|s, a]G(dt)}

’ 0
s'es 5)exit.

Now, our goal is to find a SMDP policyr among all
stationary policies, which minimizes™(s). Assume that(s) Fig. 3. Value Iteration Algorithm for Finding An Optimal SMDP Palicy.
represents theninimum expected total costith initial state
s. Then optimality equation can be written as follows. IV. DSPM CONTROL ALGORITHM

In this section, we describe DSPM control algorithm and
v(s) = mingea, {c(s,a)+ its implementation aspects in detail. In real scenarios, DSPM
L , control algorithm will be executed on every client system
/ e T (s")Pls']s, alG(dt)}. (7) in the network. For better performance, the DSPM control
s'es”0 algorithm is divided into two parts: offine and online. The
Optimality equation (7) implies that we need to find awffline part can be executed in background so that it does not
action a for each states which minimizes expected total interfere with the normal processing at client systems. The
cost. Now, we describe cost functios(s, a), which demon- online part is to be executed as a foreground process so that
stratesexpected total cost between two decision epothge security policy for next state can be determined while user

4



session is going on. A sketch of the DSPM control algorithnisy it 2: online

is provided in Figs. 4 and 5.

A. Implementation Aspects of the Offline Part

1) csp =p; \\ current security policy
2) cber =¢; \\ current BER
3) nsp = NULL \\ security policy in next state

During the execution of the offline part, various inputs SUck) n per = NULL \\ BER in next state
as set of security policies, set of BERs, probability distributiog)  t = 7 \\ time remaining

functions, overhead and utility functions are provided

&) cpl = 0 \\ cumulative number of packets lost

shown in Fig. 4. The control algorithm considers only thosg \hjle TRUE do

security policies which are similar between a wireless cliegs
and access-points in a network. Information about the set g;f
security policies associated with access-points can be obtaiqgsj

t = G(¢t) \\ returns random decision epoch period
if rt <tthen
cpl =cpl+ - pe(csp,c-ber) rt

in advance from the network administrator.

11) break\\ out of while loop
12) else\\rt>t¢
Part 1: Offline 13) cpl=cpl+ v pe(csp,cber) -t
Global Input Parameters: 14) a9 (c_sp) \\ From Offline Part
p = set of security policies 15) Choose somg;, such thatp(p; /c-sp, c_ber,a) > 0
¢ = set of BERs 16) nsp =py
S : p X € := set of states 17) nber =¢;/, choose by using(e)
O(p;) := overhead associated with security poligy 18) end if

p(pir/pi,€;5,a) := probability that security policy in next state gg
given current state ip;, ;) and actiona is chosen.

p(g) = probability distribution function for BERs
P(pi,ej/pi,ej,a) ;= state transition probability matrices
A = (SW,NSW) := action set associated with each state
d :=packet size

G(t) := general distribution for decision epoch periods
A= mean residence time

~ := source rate in packets/sec

T := total residence time

Let initial state p;,e;)

0 = valueiterationalgorithm()

exit

Fig. 4. DSPM Control Algorithm: Offline.

\\ n_sp and nber become sp and cher
\\ in next while loop iteration

19) csp=nsp

20) cber = nber

21) end while
— v T—cpl
22) =T
23) exit
Fig. 5. DSPM Control Algorithm: Online.

each epoch is computed using the distribution function which
can be exponential, uniform or any other distribution. Then,
associated cost in terms of packet losses is computed by
obtaining the product of packet loss probability, source rate
and the time duration of decision epoch. Then, security policy

Besides, we consider a finite set of BERs during tH@ next state is obtained by using the look-up tabknd state

implementation of the control algorithm to have a finite stafg2nsition probability matrice$’ as shown in stepst —15. In
space. We assume that if BER is betweenand ¢;, then addition, prediction of BER in next state is achieved by using

similar decisions will be taken for this range, and this rand@ER distribution function.

will be represented by the mean value of and ¢;. For

We notice that each step in the online partiél), except

instance, if BER is betweef.5e—4 and 4.5¢—4, then this the stepl6 where security policy in next state is deduced. In
range will be represented by the valde—4. The values of the stepl5, security policy for next state is determined by
BERs which we have considered will be described when v#ate transition probability matrix which i9(k), wherek is

discuss numerical results in a later section.

number of security policies. A will be constant in general,

The value iteration algorithm function is called duringhe time complexity for each decision is ©f1). As the while
offline part, and provides the optimal action associated witAopP runs for the number of the decision epochs, and assuming
each state. The information about optimal actions acts aghgre aren decision epochs, then the time complexity for the
look-up table during the online part of the DSPM contrgPnline part is ofO(nk) or O(n), which is linear inn.

algorithm. The advantage of calling value iteration algorithm
offline is that there is lesser time spent in finding optimal

V. NUMERICAL RESULTS

action from the look-up table than in determining optimal We have implemented a generalized DSPM toolkit by using

actions each time during the online part.

B. Implementation Aspects of the Online Part

MATLAB toolbox [9] to analyze SMDP model and to obtain
numerical results. We have made DSPM toolkit available for
public use at [6]. To analyze DSPM, we consider three security

In the online part as shown in Fig. 5, each iteration in whilpolicies based on their uses in wireless networks. First and
loop corresponds to each decision epoch period. Durationsgfcond security policies consist of WEP and IPSec (AH)



protocols, respectively. On the other side, third security policy

is integration of 802.11i (AES) with IPSec. The additional S
overhead to each packet added by WEP, IPSec (AH) and o 5198
802.11i (AES) is around, 20 and 16 bytes, respectively, [1], B—
[2], [3]. Therefore, the additional overhead added by 802.11i
with IPSec is equal t80+16 = 36 bytes. Besides, we consider
10 bit error rates,(1/j)e — 3 wherel < j < 10, to model
wireless link conditions [11]. The value ¢f/10)e —3 models

a good wireless channel, whergdg1)e — 3 or 1e — 3 models e S
a noisy channel. In addition we assume that BERs are equally
distributed with probabilityl /10, so p(g;) = & V j. As we
notice that our state spac&,= pxe, now consists 080 states.
Due to the big state space, we provide value of probability Fig. 7. Decision Epochs Duration vs. Packet Size.
matrix p(pi'/pi, €5, a) in the appendix at the end. The design

of the probability matrix follows that whenever BERs are

higher, system should try to switch to security policies with oo - -

low overhead, and when BERs are low, system tries to switch
to policies with strong security. In this way, DSPM system 2500
provides complete control to system designers to choose prob-
ability transition matrix tuned to their network requirements,
and then the optimal performance can be obtained by using
the DSPM control algorithm. Further, we assume that, in
general, decision epoch periods are exponentially distributed
with parametery = 0.005 and X is 5e — 4, unless stated
otherwise. In addition, packet size is varied frags to 1024 o X
bytes, as most of the applications in Internet transmit packet

of sizes in this range [13]. Source rajeis 10 packets/sec,

ande is 1le — 20 for value iteration algorithm. Fig. 8. DSPM Switching Pattern.
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Now we compare the performance of DSPM with variations
e in mean decision epoch periods and packet size as shown
. oy in Fig. 7. We notice that DSPM shows better performance
with small packets than large packets. It is due to the fact the

large packet has higher probability of getting lost than small
packets. Moreover, we notice as mean decision epoch period is
\ reduced, DSPM provides better performance. This is because
\ that as frequency of decisions is high, DSPM adapts better to
\ network conditions, and throughput is improved consequently.

To emphasize the fact further, we show the switching pattern
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Bit Error Rate followed by DSPM in Fig. 8. Although we found the switching
pattern for a very large number of decision epochs, here we
Fig. 6. DSPM Adaptability to Network Conditions. present the pattern only fat0 decisions epochs for clarity

purpose. Every seta,b) at each decision epoch in Fig. 8

Fig. 6 demonstrates how DSPM adapts to different wireleshows the index of security policy and bit error rate as given in
link conditions. We notice that as a wireless system is godlde appendix. We notice that as bit error rates are varied faster,
with low bit error rates, DSPM uses 802.11i with IPSec, sind@SPM reacts faster and switches to other security policies for
802.11i with IPSec is assumed to provide strong security aptimization. For instance, BER is varying fast at decision
the system. On the other side, whenever bit error rates areepochs from2 to 6, so the switching of security policies is
middle range such ak4e — 4, DSPM uses IPSec to improvetaking place at each decision epoch. However, as packet losses
performance. However, whenever system is noisy, DSPM usee high in next decision epochs franto 12, security policy is
WEP to improve performance at the cost of low security. It isot switched and maintained at WEP (index 1) to improve the
to note that some wireless networks may not allow WEP king term throughput. Therefore, Fig. 8 depicts the adaptability
all due to their sensitive data contents, however probabiliof DSPM at micro level. In our future work, we aim to find an
matrices should be modified accordingly to find optimizedptimum value of decision epoch period by considering cost
performance and security tradeoffs in that scenario. of switching among security policies.



VI. CONCLUSIONS

In this work, we proposed a dynamic security policy man-
agement (DSPM) system which adapts to network conditions
and optimizes the performance accordingly. We analyzed the
DSPM by using semi-Markov decision process, and found
the optimal policies by using value iteration algorithm. In
| addition, we analyzed the performance of DSPM in terms
of throughput by computing cost functions based on packet
| : losses. We demonstrated by numerical results obtained in
e Ny different scenarios that DSPM adapts to network conditions

Decision Epoch Index fast, and provides a tradeoff between system performance and
security according to network requirements. As link conditions

) ) N changes very fast in wireless network, we believe that DSPM
Fig. 9. Average Throughput vs. Packet Losses During Decision Epoch%an be highly beneficial in such environments. Moreover, it
can provide better control of security management to system

designers. To the best of our knowledge, we believe that this

Another advantage of the DSPM is shown in Fig. 9. Her% first work which combines network feedback and overhead

ﬁpuhrce ratf IS Sﬁt U.DOO E%CketSt/SdeC..We not|cehthat .'f[?]ere arfssociated with security policies for providing dynamic secu-
\gh variations during ditierent decision epochs with regan management. For our future work, we are implementing

to pa(_:ket losses. It appears that the performance of DS, control algorithm in real time scenarios consisting of
is similar to that of static security management. However, tl@ﬂreless LAN and ad-hoc networks

long term throughput shown above in Fig. 9 shows that DSPM
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throughput is higher than that of IPSec and 802.11i with IPSec
policies. Although, DSPM throughput is lower than that ofj;
WEP, but as DSPM uses WEP, IPSec and 802.11i dynamicallg]
it is obvious that DSPM provides stronger dynamic security?!
than WEP over a long time period. Therefore, it can be
concluded that DSPM optimizes performance and security i@]
a better way than static security management.
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Fig. 10. Exponential vs. Uniform Distributions. [11]

In the model of DSPM, we consider that decision epoc{tfz]
durations follow general distributions. Fig. 10 shows the per-
formance of DSPM for exponential and uniform distributions
(with interval [O,%]) with equal mean valug. We notice that
DSPM performs better with uniform distribution. The reason
is that decision periods in the uniform distribution are always
less thanl% unlike unrestricted length of periods in exponentia[,lﬂ']
which leads to more number of decisions in uniform distribyzs)
tion for equal total time. Consequently uniform distribution is
able to adapt better to network conditions as explained abo &
In our future work, we want to analyze the DSPM with other
distribution as well to determine the optimal decision periods
according to network conditions.
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APPENDIX

Security Policy | WEP | IPSec | 802.11i(AES)+IPSec

Index 1 2 3

BER [ (5)e—3 ] (5)e—3[ (3)e—-3[ (De—-3[(§e-3[(3)e-3[((F)e—-3[((E)e—-3](Fe-3]1le—3
Index 1 2 3 4 5 6 7 8 9 10
Probability Transition Matrix ( p(pi'/ps,€;,a))
Actions--> SW NSW
Security policies--> 1 2 3 1 2 3
States
(1,1) [0.0 0.0 1.0]
1,2) [0.0 0.0 1.0]
1,3) [0.0 0.0 1.0]
1,4) [0.0 0.5 0.5] [1.0 0.0 0.0]
(1,5) [0.0 0.5 0.5] [1.0 0.0 0.0]
(1,6) [0.0 0.5 0.5] [1.0 0.0 0.0]
1,7 [0.0 0.5 0.5] [1.0 0.0 0.0]
(1,8) [1.0 0.0 0.0]
1,9 [1.0 0.0 0.0]
(1,10) [1.0 0.0 0.0]
(2,1) [0.0 0.0 1.0] [0.0 1.0 0.0]
(2,2) [0.0 0.0 1.0] [0.0 1.0 0.0]
(2,3) [0.0 0.0 1.0] [0.0 1.0 0.0]
(2,4) [0.5 0.0 0.5] [0.0 1.0 0.0]
(2,5) [0.5 0.0 0.5] [0.0 1.0 0.0]
(2,6) [0.5 0.0 0.5] [0.0 1.0 0.0]
(2,7 [0.5 0.0 0.5] [0.0 1.0 0.0]
(2,8) [1.0 0.0 0.0]
(2,9) [1.0 0.0 0.0]
(2,10) [1.0 0.0 0.0]
(3,1) [0.0 0.0 1.0]
(3,2) [0.0 0.0 1.0]
(3,3) [0.0 0.0 1.0]
(3,4) [0.5 0.5 0.0] [0.0 0.0 1.0]
(3,5) [0.5 0.5 0.0] [0.0 0.0 1.0]
(3,6) [0.5 0.5 0.0] [0.0 0.0 1.0]
(3,7 [0.5 0.5 0.0] [0.0 0.0 1.0]
(3,8) [1.0 0.0 0.0]
(3,9 [1.0 0.0 0.0]
(3,10) [1.0 0.0 0.0]




