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Abstract - Military wireless networks suffer from pri-
vacy and performance concerns due to their shared radio
medium and off-the-shelf products. Therefore, robust and
efficient security management is essential in these net-
works, especially for the transmission of sensitive data.
However, security solutions based on static-configuration
paradigm do not adapt to changing network conditions,
such as variations in wireless link characteristics, leading
to degradation in system performance. The rationale
for advocating dynamic security paradigm is to achieve
optimized network performance and security based on
network conditions. Therefore, we propose a dynamic
security policy management (DSPM) in which security
policies can be changed on the fly based on the network
feedback about wireless link conditions. DSPM is analyzed
by using semi-Markov decision process to determine the
optimal instances for switching security policies. The
results show that DSPM provides enhanced security and
improved performance than static security.

Keywords- Wireless networks, security, performance, semi-
Markov decision process.

I. I NTRODUCTION

Wireless networks provide many salient features such as
Internet everywhere and mobility support which enable users
to interact with others regardless of location. However, air
broadcast medium used in wireless networks poses many chal-
lenging issues, relating to the security for mobile users. Since
interception and modification of data in broadcast medium is
very easy, it requires strong security solutions for wireless
networks [12]. Therefore, many security solutions, some native
to wireless networks and some adopted from wired networks,
are used such as Wired Equivalent Privacy (WEP) protocol,
802.1x framework with EAP support, SSL, IPSec and 802.11i.
However, configuration of the security policies in wireless
networks has been static in a way that once a security solution
is configured, it does not change on the fly until modified by
the system administrator as the need arises.

In addition, low delay-bandwidth product in wireless net-
works causes poor quality of service (QoS) experience for
mobile users [8]. Moreover, lossy wireless links, high con-
tention in the network with the increase in number of users,
and roaming scenarios create a challenging environment for
providing required QoS. Besides, enabling security in wireless
networks leads to further degradation in performance due to

additional overhead of security services. As conditions in wire-
less networks change rapidly, static configuration of security
does not take them into account and leads to poor coordination
between security services and performance. Consequently,
there is a need for a dynamic security management which can
adapt to the changing environment in wireless networks based
on network performance. There are some existing studies
which have considered the dynamic configuration aspects of
security in various other contexts.

For instance, a user level dynamic authentication proto-
col, named Authenticast, is proposed in [15]. Authenticast
provides dynamic security by determining which parts of
communication are carrying critical information. If non-critical
communication can be transmitted unsecured or with lower
security level, then the performance of the system can be
improved. A similar protocol like Authenticast but provid-
ing different security levels for encrypted MPEG, named
SECMPEG, is discussed in [10]. SECMPEG includes the
capability to encrypt only the most important and significant
data, in order to improve performance. As with [10], [7]
also employs information, such as frame type, to select the
particular frames to be encrypted. Besides these, new system
architectures to support dynamic security for wired networks
have been proposed in the past too. For example, a flexible
security architecture with wide variety of security policies and
mechanisms is proposed in [4]. It provides applications and
users the ability to create and enforce highly customized and
situational policies dynamically. In [5], authors propose using
distributed firewalls with dynamic security policies to protect
Intranets from external and internal attacks. They implement
micro-firewall at each network node and all network nodes
together decide the security policies updates.

We notice that existing studies for dynamic security config-
uration focus on analyzing information content for improving
performance and security in wired networks. However, these
studies do not consider network conditions and their inter-
action with the overhead associated with security services.
It is due to the fact that these studies are based on wired
networks where network conditions, such as link error rate,
are highly stable. In addition, although these studies discuss
dynamic configuration of security, but security policies can
not be altered while session is going on. Therefore, basic
fundamentals of our work are very different from these studies.
As our work aims wireless networks, where link conditions
change very fast, we propose dynamic security management



by considering link conditions for improving performance and
security in these networks. Our work is based on network
feedback which helps wireless clients in making decisions
regarding the dynamic configuration of security. Moreover,
our work focuses on providing dynamic security configuration
while user sessions are in progress. The main contributions in
this work are as follows.

A. Contributions

We propose a dynamic security policy management (DSPM)
system which can provide adaptive performance and security
as required by a network. Adaptive behavior of the system is
provided by switching security policies based on the network
conditions such as bit error rates (BER) over links. We have
provided a generalized semi-Markov decision process model
to analyze DSPM, which helps in achieving optimized network
performance and security. The advantage of dynamic security
management can be described as follows.

• Dynamic security management provides a better control
to system designers to achieve improved coordination
between security and QoS.

• As the dynamic security management changes policies
during runtime, it enables adaptive and enhanced perfor-
mance and security in wireless networks.

• As the demand for QoS is increasing rapidly by real-time
mobile applications, the dynamic management empowers
better QoS experience for mobile users by using feedback
from the network conditions.

• Since improved coordination between security services
and QoS will lead to better resource management which,
in turn, will improve network scalability.

The advantages of DSPM are supported by the observations
based on our results. The observations show that as wireless
link conditions degrade, DSPM adapts to a security policy
with lower overhead. Whereas it is observed that as wireless
link conditions improve, DSPM shifts to a stronger security
policy. In addition, we notice that the length of time durations
between two switching instances and packet size impact the
performance of DSPM.

The rest of the paper is organized as follows. The relation
between the overhead associated with security policies and
network performance is discussed in Section II. In Section
III, we explain main components of DSPM, analyze DSPM
as a semi-Markov decision process, define cost matrices and
optimality equations, and describe value iteration algorithm.
The DSPM control algorithm and its implementation aspects
are presented in Section IV. We demonstrate numerical results
in Section V. Finally, Section VI provides conclusions along
with future work.

II. I MPACT OF SECURITY POLICIES ON NETWORK

PERFORMANCE

In our work, we characterize network performance in wire-
less networks by considering throughput. Throughput, denoted
asη, is considered for quantifying the system performance as
perceived by a wireless client, and is defined as the number

of packets successfully delivered per unit time. Throughput is
affected depending upon how many packets are lost during
transmission. For example, if packet losses are high in a
wireless network, it will lead to low throughput. In addition,
we know that the probabilities, whether a packet is lost or
successfully transmitted, are dependent on packet size. When
security policies are applied, extra bits are added to each
packet leading to increased packet size. Increased packet size
affects packet losses in two ways. First, a packet will have
higher chance of collision due to its bigger size. Second, as
link conditions in wireless networks changes rapidly causing
varying bit errors on a wireless, bigger packet size has higher
chance of having bit errors. Therefore, extra bits added by
security policies directly impact packet loss probability.

Assume that a client is configured with security policyρi,
original packet size isd, and per packet additional bits added
by security policyρi is O(ρi). Therefore, size of a transmitted
packet will bed+O(ρi). Assume that BER in wireless network
is denoted asε. Then, the probability that packet is lost,
denoted asploss, can be obtained as follows.

ploss = 1 − (1 − ε)d+O(ρi) . (1)

Equation (1) shows the relationship between packet loss
probability and security policy overhead. Specifically, (1) im-
plies that if one or more bits are in error, packet is considered
lost. It is due to the fact if packet is received with errors, the
packet is discarded at the destination.

III. D YNAMIC SECURITY POLICY MANAGEMENT (DSPM)

In this section, first we discuss different components as-
sociated with DSPM system. Then we present semi-Markov
decision process (SMDP) model to analyze DSPM. The cost in
the model has been evaluated by computing the packet losses
occurred during the configuration of different security policies.
The analysis helps us in finding an optimal SMDP policy re-
garding the switching of security policies in changing wireless
environment. To avoid confusion, we clarify that SMDP policy
is different from a security policy. A security policy specifies
a security protocol or a combination of security protocols at
different layers configured in a system. On the other side, a
SMDP policy specifies actions which guide switching among
different security policies. The notations followed in this paper
are as given in [14].

A. DSPM Architecture

Fig. 1 shows the main components of DSPM system which
consists of a monitor, a decision-maker and a switching,
modules. The monitor module collects statistics such as signal
strengths and BERs over wireless links, and provides the
feedback to the decision-maker at regular intervals. Whenever
the decision-maker module obtains feedback from the moni-
toring system, it runs an algorithm to determine the decisions
regarding the switching of security policies. The monitor and
decision-maker are executed as background processes so that
they do not interfere with the ongoing data transmission in a
system. The decision-maker sends its decision to the switching
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module. The switching module finally changes the current se-
curity policy if the decision sent by the decision-maker module
is positive. Since the switching module runs in foreground, it
adds extra overhead to the ongoing data transmission. It is
because the data can not be transmitted until the configuration
of new security policy is completed. However in real scenario,
the time involved between consecutive decisions made by the
decision-maker module is in the order of hours. Whereas, the
time involved in switching a security policy is in the order
of seconds. By assuming that systems have enough buffer so
packets are not lost and as the cost in our model are concerned
with only packet losses but not delay, we ignore the switching
time during the analysis.

System Out Data Stream
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Bit Error
Rates

In Data Stream

Decision−Maker
System

 Switching System

Security

Online/Foreground

Offline/Background

Fig. 1. Dynamic Security Policy Management.

B. Semi-Markov Decision Process Model

Here we formulate the problem of dynamic switching of
security policies as a semi-Markov decision process (SMDP).
SMDP consists of state space, action set for each state,
decision rules, policies, decision epochs and cost functions
[14]. In context of DSPM, the decision-maker module makes
decisions regarding the switching of policies at different
time instances called decision epochs based on the feedback
obtained from the monitor module. Time instances fromt0
to tk shown in Fig. 2 are the decision epochs. We assume
that time duration between two decision epochs, denoted asτ ,
follow general distribution so that it covers variety of situations
in real scenarios. For example, system designers can choose
to monitor system either at constant intervals or whenever
some event occurs such as change in BERs or a specific
number of packets are lost. However, by choosing the general
distribution, we do not restrict our model to some specific
situation. Further, time instancet0 is when the client enters
the network and makes first decision to choose initial security
policy. Moreover, time instancetk represents when the client
makes the last decision, and the client leaves the network
at time T . Therefore, the total timeT represents the client
residence time in a network. We assume thatT is exponentially
distributed with rateλ.

The decision-maker module takes into account the states
of the system while determining decisions. We represent the
state space in the system asS where eachs ∈ S contains
the current security policy configured in the system and the
current BER. For example, if current state of the system is
s = (ρ, ε) at decision epochk, thenρ is the security policy
and ε is the BER. Besides, every state has an action set

associated with it. The action set for a states, denoted as
As specifies the actions which are taken into consideration by
the decision-maker when the system is in states. We assume
that action set associated with each state does not change with
time. In this work, we assume that there areat most two
actions available for each state. Those two actions are defined
as ”SW ” and ”NSW ”. ” NSW ” refers that security policy
should not be switched, whereas ”SW ” means that current
security policy should be switched to some other security
policy. It is important to note that it is possible that some
states may have both actions associated with them, whereas
other states may have just any one of ”NSW ” and ”SW ”
actions associated with them. However, each state will have
at least one action associated with them.Xi and Yi, where
0 ≤ i ≤ k, in Fig. 2 are random variables showing state and
action at each decision epoch, respectively.

Now we discuss state transition probability matricesP
which describes how the transitions among different states take
place given a particular action. We introduce two probability
distribution functions to define state transition probability
matrices. Letp(ρi′/s, a) or p(ρi′/ρi, εj , a) represent the prob-
ability that security policy in next state isρi′ given the current
state is(ρi, εj) and actiona is chosen. In addition, letp(εj)
denote the probability that BER isεj . Then, state transition
probability matrices can be represented as follows.

P(ρi′ , εj′/ρi, εj,a) =
{

p(ρi′/ρi, εj , a) · p(εj′) a=SW
p(ρi/ρi, εj , a) · p(εj′) a=NSW

.

(2)
In (2), whena = NSW , thenp(ρi/ρi, εj , a) will be equal

to 1, and effectivelyP (ρi, εj′/ρi, εj′ , NSW ) will be equal to
p(εj′). (2) implies that security policy in next state depends
upon current state, whereas BER in next state is independent
of current state.

A SMDP policy, denoted asπ, specifies the decision rules to
be used at each decision epoch. A decision rule, denoted asδk,
specifies the action chosen for each states ∈ S at the decision
epochk. For example,δk(s) denotes the action chosen for state
s at decision epochk, whereδk(s) ∈ As. Therefore a SMDP
policy π = {δ1, δ2, . . .} is a set and consists of decision rules
to be used at all decision epochs. Here, we consider stationary
SMDP policies with deterministic Markovian decision rules.
Stationary SMDP policies are policies whereδk = δ∀k. It
means that action chosen at a particular state is same at
all decision epoch. Since the action set associated with a
state does not vary with time, therefore considering stationary
SMDP policies is valid in our scenario. We denote the set of
all stationary SMDP policies byΠ. In addition, Markovian
decision rules are rules which depend upon previous states
and action only through current state. Deterministic nature of
decision rules ensures that an action is chosen with probability
1. For details, readers can refer [14].

In addition, we define a cost rate functionr(s) associated
with each states, which captures the packet losses occurred
when system is in states. Assuming source rate isγ and packet
loss probability associated with states is ploss(s), then r(s)
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Fig. 2. DSPM as a Semi-Markov Decision Process.

will be equal toγ ·ploss(s). Therefore, if the time duration for
decision epochk is τk and state iss, Then, total cost incurred
during the decision epoch period will beτk · r(s). Now we
compute theexpected total cost, denoted asvπ(s), assuming a
SMDP policyπ is chosen and initial state iss. By using Fig.
2, vπ(s) can be deduced as follows.

vπ(s) = Eπ
s

{
k−1∑
i=0

τir(Xi) + (T − tk)r(Xtk
)

}
. (3)

The first term in (3) computes the cost upto decision epoch
k, and the second term computes the cost between decision
epochk and the exit time instanceT . As T is distributed with
rateλ, vπ(s) can be expressed as follows as derived in [16].

vπ(s) = Eπ
s

{ ∞∑
i=0

eλtic(Xi, Yi)

}
. (4)

Where

c(s′, a) = Ea
s′

{
1
λ

(1 − e−λτ )r(s′′)
}

. (5)

Here c(s′, a) is the expected total cost between two deci-
sion epochs, when system is in states′ and actiona is chosen.
It is important to note in (5) that the cost rate isr(s′′), where
(s′′) is the system state after the decision epoch. It is due
to the fact that the state change in our system takes place
immediately after the decision instance as shown in Fig. 2.
Now assuming thatG(t) represents the distribution for time
duration between decision epochs, and is independent of the
states and actions. Then (4) can be written as follows [14].

vπ(s) = c(s, a) +
∑
s′∈S

∫ ∞

0

e−λtvπ(s′)P [s′|s, a]G(dt). (6)

Now, our goal is to find a SMDP policyπ among all
stationary policies, which minimizesvπ(s). Assume thatv(s)
represents theminimum expected total costwith initial state
s. Then optimality equation can be written as follows.

v(s) = mina∈As
{c(s, a) +∑

s′∈S

∫ ∞

0

e−λtvπ(s′)P [s′|s, a]G(dt)}. (7)

Optimality equation (7) implies that we need to find an
action a for each states which minimizes expected total
cost. Now, we describe cost function,c(s, a), which demon-
stratesexpected total cost between two decision epochs. The

cumulative cost over a decision epoch period will depend
upon security policy and BER in that decision epoch period.
Therefore, cost function for states, if action a is chosen, can
be computed as follows.

c(s, a) =
∑

s′∈S

∫∞
0

1
λ (1 − e−λt)r(s′)P [s′|s, a]G(dt)

= (
∑

s′∈S
1
λr(s′)P [s′|s, a])

∫∞
0

(1 − e−λt)G(dt).(8)

Now we discuss the algorithm to find a stationary determin-
istic optimal SMDP policy. We use value iteration algorithm to
find an optimal policy which is used widely to solve Markov
decision processes [16]. We describe algorithm in Fig. 3 as
given in [14], [16]. In this paper, the function||v|| is defined
asmaxs∈Sv(s). Since step2 in the algorithm correspondence
to contraction mapping,vn(s) converges in norm tov(s). Step
2 in Fig. 3 finds the optimal value of cost, whereas step4
chooses an optimal action for each state.

————————————————————————————
value iteration algorithm()
1) Setv0(s) = 0 for each states ∈ S. Chooseε > 0 andn = 0.
2) For eachs ∈ S, computevn+1(s) as follows.

vn+1 = mina∈As{c(s, a) +∑
s′∈S

∫ ∞

0

e−λtvn(s′)P [s′|s, a]G(dt)}

3) If ||vn+1 − vn|| < ε, go to step4. Otherwisen = n + 1 and go
to step2.
4) For eachs ∈ S, compute the stationary optimal policy as follows.

δ(s) = arg mina∈As{c(s, a) +∑
s′∈S

∫ ∞

0

e−λtvn(s′)P [s′|s, a]G(dt)}

5)exit.
————————————————————————————
Fig. 3. Value Iteration Algorithm for Finding An Optimal SMDP Policy.

IV. DSPM CONTROL ALGORITHM

In this section, we describe DSPM control algorithm and
its implementation aspects in detail. In real scenarios, DSPM
control algorithm will be executed on every client system
in the network. For better performance, the DSPM control
algorithm is divided into two parts: offline and online. The
offline part can be executed in background so that it does not
interfere with the normal processing at client systems. The
online part is to be executed as a foreground process so that
security policy for next state can be determined while user
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session is going on. A sketch of the DSPM control algorithms
is provided in Figs. 4 and 5.

A. Implementation Aspects of the Offline Part

During the execution of the offline part, various inputs such
as set of security policies, set of BERs, probability distribution
functions, overhead and utility functions are provided as
shown in Fig. 4. The control algorithm considers only those
security policies which are similar between a wireless client
and access-points in a network. Information about the set of
security policies associated with access-points can be obtained
in advance from the network administrator.

————————————————————————————
Part 1: Offline
Global Input Parameters:
ρ := set of security policies
ε := set of BERs
S : ρ x ε := set of states
O(ρi) := overhead associated with security policyρi

p(ρi′/ρi, εj , a) := probability that security policy in next state isρi′

given current state is(ρi, εj) and actiona is chosen.
p(ε) := probability distribution function for BERs
P (ρi′ , εj′/ρi, εj , a) := state transition probability matrices
A = (SW, NSW ) := action set associated with each state
d :=packet size
G(t) := general distribution for decision epoch periods
λ:= mean residence time
γ := source rate in packets/sec
T := total residence time
Let initial state (ρi, εj)

δ = value iterationalgorithm()
exit
————————————————————————————

Fig. 4. DSPM Control Algorithm: Offline.

Besides, we consider a finite set of BERs during the
implementation of the control algorithm to have a finite state
space. We assume that if BER is betweenεi and εj , then
similar decisions will be taken for this range, and this range
will be represented by the mean value ofεi and εj . For
instance, if BER is between3.5e−4 and 4.5e−4, then this
range will be represented by the value4e−4. The values of
BERs which we have considered will be described when we
discuss numerical results in a later section.

The value iteration algorithm function is called during
offline part, and provides the optimal action associated with
each state. The information about optimal actions acts as a
look-up table during the online part of the DSPM control
algorithm. The advantage of calling value iteration algorithm
offline is that there is lesser time spent in finding optimal
action from the look-up table than in determining optimal
actions each time during the online part.

B. Implementation Aspects of the Online Part

In the online part as shown in Fig. 5, each iteration in while
loop corresponds to each decision epoch period. Duration of

————————————————————————————
Part 2: Online
1) c sp = ρi \\ current security policy
2) c ber = εj \\ current BER
3) n sp = NULL \\ security policy in next state
4) n ber = NULL \\ BER in next state
5) r t = T \\ time remaining
6) c p l = 0 \\ cumulative number of packets lost
7) while TRUE do
8) t = G(t) \\ returns random decision epoch period
9) if r t ≤ t then
10) c p l = c p l + γ · pe(c sp, c ber)· r t
11) break\\ out of while loop
12) else\\ r t > t

13) c p l = c p l + γ · pe(c sp, c ber) · t
14) a=δ(c sp) \\ From Offline Part
15) Choose someρi′ such thatp(ρi′/c sp, c ber, a) > 0

16) n sp = ρi′

17) n ber = εj′ , choose by usingp(ε)

18) end if
\\ n sp and nber become csp and cber
\\ in next while loop iteration
19) c sp = nsp
20) c ber = nber
21) end while
22) η = γ·T−c p l

T

23) exit
————————————————————————————

Fig. 5. DSPM Control Algorithm: Online.

each epoch is computed using the distribution function which
can be exponential, uniform or any other distribution. Then,
associated cost in terms of packet losses is computed by
obtaining the product of packet loss probability, source rate
and the time duration of decision epoch. Then, security policy
in next state is obtained by using the look-up tableδ and state
transition probability matricesP as shown in steps14−15. In
addition, prediction of BER in next state is achieved by using
BER distribution function.

We notice that each step in the online part isO(1), except
the step16 where security policy in next state is deduced. In
the step15, security policy for next state is determined by
state transition probability matrix which isO(k), wherek is
number of security policies. Ask will be constant in general,
the time complexity for each decision is ofO(1). As the while
loop runs for the number of the decision epochs, and assuming
there aren decision epochs, then the time complexity for the
online part is ofO(nk) or O(n), which is linear inn.

V. NUMERICAL RESULTS

We have implemented a generalized DSPM toolkit by using
MATLAB toolbox [9] to analyze SMDP model and to obtain
numerical results. We have made DSPM toolkit available for
public use at [6]. To analyze DSPM, we consider three security
policies based on their uses in wireless networks. First and
second security policies consist of WEP and IPSec (AH)
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protocols, respectively. On the other side, third security policy
is integration of 802.11i (AES) with IPSec. The additional
overhead to each packet added by WEP, IPSec (AH) and
802.11i (AES) is around7, 20 and16 bytes, respectively, [1],
[2], [3]. Therefore, the additional overhead added by 802.11i
with IPSec is equal to20+16 = 36 bytes. Besides, we consider
10 bit error rates,(1/j)e − 3 where1 ≤ j ≤ 10, to model
wireless link conditions [11]. The value of(1/10)e−3 models
a good wireless channel, whereas(1/1)e−3 or 1e−3 models
a noisy channel. In addition we assume that BERs are equally
distributed with probability1/10, so p(εj) = 1

10 ∀ j. As we
notice that our state space,S = ρxε, now consists of30 states.
Due to the big state space, we provide value of probability
matrix p(ρi′/ρi, εj , a) in the appendix at the end. The design
of the probability matrix follows that whenever BERs are
higher, system should try to switch to security policies with
low overhead, and when BERs are low, system tries to switch
to policies with strong security. In this way, DSPM system
provides complete control to system designers to choose prob-
ability transition matrix tuned to their network requirements,
and then the optimal performance can be obtained by using
the DSPM control algorithm. Further, we assume that, in
general, decision epoch periods are exponentially distributed
with parameterµ = 0.005 and λ is 5e − 4, unless stated
otherwise. In addition, packet size is varied from128 to 1024
bytes, as most of the applications in Internet transmit packet
of sizes in this range [13]. Source rateγ is 10 packets/sec,
and ε is 1e − 20 for value iteration algorithm.
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Fig. 6. DSPM Adaptability to Network Conditions.

Fig. 6 demonstrates how DSPM adapts to different wireless
link conditions. We notice that as a wireless system is good
with low bit error rates, DSPM uses 802.11i with IPSec, since
802.11i with IPSec is assumed to provide strong security in
the system. On the other side, whenever bit error rates are in
middle range such as1.4e− 4, DSPM uses IPSec to improve
performance. However, whenever system is noisy, DSPM uses
WEP to improve performance at the cost of low security. It is
to note that some wireless networks may not allow WEP at
all due to their sensitive data contents, however probability
matrices should be modified accordingly to find optimized
performance and security tradeoffs in that scenario.
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Fig. 8. DSPM Switching Pattern.

Now we compare the performance of DSPM with variations
in mean decision epoch periods and packet size as shown
in Fig. 7. We notice that DSPM shows better performance
with small packets than large packets. It is due to the fact the
large packet has higher probability of getting lost than small
packets. Moreover, we notice as mean decision epoch period is
reduced, DSPM provides better performance. This is because
that as frequency of decisions is high, DSPM adapts better to
network conditions, and throughput is improved consequently.
To emphasize the fact further, we show the switching pattern
followed by DSPM in Fig. 8. Although we found the switching
pattern for a very large number of decision epochs, here we
present the pattern only for20 decisions epochs for clarity
purpose. Every set(a, b) at each decision epoch in Fig. 8
shows the index of security policy and bit error rate as given in
the appendix. We notice that as bit error rates are varied faster,
DSPM reacts faster and switches to other security policies for
optimization. For instance, BER is varying fast at decision
epochs from2 to 6, so the switching of security policies is
taking place at each decision epoch. However, as packet losses
are high in next decision epochs from7 to 12, security policy is
not switched and maintained at WEP (index 1) to improve the
long term throughput. Therefore, Fig. 8 depicts the adaptability
of DSPM at micro level. In our future work, we aim to find an
optimum value of decision epoch period by considering cost
of switching among security policies.
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Fig. 9. Average Throughput vs. Packet Losses During Decision Epochs.

Another advantage of the DSPM is shown in Fig. 9. Here,
source rate is set to100 packets/sec. We notice that there are
high variations during different decision epochs with regard
to packet losses. It appears that the performance of DSPM
is similar to that of static security management. However, the
long term throughput shown above in Fig. 9 shows that DSPM
throughput is higher than that of IPSec and 802.11i with IPSec
policies. Although, DSPM throughput is lower than that of
WEP, but as DSPM uses WEP, IPSec and 802.11i dynamically,
it is obvious that DSPM provides stronger dynamic security
than WEP over a long time period. Therefore, it can be
concluded that DSPM optimizes performance and security in
a better way than static security management.
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Fig. 10. Exponential vs. Uniform Distributions.

In the model of DSPM, we consider that decision epoch
durations follow general distributions. Fig. 10 shows the per-
formance of DSPM for exponential and uniform distributions
(with interval [0,2µ ]) with equal mean valueµ. We notice that
DSPM performs better with uniform distribution. The reason
is that decision periods in the uniform distribution are always
less than2

µ unlike unrestricted length of periods in exponential,
which leads to more number of decisions in uniform distribu-
tion for equal total time. Consequently uniform distribution is
able to adapt better to network conditions as explained above.
In our future work, we want to analyze the DSPM with other
distribution as well to determine the optimal decision periods
according to network conditions.

VI. CONCLUSIONS

In this work, we proposed a dynamic security policy man-
agement (DSPM) system which adapts to network conditions
and optimizes the performance accordingly. We analyzed the
DSPM by using semi-Markov decision process, and found
the optimal policies by using value iteration algorithm. In
addition, we analyzed the performance of DSPM in terms
of throughput by computing cost functions based on packet
losses. We demonstrated by numerical results obtained in
different scenarios that DSPM adapts to network conditions
fast, and provides a tradeoff between system performance and
security according to network requirements. As link conditions
changes very fast in wireless network, we believe that DSPM
can be highly beneficial in such environments. Moreover, it
can provide better control of security management to system
designers. To the best of our knowledge, we believe that this
is first work which combines network feedback and overhead
associated with security policies for providing dynamic secu-
rity management. For our future work, we are implementing
DSPM control algorithm in real time scenarios consisting of
wireless LAN and ad-hoc networks.
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APPENDIX

Security Policy WEP IPSec 802.11i(AES)+IPSec
Index 1 2 3

BER ( 1
10

)e− 3 ( 1
9
)e− 3 ( 1

8
)e− 3 ( 1

7
)e− 3 ( 1

6
)e− 3 ( 1

5
)e− 3 ( 1

4
)e− 3 ( 1

3
)e− 3 ( 1

2
)e− 3 1e− 3

Index 1 2 3 4 5 6 7 8 9 10

Probability Transition Matrix ( p(ρi′/ρi, εj , a))

Actions--> SW NSW
Security policies--> 1 2 3 1 2 3

States
(1,1) [0.0 0.0 1.0]
(1,2) [0.0 0.0 1.0]
(1,3) [0.0 0.0 1.0]
(1,4) [0.0 0.5 0.5] [1.0 0.0 0.0]
(1,5) [0.0 0.5 0.5] [1.0 0.0 0.0]
(1,6) [0.0 0.5 0.5] [1.0 0.0 0.0]
(1,7) [0.0 0.5 0.5] [1.0 0.0 0.0]
(1,8) [1.0 0.0 0.0]
(1,9) [1.0 0.0 0.0]
(1,10) [1.0 0.0 0.0]
(2,1) [0.0 0.0 1.0] [0.0 1.0 0.0]
(2,2) [0.0 0.0 1.0] [0.0 1.0 0.0]
(2,3) [0.0 0.0 1.0] [0.0 1.0 0.0]
(2,4) [0.5 0.0 0.5] [0.0 1.0 0.0]
(2,5) [0.5 0.0 0.5] [0.0 1.0 0.0]
(2,6) [0.5 0.0 0.5] [0.0 1.0 0.0]
(2,7) [0.5 0.0 0.5] [0.0 1.0 0.0]
(2,8) [1.0 0.0 0.0]
(2,9) [1.0 0.0 0.0]
(2,10) [1.0 0.0 0.0]
(3,1) [0.0 0.0 1.0]
(3,2) [0.0 0.0 1.0]
(3,3) [0.0 0.0 1.0]
(3,4) [0.5 0.5 0.0] [0.0 0.0 1.0]
(3,5) [0.5 0.5 0.0] [0.0 0.0 1.0]
(3,6) [0.5 0.5 0.0] [0.0 0.0 1.0]
(3,7) [0.5 0.5 0.0] [0.0 0.0 1.0]
(3,8) [1.0 0.0 0.0]
(3,9) [1.0 0.0 0.0]
(3,10) [1.0 0.0 0.0]
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