
MEACA: Mobility and Energy Aware Clustering Algorithm
for Constructing Stable MANETs

Yi Xu and Wenye Wang
Department of Electrical and Computer Engineering

North Carolina State University
Raleigh, NC 27606

Email: {yxu2, wwang}@ncsu.edu

Abstract— Node clustering is a technique to mitigate the topology
changes in mobile ad hoc networks (MANETs). It stabilizes the end-
to-end communication paths and maximizes the path lifetime. It also
improves the network scalability such that the routing overhead
does not become tremendous in large-scale ad hoc networks. Its
effectiveness, however, depends largely on the cluster stability which
is measured by the lifetime of the cluster heads and the membership
time of the cluster members. The existing clustering algorithms do
not achieve this objective well. In this paper, we show that the cluster
stability is fundamentally related to the mobility and the energy
status of the nodes in the network and propose a new clustering
algorithm using the node mobility and energy information. Our
new algorithm maximizes the cluster stability by choosing the low
mobility and high energy nodes to be the cluster heads and by
keeping the constructed clusters unchanged to the extent of their
maximum possible lifetime. In addition, the proposed clustering
algorithm performs equally well in large-scale ad hoc networks as
in the small ones. We also show that it is a near-optimal clustering
algorithm.

I. INTRODUCTION

Self-organization is the characterizing feature of the mobile
ad hoc networks. There are no infrastructure-like entities in the
network that implement predefined control functions over the
network. Every node is a peer to the others and they establish
the network cooperatively. The communication between two non-
neighboring nodes is realized through the relay of intermediate
nodes that serve as routers for them. Due to the node mobility
and the energy constraint, the network architecture is not always
stable. A node participating in a route for others might quit
before the end-to-end communication finishes, resulting in path
failure and re-discovery. During the path failure time, the end
nodes suffer from packet delays and packet losses. The path re-
discovery introduces extra network overhead and thus consumes
network bandwidth, which becomes significant when the node
dynamics increase. Besides, scalability is another important issue
of the ad hoc networks. As the node population grows, an efficient
routing protocol that locates the destination node and establishes
a path to it with affordable network resource expenses is desired.
It has been proven that the reactive routing strategies [3], [4]
perform better than the proactive strategies [1], [2] in highly
dynamic networks. However, as network flooding is used in the
reactive routing strategies for route discovery, scalability is still
a challenging issue when the node population is large.

The cluster concept [5] was introduced as an approach to
address the path stability and the network scalability problems.
The path stability is defined to be the lifetime of a path and

the network scalability measures the routing overhead increase in
large networks over the small networks. In a clustered network,
the nodes aggregate into different groups, named clusters. In some
scenarios, the cluster as a whole is stationary, with the individual
nodes moving around inside. In other scenarios when a group of
nodes have common interest and similar movement traces, the
cluster moves as a whole. In both cases, routing is viewed in two
tiers: inter-cluster routing and intra-cluster routing. Determined
by the specific mobility patterns, either the inter-cluster path or
the intra-cluster path is stable over a long time. Thus the clustered
network structure improves the path stability. Path discovery is
also simplified with the clusters. The destination node is located
cluster by cluster instead of through flooding every node in the
network. Each cluster has a head node that knows the membership
of its cluster, so it is sufficient to query only the cluster heads to
discover the path.

Since the purposes of forming clusters are to stabilize the
end-to-end communication paths and to improve the network
scalability, the cluster stability must be considered, which is
defined to be the lifetime of the cluster heads and the membership
time of the cluster members. Unstable clusters could jeopardize
both objectives. When a cluster is reformed, both the inter-cluster
and the intra-cluster routes change. Also, the cluster membership
changes and the re-clustering overhead offsets the benefit gained
from the cluster-by-cluster path discovery. The widely used
lowest-ID clustering algorithm [6], [7] achieves simple and fast
clustering result, but does not guarantee cluster stableness. Cluster
reforming takes place frequently as the node mobility increases.
The fundamental reason is that the node ID does not reflect a
node’s suitability to become a cluster head, which would instead
be more preferably determined by a node’s mobility and energy
status. Similarly, many other existing clustering algorithms also
do not consider the cluster stability as the design objective and,
therefore, experience frequent cluster changes.

We propose a new clustering algorithm in this paper. Our algo-
rithm targets the cluster stability by using the node mobility and
energy information as the basis for making clustering decisions.
The contributions of this paper are:

1) we generalize the lowest-ID algorithm and reveal the un-
derlying reasons that result in the cluster instability;

2) we design a new clustering algorithm that stabilizes the
clusters better than the generalized lowest-ID algorithm;

3) we evaluate the optimality of our new algorithm and show
it is near-optimal.

The rest of this paper is structured as follows. We describe the
related work, generalize and investigate the lowest-ID algorithm
in Sectioin II. We present the design of our new clustering
algorithm in Section III. Section IV studies the performance of
our new clustering algorithm in comparison to the generalized
lowest-ID algorithm using simulations and evaluates the algo-
rithm optimality. Finally, we conclude this paper in Section V.

II. RELATED WORK

The lowest-ID clustering algorithm is a simple and fast tech-
nique to form clusters. This algorithm uses the node ID, a unique
node identifier, to determine which nodes to become cluster heads
and which not. The nodes exchange their ID numbers periodically.
The nodes having the lowest ID numbers in their neighborhood
become the cluster heads and the other nodes become the cluster
members. If a member node loses the contact with its head, it
re-determines its new role and new head. In addition, a node
changes its head and/or its role whenever it hears a head with a
lower ID than its current head.

The weight-based clustering algorithm [8] is similar to the
lowest-ID algorithm. Each node in the network is assigned a
weight. The nodes with the highest weights in their respective
neighborhood become the heads, and the other nodes become the
members. A node changes its head and/or role if another head
node heavier than its current head comes into its neighborhood.
In an effort to alleviate the frequent cluster changes, the revised
weight-based algorithm [9] relaxes the role update requirement
such that the change takes place only when the new head is
significantly heavier than the current one. Simulation shows the
revised scheme enhances the cluster stability [10].

In fact, the lowest-ID algorithm and the weight-based algorithm
can be viewed as two instances of a generalized lowest-ID
algorithm. In this generalized lowest-ID algorithm, each node
has a uniquely predefined identifying attribute that ranks the
node’s priority to become a cluster head. Lower attribute value
indicates higher priority. In the lowest-ID algorithm, this attribute
is the node ID. In the weight-based algorithm, this attribute is
the inverse of the weight. The generalized lowest-ID algorithm
has the cluster instability problem due to two reasons. First, the
arbitrarily predefined ID attribute does not relate to a node’s
stability to be a cluster head. The node’s stability is determined
by its mobility and energy status, rather than its ID. As the result,
the nodes with low IDs are probably not the best candidates for
cluster heads. Second, the algorithm requires a node switch to a
new head whenever the new head has lower ID than its current
head, even in the case that the current cluster is still valid. This
requirement terminates the existing cluster prematurely. The head
selection using node IDs and premature head re-selection result
in frequent cluster changes.

Node mobility is considered in [11] to determine the cluster
heads. In this algorithm, every node monitors its speed relative
to the neighbors and chooses the node with the lowest relative
speed to be its head. This algorithm improves the cluster stability,
but there is a potential convergence problem. Because the relative
speed measurement on a node is not globally deterministic such
that different nodes may have different measurements, the nodes
may not be able to reach unanimous decisions on their roles. The

Weighted Clustering Algorithm (WCA) [12] combines the node
degree, transmission power, mobility, battery power and uses the
weighted sum of these node status metrics to determine the cluster
heads. The (α, t)–Cluster algorithm [13] evaluates the intra-
cluster reachability of the mobile nodes. Clusters are dynamically
constructed to ensure path availability in each cluster.

Other clustering algorithms consider communication cost and
energy consumption [14], [15], use node contention to select
cluster heads [16]–[18], and bound cluster sizes [19]. The cluster
stability is not the design objective of these algorithms.

In this paper, we target a new clustering algorithm that forms
stable clusters. Stable clusters will have the benefits of provid-
ing stable end-to-end communication paths and enabling good
network scalability. Our algorithm takes the node mobility and
energy into account, but differs from the generic weight-based
schemes in that we have designed the specific indicator metric to
quantitatively measure each node’s suitability to become a cluster
head rather than using the general concept of weight. As mobility
is the major cause for the network topology changes, the node
mobility status takes the priority in our indicator metric and the
node energy status plays the subsidiary role, which is different
from the WCA where all the factors are mixed through using
pre-assigned factor weights.

III. THE MOBILITY AND ENERGY AWARE CLUSTERING
ALGORITHM

Next, we define the clustering problem first. Then we present
our clustering algorithm, named the Mobility and Energy Aware
Clustering Algorithm (MEACA). Our algorithm uses the node
mobility and energy status to evaluate and select the most stable
nodes to be the cluster heads. Besides, it avoids premature cluster
head re-selection to stabilize the formed clusters.

A. Problem Definition

An ad hoc network is described by a node set V = {v} and
a node connectivity set E = {eij}. The node set V gives all the
nodes in the network and the connectivity set E denotes all the 1-
hop links among the nodes in V . We make a few assumptions on
the network. First, every link is symmetric. Second, every node
has an ID or node address that identifies the node uniquely. Third,
every node is able to estimate its energy lasting time based on
its energy usage. Fourth, every node reports its status accurately
when the nodes exchange information.

We define a cluster to be a subset of V where one node is
selected to be the cluster head and the rest are affiliated members.
The nodes in a cluster are geographically close to one another.
The radius of a cluster is measured by the number of hops from
the cluster head to the furthest member node in its cluster. The
cluster radius is a tradeoff issue between the inter-cluster routing
and the intra-cluster routing complexity. In this paper we define
the cluster radius to be 1 hop. That is, every member node is
in direct contact with its cluster head. Fig. 1 illustrates example
clusters in an ad hoc network, where nodes v2, v9, v12, v15, and
v17 are cluster heads, and all the other nodes are cluster members.

The cluster size is defined to be the number of nodes in the
cluster, counting both the cluster head and the cluster members. If

Cluster MemberCluster Head

20

12

1
19

7

21
18

10

17

16

14

4

9

5

11
2

83
15

6
13

Network

Fig. 1. An example of the clustered ad hoc network.

there are Nh head nodes and Nm member nodes in the network at
a moment, the average cluster size is defined to be s = Nh+Nm

Nh

.
The cluster stability is evaluated in two metrics. The cluster

head lifetime is the time duration when a node remains in the
cluster head role. It starts when the node becomes a cluster
head and ends when the node stops its head role. The cluster
membership time is the time duration when a node remains
affiliated to a cluster head. It starts when the member node
has selected its cluster head and ends when it switches to
another cluster head. To capture these two performance metrics
accurately, we will use the averaged measurements of these two
metrics in the later part of this paper.

The objective of our clustering algorithm is to form stable
clusters in ad hoc networks, where the stableness is measured
quantitatively by the cluster head lifetime and the cluster mem-
bership time. To summarize, the algorithm forms clusters that
satisfy the following requirements.

• Every node in the network becomes either a cluster head or
a cluster member.

• Every node is associated with one and only one cluster.
• Every member node is 1-hop away from its cluster head.
• The average cluster size is maximized.
• The cluster stability is maximized.

B. Basic Idea of MEACA

The Mobility and Energy Aware Clustering Algorithm
(MEACA) clustering algorithm works in a distributed manner
as in the lowest-ID algorithm. The nodes in the network have
different priorities to become cluster head. They exchange their
priority values to determine who will become the heads and who
will become the members. Every node makes its own decision
after having collected the priority values of all its neighbors.
Because each node’s priority value is globally deterministic, the
nodes in the network are able to reach unanimous decisions on
their roles, though each node decides independently.

Unlike the lowest-ID algorithm that fixes a node’s priority level
beforehand, MEACA sets the priority using the node’s mobility
and energy status. For this purpose, each node has a mobility
attribute and an energy attribute. Both are kept up to date. When
determining its cluster head, a node selects in its neighborhood
the node with the relatively lowest mobility and highest energy
using these two attributes. The selected node could be one of its

A m A e
First Time

Hearing from
this Node

Latest Time
Hearing from

this Node
Node ID

(sec) (sec)

19

7

12 826

663

397 5303

4772

2539 10:34:26

10:31:45

10:32:05

10:35:54

10:35:54

10:35:54

Fig. 2. An example neighborhood table and cluster head selection.

neighbors or the selecting node itself. After the cluster head has
been determined, the member node registers itself with its cluster
head. Re-clustering takes place only when a member node has
lost contact to its head or a head node has lost contact to all its
members. In other words, a node will not change its head and/or
role as long as its current cluster remains valid.

C. Algorithm Description

The MEACA algorithm requires two node attributes to deter-
mine a node’s priority to become a cluster head. The mobility
attribute Am measures a node’s mobility stability. It is defined to
be the sum of the neighboring time between the node and each
of its current neighbors. If a node has many neighbors and it has
been with these neighbors for a long time, its Am will have large
value, indicating that it is a stable node in the mobility sense.
The energy attribute Ae measures the remaining time of a node
before its energy is used up. High Ae indicates that the node
is stable in the energy sense. We assume that each node in the
network is able to determine its Am and Ae at any time.
Advertisement of Attributes. Every node broadcasts advertise-
ments to its neighborhood periodically to exchange attributes. A
node includes its up-to-date Am and Ae in the advertisements. If
the node has become a member node already, it sets Am and Ae

to null in the advertisements to inform other nodes not to choose it
as their cluster head. Every node maintains a neighborhood table
to keep the received advertisements. For each neighbor node, the
table keeps the node ID, its Am, its Ae, the time of receiving the
first advertisement from it, and the time of receiving the latest
advertisement from it. When an advertisement is received, the
corresponding entry of the sending node in the table is updated.
If a node does not receive advertisements from a neighbor node
any more, the neighbor node is cleared from the neighborhood
table. Thus the neighborhood table always keeps the current
mobility and energy status information of the neighbor nodes.
Fig. 2 illustrates the format of the neighborhood table. Every node
can easily calculate its own Am from its neighborhood table.
Formation of Clusters. Initially all the nodes in the network are
in the role-undecided state. The nodes use their neighborhood
tables to determine their respective roles. A node chooses its clus-
ter head as follows. First, it sorts the nodes in its neighborhood
table from the highest Am to the lowest Am, including itself. We
denote the highest Am as max(Am). Second, the node determines
a mobility threshold A∗

m = α·max(Am), where α∈(0, 1). The
node uses the mobility threshold to eliminate the unstable nodes
of which the Am’s are lower than A∗

m. Third, in the remaining
nodes, the node selects the one with the highest Ae to be its
cluster head. If the node selects itself, then it becomes a cluster
head; otherwise, it becomes a member of the selected cluster

head. Fig. 2 gives an example of the cluster head selection.
There are three nodes in this example table. Assuming α = 0.8,
A∗

m = 0.8×826 = 660.8, node 7 and 12 are shortlisted for
further consideration. As node 7 has higher remaining energy,
it is selected to be the cluster head.
Finalization of Cluster Roles. When a node has decided to
become a cluster head, its role is finalized. If it chooses to become
a member of another node, it sends a registration message to the
selected node. The selected node acknowledges the registration
if it has finalized its role to be a cluster head. After receiving the
acknowledgment, the selecting node’s member role is finalized.
If the selected node has not made its decision yet, it ignores the
registration. In this case, the selecting node will continue trying
until it can register with the selected cluster head successfully.
Reformation of Clusters. After a node has determined its role,
it starts to maintain a registration table. If the node is a cluster
head, the registration table keeps the IDs of all its members. If
the node is a cluster member, the registration table keeps the ID
of its cluster head. The node uses its registration table to judge
when it needs to re-cluster. The node will re-cluster only when its
registration table becomes empty. In other words, the node will
not re-cluster until it has lost contact to all of its members if it
is a head node, or until it has lost contact to its head if it is a
member node.

D. Discussions

We have defined earlier the requirements for our clustering
algorithm. Now we show that the MEACA algorithm satisfies
these requirements.

• Every node becomes either a cluster head or a cluster
member. This is true because every node can always locate
a node in its neighborhood to be its cluster head. If the
selected node is itself, the node becomes a head node. If
the selected node is not itself, the node becomes a member
node.

• Every node is associated with one and only one cluster. This
is true since a node chooses one and only one node to be its
cluster head, there is no cluster membership overlapping.

• Every member node is 1-hop away from its cluster head.
This is true as the selected cluster head is from the neigh-
borhood table in which all the nodes are 1-hop away.

The requirements on the cluster size maximization and the
cluster stability maximization are algorithm optimization issues
and we defer the discussion to Section IV.D.

IV. ALGORITHM EVALUATION

We evaluate the performance of the MEACA clustering al-
gorithm in comparison to the generalized lowest-ID algorithm
by simulations. We are interested in the algorithm optimality
issues, including the cluster size and the cluster stability, and
the algorithm scalability in different network sizes.

The simulation environment is set up as follows. We use the
NS-2 simulator [20]. In the simulator, we define a new node
mobility model that generates and maintains uniform node dis-
tribution in the network area throughout the simulation duration.
The NS-2 default Random Waypoint Model is not used due to its

TABLE I
MOBILITY PATTERN CONFIGURATIONS.

Pattern Pause Time (min) Speed Range (m/s) Maximum Distance (m)
1 2 (1,9) 1000
2 4 (1,7) 1000
3 6 (1,5) 1000
4 8 (1,3) 1000

non-uniform node distribution and speed decay problems [21]. In
our node mobility model, a node alternates in the stationary and
the moving states. In the stationary state, the node stays where
it is for an exponentially-distributed random time. At the end
of the stationary state, the node chooses a random direction and
a random distance to travel. The direction and the distance are
uniformly distributed. The node travels in a constant speed, which
is also a uniformly-distributed random variable. If the node hits
the network boundary before finishing its planned travel distance,
it bounces back into the network to finish the remaining travel
distance. When it reaches the destination, it transits into the
stationary state again. The node energy lasting time is modeled
as an exponentially-distributed random variable. When its energy
is used up, the node stops its activity for some time to recharge
its battery. The node joins the network again after recharging.

We have simulated the 120-node and the 240-node network
sizes in an area of 2000m×2000m. The node communication
radius is 250m. Initially the nodes in the network are all in
the role-undecided state. The clustering algorithm begins two
minutes after the simulation starts to allow some time for the
nodes to collect their neighborhood information. After the initial
clustering, the nodes monitor their neighborhood continuously
and re-cluster when necessary. We use four different mobility
configurations to model different mobility levels. Table I lists their
configuration details. The pause time is the duration when a node
stays in the stationary state. The speed range gives the lowest
and the highest possible speeds that a node can have when in
the moving state. The maximum distance is the furthest distance
that a node can travel in one moving state. Among them the
Pattern-1 has the highest mobility and the Pattern-4 has the lowest
mobility. The average node energy lasting time is 2 hours. In all
the simulations α = 0.9. Each measurement in the simulation is
averaged over 10 simulation runs, with 1-hour simulation duration
in each run.

A. Cluster Size

We count the number of clusters and their average sizes every
10 minutes for the generalized lowest-ID algorithm and the
MEACA algorithm. The results are shown in Fig. 3 and Fig.
4. From the figures, we see that the MEACA algorithm forms
slightly more clusters than the lowest-ID algorithm. MEACA
has 50–60 clusters, dependent on the node mobilities, while the
lowest-ID has about 40 clusters throughout the simulation. Ac-
cordingly, MEACA has slightly smaller average cluster size than
the lowest-ID. The average cluster size is 4–5 using MEACA,
while it is about 6 using the lowest-ID. In the cluster size
comparison, the lowest-ID is slightly better than the MEACA
algorithm. This is because the lowest-ID algorithm keeps the
cluster heads out of the direct communication range from one

10 20 30 40 50 60
30

40

50

60

70

80

90

Simulation Time (min)

A
ve

ra
ge

 N
um

be
r

of
 C

lu
st

er
s

Lowest ID, Mobility 1
Lowest ID, Mobility 2
Lowest ID, Mobility 3
Lowest ID, Mobility 4
MEACA, Mobility 1
MEACA, Mobility 2
MEACA, Mobility 3
MEACA, Mobility 4

Fig. 3. Comparison of the average number of clusters, 240 nodes.

10 20 30 40 50 60

4

5

6

7

8

9

Simulation Time (min)

A
ve

ra
ge

 C
lu

st
er

 S
iz

e

Lowest ID, Mobility 1
Lowest ID, Mobility 2
Lowest ID, Mobility 3
Lowest ID, Mobility 4
MEACA, Mobility 1
MEACA, Mobility 2
MEACA, Mobility 3
MEACA, Mobility 4

Fig. 4. Comparison of the average cluster sizes, 240 nodes.

another such that a cluster’s coverage area is bigger than the
MEACA algorithm on average. To see this, recall that in the
lowest-ID algorithm a head node switches to be a member node
when it hears another head with a lower ID. As the result,
two cluster heads can never be in each other’s neighborhood.
In comparison, MEACA allows two cluster heads to be close
to each other. This takes place when two cluster heads move
toward each other and each is managing a cluster of affiliated
member nodes. The average distance between cluster heads is
then shorter in MEACA than in the lowest-ID. Therefore MEACA
forms more clusters with smaller cluster sizes than the lowest-
ID in the network. We also observe that the average cluster size
in MEACA increases slightly when the node mobility decreases.
As the nodes slow down, the chance that two cluster heads move
close reduces, so the clusters become bigger on average. The
lowest-ID algorithm, however, is invariable to node mobility in
the cluster size measurement.

B. Cluster Stability

1) Cluster Head Lifetime: Fig. 5 shows the cumulative average
cluster head lifetime at 10-minute intervals. In the lowest-ID, a
cluster head lasts for 20–40 seconds on average. In MEACA,
the average cluster head lifetime increases and tends to stabilize
as the simulation time goes. The initial cluster head lifetime is
short due to the reason that the nodes in the network do not
have enough time to have accurate mobility measurement and
the selected cluster heads are not the most stable ones. As the
simulation proceeds, the cluster head lifetime converges. At the
simulation time of 1 hour, the average cluster head lifetime in
MEACA is 110–160 seconds, which is significantly longer than
the lowest-ID. MEACA has more stable cluster heads than the

10 20 30 40 50 60
0

50

100

150

200

250

Simulation Time (min)

A
ve

ra
ge

 C
lu

st
er

 H
ea

d
Li

fe
tim

e
(s

ec
)

Lowest ID, Mobility 1
Lowest ID, Mobility 2
Lowest ID, Mobility 3
Lowest ID, Mobility 4
MEACA, Mobility 1
MEACA, Mobility 2
MEACA, Mobility 3
MEACA, Mobility 4

Fig. 5. Comparison of the cumulative average cluster head lifetime, 240 nodes.

10 20 30 40 50 60
0

50

100

150

200

250

300

350

Simulation Time (min)

A
ve

ra
ge

 C
lu

st
er

 M
em

be
rs

hi
p

T
im

e
(s

ec
)

Lowest ID, Mobility 1
Lowest ID, Mobility 2
Lowest ID, Mobility 3
Lowest ID, Mobility 4
MEACA, Mobility 1
MEACA, Mobility 2
MEACA, Mobility 3
MEACA, Mobility 4

Fig. 6. Comparison of the cumulative average cluster membership time, 240
nodes.

lowest-ID because it chooses the most stable nodes to be the
cluster heads and reforms a cluster only when the existing cluster
is broken. When a cluster head is selected, it is faithful to its role
until all its member nodes have left it. Thus the cluster head
achieves its maximum possible lifetime. The lowest-ID, on the
contrary, changes a cluster head’s role prematurely when another
cluster head moves in. In both algorithms, we observe that the
cluster head lifetime is shorter with high node mobility than
with low node mobility. In MEACA high node mobility causes
the member nodes to move away from their cluster heads fast,
resulting in short cluster head lifetime. In the lowest-ID high node
mobility increases the chance of two head nodes moving close
and changing the role of one of them, therefore shortening the
cluster head lifetime.

2) Cluster Membership Time: Fig. 6 compares the cumulative
average cluster membership time at 10-minute intervals. Alike to
the cluster head lifetime, MEACA has significantly longer cluster
membership time than the lowest-ID. In the lowest-ID, a member
node is affiliated to its cluster head for 40–80 seconds on average.
In MEACA, the average cluster membership time converges after
30 minutes of the simulation time. The average is 80–200 seconds
at the simulation time of 1 hour. MEACA achieves longer cluster
membership time because it avoids premature cluster head re-
selection. A member node stays with its head node as long as
they are still in touch. The node’s membership duration achieves
the maximum in this way. In the lowest-ID, a member node can
possibly switch between clusters prematurely when a new head
node comes. We observe that node mobility affects a node’s
cluster membership time in a similar manner as in the cluster
head lifetime. The node membership time is shorter with high
node mobility than with low node mobility in both MEACA and

10 20 30 40 50 60

20

40

60

80

100

120

140

Simulation Time (min)

A
ve

ra
ge

 C
lu

st
er

 H
ea

d
Li

fe
tim

e
(s

ec
)

120 Nodes, Mobility 1
120 Nodes, Mobility 2
120 Nodes, Mobility 3
120 Nodes, Mobility 4
240 Nodes, Mobility 1
240 Nodes, Mobility 2
240 Nodes, Mobility 3
240 Nodes, Mobility 4

Fig. 7. Scalability of the lowest-ID algorithm: cluster head lifetime.

10 20 30 40 50 60

40

60

80

100

120

140

160

Simulation Time (min)

A
ve

ra
ge

 C
lu

st
er

 M
em

be
rs

hi
p

T
im

e
(s

ec
)

120 Nodes, Mobility 1
120 Nodes, Mobility 2
120 Nodes, Mobility 3
120 Nodes, Mobility 4
240 Nodes, Mobility 1
240 Nodes, Mobility 2
240 Nodes, Mobility 3
240 Nodes, Mobility 4

Fig. 8. Scalability of the lowest-ID algorithm: cluster membership time.

the lowest-ID algorithms. In MEACA, a node with high mobility
tends to leave its cluster head fast, thus having short membership
time. In the lowest-ID, a member node is likely to meet new
cluster heads of lower IDs in high mobility environment, so its
membership time with the original cluster head is short.

C. Algorithm Scalability

1) Scalability of the Lowest-ID Algorithm: Fig. 7 and Fig. 8
give the simulation results of the average cluster head lifetime
and the average cluster membership time using the lowest-ID
algorithm in different network sizes. The two figures show that
the clusters become less stable as the node population grows.
For example, in the mobility Pattern-4, the average cluster head
lifetime decreases from 78 seconds to 45 seconds when the
node population increases from 120 nodes to 240 nodes, and
the average cluster membership time decreases from 103 seconds
to 82 seconds. The cluster stability degradation is accounted
for by the increase of the premature re-clustering. As the node
population grows, the node density increases, so the chance
increases that a node hears a new cluster head with a lower ID
than its current cluster head and thus re-clusters.

2) Scalability of the MEACA Algorithm: Fig. 9 and Fig. 10
compare the simulation results of the cluster stability using the
MEACA algorithm in different network sizes. They show that the
cluster head lifetime increases slightly when the node population
grows, and the cluster membership time remains almost the same.
The cluster head lifetime increases because the average cluster
size becomes bigger as the node population increases, so it takes
longer time for all the member nodes in a cluster to leave
their head node. However, as the member nodes are independent
from one another, the increase of cluster size does not change

10 20 30 40 50 60
20

40

60

80

100

120

140

160

180

200

220

Simulation Time (min)

A
ve

ra
ge

 C
lu

st
er

 H
ea

d
Li

fe
tim

e
(s

ec
)

120 Nodes, Mobility 1
120 Nodes, Mobility 2
120 Nodes, Mobility 3
120 Nodes, Mobility 4
240 Nodes, Mobility 1
240 Nodes, Mobility 2
240 Nodes, Mobility 3
240 Nodes, Mobility 4

Fig. 9. Scalability of the MEACA algorithm: cluster head lifetime.

10 20 30 40 50 60

100

150

200

250

Simulation Time (min)

A
ve

ra
ge

 C
lu

st
er

 M
em

be
rs

hi
p

T
im

e
(s

ec
)

120 Nodes, Mobility 1
120 Nodes, Mobility 2
120 Nodes, Mobility 3
120 Nodes, Mobility 4
240 Nodes, Mobility 1
240 Nodes, Mobility 2
240 Nodes, Mobility 3
240 Nodes, Mobility 4

Fig. 10. Scalability of the MEACA algorithm: cluster membership time.

each member node’s sojourn time in the cluster, so the cluster
membership time does not change. Compared to the lowest-ID
algorithm, MEACA has better scalability in large-sized networks.

D. Algorithm Optimality

Till now we have demonstrated that the MEACA algorithm
outperforms the lowest-ID algorithm in forming stable clusters.
A further thought on the clustering problem naturally leads to the
question: what is the optimal clustering algorithm? To answer
this question, we must make it clear what desired properties a
clustering algorithm should possess. First, the algorithm should
cluster the network into small number of clusters. In 1-hop
clusters, the increase of cluster size does not increase the intra-
cluster routing complexity, except the demand for more memory
space to manage the cluster membership. The complexity of the
inter-cluster routing, however, is proportional to the total number
of clusters in the network. Therefore, the optimal clustering
algorithm should populate each cluster as much as possible to
minimize the total number of clusters. We note that oversizing
could consume the cluster head’s energy very fast and shorten
the cluster lifetime, so the cluster size maximization should
be understood as being upper bound by the affordable sizes
of the cluster heads. Second, because the cluster stableness is
the basis for providing stable end-to-end communication paths
and enabling good network scalability, the optimal clustering
algorithm should stabilize each cluster. We identify the properties
of the optimal clustering algorithm to be: 1) the algorithm
maximizes the cluster size within the 1-hop cluster radius and the
cluster head’s affordable load limits; 2) the algorithm maximizes
the cluster head lifetime and the cluster membership time.

We note that the cluster size is upper bounded by a limit
determined by the node density such that any clustering algorithm
achieves an average cluster size lower than this upper bound. In
a network of N nodes covering an geographical area of a×a

m2, the node density is N
a2 . For r-meter node communication

range, a cluster head covers an area of at most πr2 m2 and
forms a cluster of at most πr2N

a2 nodes. Because in all the
distributed clustering algorithms no entity has the global view of
all the nodes’ locations, the algorithms cannot guarantee sufficient
spacing of the cluster heads to avoid cluster overlapping in their
geographical coverages. As the result, some clusters achieve the
maximum size but others do not. So the average cluster size
is lower than the upper limit πr2N

a2 . Among all the distributed
clustering algorithms, the lowest-ID has the largest cluster size,
because it maximizes the inter-cluster distance by requiring the
cluster heads to be out of the direct communication range of one
another, which minimizes the cluster overlapping. The MEACA
algorithm also maximizes the inter-cluster spacing when the
clusters are initially constructed, but relaxes the maximum inter-
cluster spacing requirement thereafter to allow the maximum
cluster stability. The simulation resutls show that the average
cluster size of MEACA is slightly smaller than the lowest-ID,
indicating that MEACA is near-optimal in terms of the cluster
size.

On the cluster stability aspect, the MEACA algorithm achieves
the optimal cluster head lifetime and the optimal cluster member-
ship time. The upper limits on the cluster head lifetime and the
cluster membership time are determined by the node mobility
and energy status. A cluster head can continue to be in the
head role only when it remains in contact with its members.
When it has lost the contact due to either mobility or energy
reasons, it is not a cluster head any more. The only exception is
that it cannot find another cluster head to join and has to be a
cluster head to take care of itself. Similarly, a cluster member’s
membership ends naturally when it has lost the contact to its
cluster head. These mobility and energy limits upper bound the
achievable cluster head lifetime and cluster membership time of
any clustering algorithm. MEACA does not change a cluster
unless these limits are reached, so it achieves the longest possible
cluster head lifetime and cluster membership time. The lowest-
ID, in comparison, reforms a cluster before these mobility and
energy limits are reached, so it is less optimal.

V. CONCLUSIONS

In this paper we have studied the clustering problem in ad hoc
networks. The clustering technique is used to manage large-scale
ad hoc networks in an efficient and scalable way. We find that, due
to different design goals, the clustering algorithms presented in
the literature do not construct clusters stable enough to provide
efficient end-to-end communication paths and to achieve good
network scalability. The underlying reason is that they construct
clusters without considering the node mobility and energy status,
which is fundamentally related to the cluster stability. Based on
this understanding, we have proposed the MEACA clustering
algorithm that uses the node mobility and energy information
to stabilize the clusters. Simulation results show that MEACA

achieves longer lifetime of the cluster heads, longer membership
time of the cluster members, and better algorithm scalability than
the generalized lowest-ID algorithm, at the cost of slightly smaller
cluster size. We have also shown that MEACA is an optimal
algorithm in terms of the cluster stability and a near-optimal
algorithm in terms of the cluster size. In the future work, we
will investigate the MEACA algorithm further to evaluate the
benefits of stabilizing clusters in the end-to-end communication
performance, such as the packet throughput and the packet delay.

REFERENCES

[1] C.E. Perkins and P. Bhagwat. “Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers”. In ACM SIG-
COMM Computer Communications Review, volume 24, pages 234–244,
October 1994.

[2] T. Clausen and P. Jacquet. “Optimized Link State Routing Protocol
(OLSR)”. In IETF RFC 3626, October 2003.

[3] C.E. Perkins and E.M. Royer. “Ad-hoc On-Demand Distance Vector
Routing”. In Proc. of IEEE Workshop on Mobile Computing Systems and
Applications, pages 90–100, February 1999.

[4] D.B. Johnson and D.A. Maltz. “Dynamic Source Routing in Ad Hoc
Wireless Networks”. In Mobile Computing, pages 153–181, 1996.

[5] P. Krishna, N.H. Vaidya, M. Chatterjee, and D.K. Pradhan. “A Cluster-
Based Approach for Routing in Dynamic Networks”. ACM Computer
Communication Review, pages 49–64, April 1997.

[6] M. Gerla and J.T-C. Tsai. “Multicluster, Mobile, Multimedia Radio
Network”. Wireless Networks, pages 255–265, 1995.

[7] C.R. Lin and M. Gerla. “Adaptive Clustering for Mobile Wireless Net-
works”. IEEE Journal on Selected Areas in Communications (JSAC),
15(7):1265–1275, September 1997.

[8] S. Basagni. “Distributed Clustering for Ad Hoc Networks”. In Proc. of
ISPAN, International Symposium on Parallel Architectures, Algorithms, and
Networks, pages 310–315, June 1999.

[9] S. Basagni. “Distributed and Mobility-Adaptive Clustering for Multimedia
Support in Multi-Hop Wireless Networks”. In Proc. of VTC, IEEE Vehicular
Technology Conference, pages 889–893, September 1999.

[10] R. Ghosh and S. Basagni. “Limiting the Impact of Mobility on Ad Hoc
Clustering”. In Proc. of the International Workshop on Modeling Analysis
and Simulation of Wireless and Mobile Systems, pages 197–204, October
2005.

[11] B. An and S. Papavassiliou. “A Mobility-Based Clustering Approach to
Support Mobility Management and Multicast Routing in Mobile Ad-Hoc
Wireless Networks”. International Journal of Network Management, pages
387–395, 2001.

[12] M. Chatterjee, S.K. Das, and D. Turgut. “WCA: A Weighted Clustering
Algorithm for Mobile Ad Hoc Networks”. Cluster Computing, volumn 5,
pages 193–204, 2002.

[13] A.B. McDonald and T.F. Znati. “A Mobility-Based Framework for Adaptive
Clustering in Wireless Ad Hoc Networks”. IEEE Jornal on Selected Areas
in Communications, 17(8):1466–1487, August 1999.

[14] O. Younis and S. Fahmy. “HEED: A Hybrid, Energy-Efficient, Distributed
Clustering Approach for Ad Hoc Sensor Networks”. IEEE Transactions on
Mobile Computing, 3(4):366–379, October-December 2004.

[15] C.F. Hsin and M. Liu. “Partial Clustering: Maintaining Connectivity in a
Low Duty-Cycled Dense Wireless Sensor Network”. In Proc. of IPDPS, the
IEEE International Parallel and Distributed Processing Symposium, pages
1–8, 2005.

[16] K. Xu, X. Hong, and M. Gerla. “Landmark Routing in Ad Hoc Networks
with Mobile Backbones”. Journal of Parallel and Distributed Computing,
63(2):110–122, February 2003.

[17] T.C. Hou and T.J. Tsai. “An Access-Based Clustering Protocol for Mul-
tihop Wireless Ad Hoc Networks”. IEEE Journal on Selected Areas in
Communications (JSAC), 19(7):1201–1210, July 2001.

[18] L. Ramachandran, M. Kapoor, A. Sarkar, and A. Aggarwal. “Clustering
Algorithms for Wireless Ad Hoc Networks”. In Proc. of ACM DIALM
Workshop, pages 54–63, 2000.

[19] R. Ramanathan and M. Steenstrup. “Hierarchically-Organized Multihop Mo-
bile Wireless Networks for Quality-of-Service Support”. Mobile Networks
and Applications, pages 101–119, 1998.

[20] The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/.
[21] J. Yoon, M. Liu, and B. Noble. “Random Waypoint Considered Harmful”.

Proc. of IEEE INFOCOM, March 2003.

