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Abstract— Existing random mobility models have their limi-
tations such as speed decay and sharp turn which have been
demonstrated by the previous studies. More importantly, mobility
models need to mimic the movements that abide by the physical
law for accurate analysis and simulations of mobile networks.
Therefore, in this paper, we propose a novel mobility model, Semi-
Markov Smooth (SMS) model. Each SMS movement includes
three consecutive phases: Speed Up phase, Middle Smooth phase,
and Slow Down phase. Thus, the entire motion in the SMS
model is smooth and consistent with the moving behaviors in
real environment. Through steady state analysis, we demonstrate
that SMS model has no average speed decay problem and always
maintains a uniform spatial node distribution. The analytical
results are validated by extensive simulation experiments. In
addition, we compare the simulation results on link lifetime and
percentage of node degree with Random Waypoint model, Gauss-
Markov model and the proposed SMS model.

I. INTRODUCTION

The study and performance evaluation on a mobile ad hoc
network (MANET) is very sensitive to node mobility. How-
ever, the lack of mobility trace files from real-life applications
becomes a main hurdle for characterizing realistic mobility
patterns. Hence, on the purpose of accurately modeling node
mobility, it is necessary to use synthetic mobility models to
describe the moving behaviors of mobile nodes, especially
for performance evaluation and research study on a large
scale network before its commercial deployment. Therefore,
mobility modeling plays an important role in many research
areas such as routing protocol design, path duration analysis
and network mobility management.

However, several comparative studies of mobility models (
[1] and [2]) have shown that all existing mobility models have
their limitations in different MANET operation scenarios, such
as non-smooth moving behaviors in random mobility models
and non-stopping problem in Gauss-Markov model [3]. Hence,
how to effectively mimic moving behaviors of ad hoc nodes
in a real environment is a challenging issue. Our goal is to
design a mobility model which integrates a variety of nice
properties of existing mobility models and is flexible to mimic
the realistic network scenarios. To achieve our objective, the
following requirements must be fulfilled in this new model.

• A mobility model should be a temporal mobility model,
in which a node’s current moving behavior is dependent

on its moving history [1], to avoid the abrupt moving
behaviors, such as sudden speed change and sharp turn.

• A mobility model should generate stable nodal move-
ments [4] and maintain a uniform nodal distribution
convenient for both theoretical parameter analysis [5], [6],
[7] and simulation study [2] in a mobile wireless system.

• A sound mobility model need to mimic the movements
that follow the physical law of real-life moving objects
for correct analysis and simulations of mobile networks.

• A mobility model should be able to describe mi-
croscopic moving behaviors, such as speed accelera-
tion/deceleration and direction change, and can be flexi-
bly controlled for different network scenarios.

Based on these requirements, we propose a new temporal
mobility model: Semi-Markov Smooth (SMS) model, in which
microscopic moving behaviors based on the physical law of
real-life mobile users are described. Each SMS movement
is quantized into K equidistant time steps, where K ∈ Z.
The time interval between two consecutive steps within one
movement is denoted as ∆t, in the order of seconds. Later in
this paper, we will show that the proposed SMS model has a
variety of nice properties of existing mobility models, and is
flexible to mimic a wide range of network scenarios.

The remainder of the paper is organized as follows: Section
II briefly discusses the related work of mobility models.
Section III describes the mobility pattern of the proposed SMS
model. Section IV proves that SMS model has no average
speed decay problem. Section V shows that SMS model
maintains uniform node distribution. Section VI validates the
theoretical analysis of SMS model by simulation results and
further compares the simulation results on link lifetime and
percentage of node degree with the RWP, GM, and SMS
models. Finally, our conclusions are described in Section VII.

II. RELATED WORK

Random mobility models includes Random Waypoint (RWP)
model [8], random direction (RD) model [9], and their variants
[1]. Because nodal movements in random mobility models
are total randomness, the unrealistic moving behaviors are
invoked and could cause invalidate or wrong conclusions
on the network evaluations [10]. Moreover, random mobility
models are insufficient to mimic the minute moving behaviors



of mobile users, such as speed acceleration and direction
change within each movement. While temporal mobility mod-
els, such as Smooth Random (SR) model [10] and Gauss-
Markov (GM) model [3], can provide smooth movements by
avoiding the abrupt behaviors. In the SR model, a node moves
at a constant speed along a specific direction until either a
speed or direction change event occurs based on indpendent
Poisson process. Hence, the movement duration of SR nodes
cannot be controlled. In the GM model, the velocity of a
mobile node at any time slot is a function of its previous
velocity with a Gaussian random variable. While, GM nodes
cannot stop and can hardly travel along a straight line [2].

III. SEMI-MARKOV SMOOTH MODEL

Based on the physical law of a smooth motion, a movement
in the SMS model contains three consecutive moving phase:
Speed Up phase, Middle Smooth phase, and Slow Down phase,
respectively. After each movement, a mobile node may stay
for a random pause time.

A. Speed Up Phase (α–Phase)

For every movement, an object needs to accelerate its speed
before reaching a stable speed. During time interval [t0, tα] =
[t0, t0 + α∆t], an SMS node travels with α time steps. At
initial time t0, the node randomly selects a target speed vα ∈
[vmin, vmax], a target direction φα ∈ [0, 2π], and the total
number of time steps α ∈ [αmin, αmax]. These three random
variables are independently uniformly distributed. In reality,
an object typically accelerates the speed along a straight line.
Thus, the direction φα does not change during this phase. To
avoid sudden speed change, the node will evenly accelerate
its speed along direction φα from starting speed v(t0) = 0,
to the target speed vα, which is the ending speed of α–phase,
i.e., v(tα) = vα. An example of speed change in α–phase is
shown in Fig. 1, where the node speed increases evenly step
by step and reaches the stable speed vα of the movement by
the end of this speed up (α–phase).
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Fig. 1. An example of speed vs. time in one SMS movement.

B. Middle Smooth Phase (β–Phase)

In reality, after the speed acceleration, a moving object
should have a smooth motion according to its stable velocity.
Correspondingly, once the node transits into β–phase at time
tα, it randomly selects β time steps to determine the middle
smooth (β–phase) duration interval: (tα, tβ ] = (tα, tα +β∆t].
Where β is uniformly distributed over [βmin, βmax]. Within
β–phase, the mobility pattern at each time step is similar to
what is defined in Gauss Markov (GM) model [3]. In detail,
the initial value of speed v0 and direction φ0 in β–phase are vα

and φα, respectively. Then, the following speed and direction
of an SMS node at each time step fluctuate with respect to
vα and φα. Hence, we respectively substitute vα for V and
φα for φ, where V and φ denote the asymptotic mean value
of speed and direction, represented in equation (4) in [3]. We
assume that the memory level parameter ζ ∈ [0, 1], used for
adjusting the temporal correlation of node velocity, is constant
for both speed and direction at each time step. Hence, by
adjusting the parameter ζ, we can easily control the degree
of temporal correlation of velocity between two consecutive
steps. The standard deviation σv and σφ are set as 1. This
implies that the speed or direction difference between two
consecutive time steps are less than 1 m/s or 1 rad within
β–phase. Specifically, the speed and direction at the jth time
step for an SMS node in β–phase are:

vj = ζvj−1 + (1 − ζ)vα +
√

1 − ζ2Ṽj−1

= ζjv0 + (1 − ζj)vα +
√

1 − ζ2

j−1∑

m=0

ζj−m−1Ṽm

= vα +
√

1 − ζ2

j−1∑

m=0

ζj−m−1Ṽm, (1)

and

φj = ζφj−1 + (1 − ζ)φα +
√

1 − ζ2φ̃j−1

= φα +
√

1 − ζ2

j−1∑

m=0

ζj−m−1φ̃m, (2)

where Ṽj and φ̃j are two Gaussian random variables with zero
mean and unit variance. As shown in Fig. 1, the node speed
gently fluctuates around the target speed vα within β–phase.

C. Slow Down Phase (γ–Phase)

In real-life, every moving object needs to reduce its speed
to zero before a full stop. In order to avoid the sudden stop
event happening in the SMS model, we consider that the SMS
node experiences a slow down phase to end one movement.
In detail, once the node transits into slow down (γ–phase), at
time tβ , it randomly selects γ time steps and a direction φγ ∈
[0, 2π]. Where γ is uniformly distributed over [γmin, γmax]. In
γ–phase, the node evenly decelerates its speed from vβ , the
ending speed of β–phase, to vγ = 0 during γ time steps. Fig.
1 shows the exact case of speed change in γ–phase. Also in
reality, a moving object typically decelerates the speed along
a straight line before a full stop. Thus, the direction φγ does
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not change during the γ–phase. Furthermore, in order to avoid
the sharp turn event happening during the phase transition,
φγ and φβ are correlated. Specifically, φγ is obtained from
(2), by substituting β for j − 1. At the phase ending time
tγ = tβ + γ∆t, the node fully stops and finishes the current
movement which lasts over time interval [t0, tγ ].

D. Semi-Markov Process of SMS Model

We consider pause as another phase, then the stochastic
process of SMS model is described as an iterative four-state
transition process. Let I denote the set of phases in an SMS
movement, then I(t) denotes the phase of SMS process at time
t, where I = {Iα, Iβ , Iγ , Ip}. Accordingly, {Z(t); t ≥ 0}
denotes the process which makes transitions among phases
in the stochastic modeling of SMS movements. Since the
transition time between consecutive moving phases (states),
i.e., phase duration time, has discrete uniform distribution,
instead of an exponential distribution, {Z(t)} is a semi-
Markov process [11]. This is the very reason that our mobility
model is called Semi-Markov Smooth model because it has an
Semi-Markov process and it complies with the physical law
with smooth movement. Let π = (πα, πβ , πγ , πp) denote the
time stationary distribution of SMS process. Then, the time
stationary distribution for each phase of SMS model is:

πm = lim
t→∞

Prob{I(t) = Im ∈ I} =
E{Tm}

E{T}+ E{Tp}
, (3)

where E{Tm} is the expected duration time of m–phase in
an SMS movement. E{T} and E{Tp} are the expected SMS
movement period and pause period, respectively. Specifically,
E{T} = E{α∆t} + E{β∆t} + E{γ∆t}. Since ∆t is a
constant unit time, for the sake of simplicity, ∆t is normalized
to 1 second in the rest of the paper.

IV. AVERAGE STEADY-STATE SPEED IN SMS MODEL

To generate stable nodal movements, a sound mobility
model should select the speed independently from travel times
[4], which is exactly what occurs in SMS model. Here, we
evaluate the stochastic property of steady-state speed in SMS
model and verify that SMS model can eliminate speed decay
problem and achieve stable nodal movements. In order to find
out whether there exists the speed decay phenomenon in SMS
model, it is necessary to obtain both initial average speed
E{vini} and average steady-state speed E{vss}.

According to the initial stage, each node starts from an
SMS phase with a certain state probability based on the time
stationary distribution of the SMS process. The average speed
in each moving phase of an SMS movement is obtained as:
EIα

{v} = EIγ
{v} = 1

2EIβ
{v} = 1

2E{vα}. Hence, from (3),
the average initial speed of the SMS model is derived as:

E{vini} = EIα{V }πα + EIβ
{V }πβ + EIγ{V }πγ + 0 · πp

=
1
2
E{vα}(E{α} + 2E{β} + E{γ})

E{T} + E{Tp}
. (4)

The CDF of steady-state speed Pr{Vss ≤ v} can be derived
from the limiting fraction of time when step speeds of a node

are less than v, as the simulation time t approaches to infinity.
Let M(t) and Mp(t) denote the total number of time steps
that a node travels and pauses during [0, t], respectively. Thus,
Pr{Vss ≤ v} is derived as:

Pr{Vss ≤ v} = lim
t→∞

∑M(t)
n=1 1{vn≤v} +

∑Mp(t)
n=1 1{vn≤v}

M(t) + Mp(t)
, (5)

where 1{·} is the indicator function. Thus, if the event that
{vn ≤ v} is true, then 1{vn≤v} = 1, otherwise 1{vn≤v} = 0.
By differentiating the CDF of steady-state speed Vss from (5)
with respect to v, we find that the pdf of Vss consists of four
distinct components with respect to each SMS phase:

fVss (v) = f
Iα
Vss

(v) + f
Iβ

Vss
(v) + f

Iγ

Vss
(v) + f

Ip

Vss
(v), (6)

Due to space constraints, we only provide the theoretical
expressions here and omit the details of derivation represented
in [12]. Assume that the range of duration time for each
SMS moving phase is equal and set as [b, c]. Then the four
components of fvss

(v) are obtained as:

fVss
(v) =





1
c−b+1

Pc
m=b

Pm
j=1

m
j

fVα ( vm
j

)

E{T}+E{Tp}
v of Iα

1
c−b+1

Pc
m=b

Pm
j=1

fVIβ ,j
(v)

E{T}+E{Tp}
v of Iβ

1
c−b+1

Pc
m=b

Pm
j=1

m
m−j

fVβ
( vm

m−j
)

E{T}+E{Tp}
v of Iγ

E{Tp}δ(v)
E{T}+E{Tp}

v of Ip,

(7)
Correspondingly, the expectation of steady-state speed

E{vss} is also composed of four components:

Eu{vss} =






1
2
E{vα}(1+E{α})

E{T}+E{Tp}
u ∈ Iα

E{vα}E{β}
E{T}+E{Tp}

u ∈ Iβ
1
2
E{vα}(E{γ}−1)

E{T}+E{Tp}
u ∈ Iγ

0 u ∈ Ip.

(8)

Given (8), the average steady-state speed E{vss} of the SMS
model is obtained by:

E{vss} = EIα{vss} + EIβ
{vss} + EIγ{vss} + EIp{vss}

=
1
2
E{vα}(E{α} + 2E{β} + E{γ})

E{T} + E{Tp}
. (9)

By comparing (4) with (9), we can see that the average initial
speed is exactly same as average steady-state speed in SMS
model, i.e., E{vini} = E{vss}. Therefore, we proved that
SMS model does not have speed decay problem.

V. UNIFORM NODE DISTRIBUTION IN SMS MODEL

Since an SMS node selects direction, speed and phase time
independently, SMS model can be considered as an enhanced
random direction (RD) model with memorial and microscopic
property on step speed and direction. RD model was proven
to maintain uniform node distribution in [7]. Here, we want to
prove that SMS model also yields uniform node distribution.

We evenly distribute all mobile nodes in the simulation
region at the initial time. For a simple representation, we
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normalize the size of the simulation region to [0, 1)2. (Xj , Yj),
vj , and φj denote the ending position, speed and direction in
a node’s jth step of its first movement, respectively. When
an SMS node reaches a boundary of the simulation region, it
wraps around and reappears instantaneously at the opposite
boundary in the same direction to avoid biased simulation
results. Under this condition of border wrap, we have the
following Lemma:

Lemma 1: In SMS model, if the initial position P(0) and
the first target direction φα of a mobile node are chosen
independently and uniformly distributed on [0, 1)2 × [0, 2π)
at time t = 0, then the location and direction of the node
remain uniformly distributed all the time.

Given that the initial position (X0, Y0) and φα of a node
have independently uniform distribution, the joint probability
of ending position and direction of the node’s first step
movement is:

Pr(X1 < x1, Y1 < y1, φ1 < θ)

= Pr(X1 < x1|φ1 < θ) · Pr(Y1 < y1|φ1 < θ) · Pr(φ1 < θ)

=
1

2π

Z θ

φ1=0

“

Z 1

x0=0

1{x0+v1 cos(φ1)−bx0+v1 cos(φ1)c<x1}dx0 ·

Z 1

y0=0

1{y0+v1 sin(φ1)−by0+v1 sin(φ1)c<y1}dy0

”

dφ1

=
x1y1θ

2π
. (10)

The result in (10) shows that (X1, Y1) and φ1 are uniformly
distributed on [0, 1)2 × [0, 2π). Following the same methodol-
ogy, by induction on each following step, Lemma 1 is proved.
The detailed proof is described in [12].

VI. SIMULATION RESULTS AND MODEL COMPARISONS

In this section, we verify the above theoretical analysis of
SMS model in Section IV and V by simulations and compare
the results with RWP and GM models.

A. Simulation Setup

We integrate our SMS model into the setdest of ns-2 simu-
lator, which currently provides both an original and a modified
version of RWP model. In order to compare simulation results
between RWP and SMS model, 1000 mobile nodes move in an
area of 1401m×1401m during a time period of 1500 seconds.
For a better demonstration, we simulated both the SMS model
and the original RWP model with zero pause time. Both GM
and SMS model set the time slot ∆t as 1 second and the
memory parameter ζ as 0.5, respectively. In SMS model, we
consider the range of each moving phase duration time as
[6, 30] seconds.

Note, as the speed and direction in each step of β-phase are
affected by a Gaussian random variable, there exists a non-
zero probability that speed or the direction may have a very
large value in some step. To avoid this unwanted event, we
set a threshold vmax for the speed and a threshold π/2 for the
direction change between two consecutive steps, respectively.
If the new calculated value of speed/direction is larger than
the threshold, we reselect that value.

B. Average Speed

Here, we are interested in comparing the average speed
between SMS model and RWP model and validate our an-
alytical proof shown in Section IV. To obtain the average
node speed, we first calculate the average speed of each node
within every 10 seconds, and then calculate the average speed
among all the nodes. The corresponding numerical results of
average speed vs. a time period of 1500 seconds are shown in
Fig. 2. Given the simulation condition of zero pause time and
E{α} = E{β} = E{γ}, from (9), the theoretical result of
E{vss} of SMS model is obtained as: E{vss} = 2

3E{vα} =
6.7 m/sec. From Fig. 2, we observe that the average speed
of the SMS model is stable from the beginning of simulation
at the value around 6.7 m/sec, which perfectly matches the
theoretical result. Therefore, the simulation results validate our
analytical conclusion that the average speed of SMS model
does not decay over time. Whereas, the average speed of RWP
model keeps on decreasing as the simulation time progresses,
which is its well-known average speed decay problem [13].
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Fig. 2. Average speed vs. simulation time.

C. Spatial Node Distribution

To verify Lemma 1 proved in Section V, we distribute
nodes uniformly in the simulation region at the initial time.
Then, we sample the node position at the 500th second for
SMS model, and the 1000th second for both RWP and SMS
models. A top view of two-dimensional spatial node position
of RWP and SMS models are shown in Fig. 3. The results
of RWP model in Fig. 3(a) show that the node density is the
maximum at the center of the region, while it is almost zero
near the network boundary, which agrees with the previous
study [14]. In contrast, in Figs. 3(b) and 3(c), the two node
density samples of the SMS model at different time instants
are similar and mobile nodes are evenly distributed in the
simulation region. Since these two time instants are arbitrarily
selected, we verified our proof that the SMS model with border
wrap maintains uniform spatial node distribution over time.

D. Comparison

Here, we compare the simulation results of link lifetime
distribution and average node degree among the RWP, GM and
SMS models in Fig. 4. From Fig. 4(a), the probability mass
function (PMF) of link lifetime of both SMS model and GM
model decreases exponentially with time. In contrast, there is
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(b) SMS 2-dimensional at the 500
th sec.
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Fig. 3. Top-View of node distribution of the RWP model at the 1000
th

sec and the SMS model at the 500
th and the 1000

th sec, respectively.
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Fig. 4. Link lifetime distribution and average node degree comparison among
RWP, GM and SMS model.

a peak at the 25th second of link lifetime distribution in RWP
model. Hence, it turns out that mobility models with macro-
scopic mobility pattern would have different link and path
properties from those of mobility models with microscopic
pattern, such as the GM and SMS models. Therefore, SMS
model is more accurate for the simulation on link lifetime in
MANET than other models.

Due to different spatial node distribution, mobility models
with same node density (σ) would yield different average node
degree during the simulation. To compare the model effect
on the average node degree, 50 nodes are simulated for all
the three models. Where the transmission range R for every
node is equal and set as R = 250m, such that node density
of each model is σ = 5/(πR2). It implies that on average
each node would have 4 neighbors. Fig. 4(b) illustrates the
percentage of nodes whose node degree is no less than 4
during the simulation among three models. We find that the
result obtained in RWP model is apparently larger than that in
GM and SMS model. This is because the majority of nodes
move into the center region in RWP model as the simulation
time proceeds. That means the network connectivity evaluation
based on RWP model could be over optimistic. Therefore,
SMS model with uniform node distribution is preferable for
network connectivity study in MANET.

VII. CONCLUSIONS

In this paper, we proposed a novel semi-Markov smooth
mobility model. This model combines a variety of nice

properties of existing ones, including stable node speed in
sound mobility model, uniform node distribution in RD
model, evenly speed acceleration/deceleration in SR model
and temporal correlation of velocity in GM model. There-
fore, SMS model is appropriate and flexible to mimic
widespread realistic moving behaviors. Moreover, SMS model
can be easily implemented in simulation tools such as ns-
2. The ns-2 code of our SMS model is available at http :
//www4.ncsu.edu/˜mzhao2/research. Our future work is
to adapt the current SMS model to geographical constraints
and support group mobility for different networking scenarios.
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