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Abstract—To understand how node mobility and Byzantine
node failures affect connectivity of wireless multi-hop networks,
this paper investigates resilience of geometric random graphs to
lifetime-based node failure and derives the expected connection
time before an end-user is isolated from the graph. Different
from previous analytical studies, which mainly focused on the so
called critical transmission range, our study sheds light on the
resilience analysis from the perspective of end-user’s connection
experiences. In the paper, we first introduce a simple but general
node behavior model by a semi-Markov process. Then we apply
the theory of renewal process to the degree of a generic node and
analyze the stochastic property of node connection time. At last,
we provide the probability that the node isolation event occurs
within any end-user’s lifetime and a close-form approximation
of the network resilience. Our analysis and numeric simulation
results indicate that networks with heavy-tailed lifetime (such as
Weibull) distributions provides no improvement than those with
light-tailed (e.g., Exponential) distributions in terms of longer
expected connection lifetime for any end-user. Further, node
mobility has more significant impact than lifetime does.

I. INTRODUCTION

Resilience of wireless multi-hop networks has attracted
significant attention in research literature [1], [2], [3]. A
classical problem in this line of study is to understand the
connectivity of networks under random failures [4], [5] and
node misbehaviors [6], [7]. To this end, many existing works
assume independent node behaviors and random link or node
failures and begin with an investigation into node isolations.
For example, in [4], the connection resilience of ad hoc
networks, with regard to random node failures, was analyzed
as a fault tolerance measure. In [6], the problem of node
isolation due to misbehaving neighbors was first studied,
then the connectivity of entire network was approximated by
using the probability of individual node isolation. These works
all provide stochastic relationship between network resilience
and a variety of impacts, such as node distribution, system
size, connectivity requirement, and node failure probability;
however, few works consider networking service availability
from the perspective of end-users.

This work is motivated by considering the intrinsic be-
havior of end-users in wireless multi-hop networks. In these
networks, especially mobile ad hoc networks, end-users (or
nodes) may enter or depart networks at any time and any
location; meanwhile, failures develop due to various reasons,
such as node mobility, power depletion, or just voluntary user
decision to leave. Thus, for each end-user, he/she may be more

interested in whether he/she will encounter isolation events,
i.e., the case of no active neighbors, during his/her lifetime in a
network. In other words, after a node enters a network, as long
as the node can enjoy a stable connection during its lifetime,
the networking service provided by the network is “resilient”
for this node. Therefore, we are interested to investigate: What
is the expected connection time before a node is isolated; what
is the probability that a node outlives all of its neighbors; what
is the resilience of a network in terms of the satisfaction of
end-users to their connection experience?

To cope with the questions raised above, we start our
investigation with a simple but generic node behavior model
in which a node transits its behavior between active and failed
associated with arbitrary distributed transition times. Then we
use renewal process to model the number of active neighbors
of a node at any time and derive the expected connection time
before a node is isolated. Next, we use the probability of a
node outliving all its neighbors as the cornerstone to provide
an approximation of the resilience of the entire network.
Here “resilience” generally refers the probability of a network
having no node isolation; while it also refers to the ability
of an arriving user to stay connected to the rest of graph in
this paper. Note that a similar methodology was used in [8]
to address the resilience for peer-to-peer networks; however,
contrary results are obtained for wireless multi-hop networks
in this work. Specifically, numeric simulation results show
that heavy-tailed lifetime distribution actually does not provide
improvement compared with exponential lifetime distribution,
and the node mobility has more significant impact on the
expected connection time.

The rest of the paper is organized as follows: Section II
introduces our node behavior model and the assumptions used;
Section III derives the expected connection time of a generic
node; Section IV provides the close-form approximation of
network resilience; followed by future works and conclusions
in Section V.

II. MODELS AND ASSUMPTIONS

In this section, we introduce our node behavior model and
explain the assumptions used later in the paper. First, we
model a wireless multi-hop network by a Geometric Random
Graph [9], in which N nodes are independently and uniformly
distributed in a metric space, and a link exists between two
nodes if and only if their distance is less than a predefined
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transmission radius. Nevertheless, we do not confine the sys-
tem size N fixed during the whole network lifetime; instead,
we allow it to vary with time according to any arrival/departure
process as long as N stays sufficiently large. Note that in this
paper, we assume that networks are well-connected and nodes
moves independently with similar statistic properties.

To describe an individual end-user’s behavior, we adopt the
node behavior model proposed in [6] but simplify it to a two-
state semi-Markov process in order to keep our derivations
tractable. For each node in the network, it behaves either in
a cooperative (C) state or in a failed (F) state. A node is
considered to be cooperative if it works properly and obeys all
routing and forwarding rules; otherwise, it is said to be failed.
Most possible reasons for a node to become failed may include
but not limited to: moving out of a network, depleting all its
power, malfunctioning unexpectedly, or turning down due to
voluntary end-user’s decision. Meanwhile, we also allow node
to recover from the failed state again into the cooperative state,
by moving back in the network field, recharging/replacing
batteries or just a restarting. Notice that the transition time Tij

(i, j ∈ {C,F}) between states may be distributed arbitrarily, a
semi-Markov process is quite appropriate to describe the node
behavior aforementioned. The state diagram is depicted in Fig.
1, where pij (i, j ∈ {C,F}) are the transition probabilities,
and Fij(t) are the cumulative distribution functions (CDF) of
the corresponding transition times.

C F
pcf, Fcf(t)

pfc, Ffc(t)

Fig. 1. A semi-Markov node behavior model.

Note that in our model, it can be easily proved that pcf =
pfc = 1, Tcf = Tc (the sojourn time in state C), and Tfc =
Tf (the sojourn time in state F ). In the following context,
we call Tc and Tf as a node’s Lifetime and Recovery-time,
respectively. Although we allow end-user’s lifetime distributed
arbitrarily from heavy-tailed (such as Weibull) to Exponential,
we require certain stationarity of lifetime Tc. This means that
users joining the network at different times should have their
lifetimes drawn from the same distribution FTc

(x).
It is worth pointing out that the lifetime of a node u is an

absolute concept, that is, no matter where node u is or goes
to, as long as it is in the network and provides cooperative
networking services for other nodes, it is said to be alive.
However, from the perspective of any generic node u, even
if a neighbor, say v, keeps alive in the cooperative state,
node v will be treated as a failure when it moves out of u’s
transmission range. Thus, node u’s connection time is not only
related with each neighbor’s lifetime Tc but also related with
the link-time between u and v. In this paper, we define the link-
time between a pair of node u and v as the maximum time
that u and v are in each other’s transmission ranges, which is
similar to the definition presented in [10]. For a generic node
u, we denote its link-time with its neighbor i by LT {u}

i and
may omit {u} if it is explicit in the context.

III. EXPECTED CONNECTION TIME ANALYSIS

In this section, we address the first question prompted
in Section I, that is: what is the expected connection time,
denoted by TC, of a node before it is isolated by its neighbors.

A. Definition of Connection Time

To derive the expectation value of TC, denoted by E[TC],
for a generic node u, we consider the following simple
scenario without losing generality. We assume that a node u
arrives the network at time t = t0 and it has d0 cooperative
neighbors initially. As time goes, some neighbors of u may
still be cooperative (or may be recovered back to cooperative
state from a previous failure) while others may be failed (or
have moved out of u’s transmission range); in addition, it is
possible for u to have some new neighbors (due to arrivals
in u’s transmission range). Nevertheless, it is reasonable to
confine the maximum number of neighbors (both cooperative
and failed) to a number d. Thus, at any time t > 0, neighbor
i (1 ≤ i ≤ d) can be considered to be on if it is cooperative
or to be off if it is failed. In other words, the neighbor
failure/recovery procedure can be represented by an on/off
process Xi(t):

Xi(t) =
{

1, neighbor i is cooperative at t
0, neighbor i is failed at t.

We illustrate the evolution of d neighbor on/off processes
X1(t), · · · ,Xd(t) in Fig. 2.

X1(t)

X2(t)

Xd−1(t)

Xd(t)

on off

t0 t1 t2

Tc Tf

RR′

TCTC TI

· · ·

Fig. 2. The illustration of neighbor on/off processes.

By using the notation in (1), the number of cooperative
neighbors of node u, called as u’s cooperative degree (different
from the traditional node degree) at time t is a random process,
denoted by Y (t), and it is equal to:

Y (t) =
d∑

i=1

Xi(t). (1)

Similar to the definition in [6], a node is isolated at such time
t1 (t1 > t0) when all of its neighbors are in the failed state
(see Fig. 2). Thus, we can formally define the connection time
TC as follows

Definition 1: For a generic node u arriving at time t0, u’s
connection time TC{u} is defined as the first hitting time to
0 of u’s degree Y (t), i.e.,

TC{u} = inf(t > t0 : Y (t) = 0|Y (t0) = d0), (2)
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where d0 is the initial degree of node u at time t0.
In the later context, without losing generality, we set t0 = 0
and d0 = d to make our derivation tractable and omit {u} in
TC{u} for clarity.

B. Derivation of Expected Connection Time

We derive the expected connection time and use a similar
method that was provided in [8]. Consider that Y (t) (defined
in (1)) can be viewed as an alternating renewal process [11],
in which each on stage corresponding to Y (t) > 0 and
each off stage to Y (t) = 0. The evolution of the alternating
renewal process Y (t) is illustrated in Fig. 3, in which TC{j}

(connection time) is the duration of the j-th on stage and TI{j}

(called isolation time) is that of the j-th off stage.

Y (t) onon off

TC{1} TC{2}TI{1}
t

Fig. 3. The illustration of the alternating renewal process Y (t).

To determine the expectation value of the first on stage
duration, i.e., E[TC{1}], we first argue that TC{1} has the
same distribution as all remaining connection times TC{j}

(j ≥ 2). It is obvious that TC{1} is different from the other
TC{j} in that the stage starts from Y (t) = d0 (1 ≤ d0 ≤ d)
while other stages start from Y (t) = 1. Nevertheless, when
a node arrives the network, it still needs a period of time to
“discover” its cooperative neighbors through some neighbor
discovery mechanisms, such as directional antenna [12] and
HELLO message [13]. Although the time for neighbor dis-
covery may be quite short, compared with the connection time,
it is still reasonable to view the stage of TC{1} starting from
Y (t) = 1. Thus, we have TC{1} and other TC{j} (j > 1) the
same distribution asymptotically. By applying the steady state
distribution to Y (t) (Corollary in [11], p.p. 297), we have the
probability of Y (t) > 0 at any time t as follows:

lim
t→∞P (Y (t) > 0) ≈ E[TC]

E[TC] +E[TI]
. (3)

Notice that the probability above can also be expressed as
the probability that at least one cooperative neighbor is still
alive, i.e.,

lim
t→∞P (Y (t) > 0) = 1 − pd

f , (4)

where pf is the probability of node u finding a neighbor in
the failed state. Note that this probability is different from
the limiting probability of any node being failed (refer to
[6]). To explain this discrepancy, we consider that when node
u arrives the network at time t0, one of its cooperative
neighbors, say node i (1 ≤ i ≤ d), has being cooperative
in the network for some time. We suppose that u outlives i,
then the connection time between u and i (before the first
disconnection) is dependent on the minimum between the

residual lifetime of i and link-time between u and i (i.e.,
LT

{u}
i ). Let RLi denote the residual lifetime of neighbor i,

Ton denote the duration of the process Xi(t) being in the
on state, then Ton = min{RLi, LTi}. Similarly, we can also
view Xi(t) as an alternating renewal process, then we have
pf expressed by

pf = lim
t→∞P (X(t) = 1) ≈ E[Tf ]

E[Ton] + E[Tf ]
, (5)

where E[Ton] and E[Tf ] are the expected time connecting to
any neighbor and expected recovery-time, respectively. Then
by substituting (5) into (4), and equating (4) and (3), E[TC]
is solved as:

E[TC] ≈ E[TI] ·
((

1 +
E[Ton]
E[Tf ]

)d

− 1
)
. (6)

Next, we derive E[Ton]. Let FRL(t) and FLT (t) be the
distributions of i’s residual lifetime RLi and link-time LTi,
respectively, then E[Ton] is:

E[Ton] =
∫ ∞

0

(1 − FRL(t))(1 − FLT (t))dt. (7)

We can further represent the CDF of the residual lifetime
FRL(t) as follows, by applying basic renewal process theory
(Theorem-6.12 [11] p.p. 285):

FRL(t) = P (RLi < t) =
1

E[Tc]

∫ t

0

(
1 − FTc

(x)
)
dx, (8)

where E[Tc] is just the expected lifetime. By substituting (8)
into (7), we obtain E[Ton] as a function of E[Tc], FTc

(t), and
FLT (t):

E[Ton] =
∫ ∞

0

(1−FLT (t))
(
1−

∫ t

0
(1 − FTc

(x))dx
E[Tc]

)
dt. (9)

Next, we derive E[TI]. Let the first instant of the stage
of Y (t) = 0 starts at time t1, as shown in Fig. 2, we
know that there are d − 1 already-failed neighbors being
in recovery and one neighbor just failed at time t1. Thus,
TI is the minimum time for the last neighbor to recover
or for any one of the ongoing recoveries to finish. Let
RRi (1 ≤ i ≤ d − 1) denote the Residual Recovery-
time of any already-failed neighbor i, then TI can be ex-
pressed as TI = min{RR1, RR2, · · · , RRd−1, Tf}. Further,
if let RR′ = min{RR1, RR2, · · · , RRd−1}, then TI =
min{RR′, Tf} (refer to Fig. 2). Let FRR′(t) and FTf

(t) be
the distributions of RR′ and Tf , respectively, then E[TI] is:

E[TI] =
∫ ∞

0

(1 − FTf
(t))(1 − FRR′(t))dt. (10)

We can further express FRR′(t) by

FRR′(t) = P (RR′ < t) = 1 − (1 − P (RRi < t))d−1

= 1 −
(
1 −

∫ t

0
(1 − FTf

(x))dx
E[Tf ]

)d−1

, (11)
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where E[Tf ] is the expected recovery-time. By substituting
(11) into (10), we have

E[TI] =
∫ E[Tf ]

0

(
1 − z

E[Tf ]

)d−1

dz =
E[Tf ]
d

, (12)

where z =
∫ t

0
(1 − FTf

(x))dx.
Finally, we obtain the following result.
Theorem 1: In a wireless multi-hop network modeled by

the geometric random graph (defined in Section II), the
expected connection time of any generic node is:

E[TC] ≈ E[Tf ]
d

·
((

1 +
E[Ton]
E[Tf ]

)d

− 1
)
, (13)

where E[Ton] is given by (9).
Next, we will use numerical simulations to reveal the

impacts of node mobility and node lifetime distribution on
the expected connection time.

C. Numerical Simulation Results

From (13), we know that the expected connection time
is related with the link-time distribution FLT (t), node life-
time distribution FTc

(t), expected lifetime E[Tc], expected
recovery-time E[Tf ], and average node degree d. We will
demonstrate the impacts of these parameters on E[TC].

In our numerical simulations, we use exponential function
for FLT (t), i.e., FLT (t) = 1−e−λt, where 1/λ is the expected
link-time. For FTc

(t), we use exponential function first, i.e.,
FTc

(t) = 1 − e−µt, where E[Tc] = 1/µ. In addition, we also
use a two-parameter Weibull function to model FTc

(t), i.e.,
FTc

(t) = 1 − e−(t/β)α

with E[Tc] = β · Γ(1 + 1/α) where
Γ(·) is the Gamma function. Based on the settings above, we
have E[TC] simplified immediately to the following special
case for exponential link-time and lifetime:

E[TC] ≈ E[Tf ]
d

·
((

1 +
1

E[Tf ](λ+ µ)

)d

− 1
)
, (14)

where λ and µ are as mentioned above.
In Fig. 4(a), we show the impact of the expected link-time,

ranging from 10s to 100s, on the expected connection time
E[TC]. It is clear that E[TC] increases dramatically when
the expected link-time increases. Further, by increasing the
expected lifetime E[Tc] from 300s to 1200s, it is shown that
E[TC] can be increased correspondingly; however, when the
expected link-time is small (< 50s), the increase is trivial.
This indicates that node mobility impacts E[TC] more than
node lifetime and becomes a dominant factor especially when
link-times are short. Fig. 4(b) shows the same results but in
the log-log scale to show the linearity.

In Fig. 5(a) and 5(b), we show the positive impact of E[Tc]
on E[TC] and the negative impact of E[Tf ] on E[TC]. It is
intuitively shown that the slower neighbors recover from the
failed state, the shorter a node is connected with the network.
An interesting result here is that the impact of a smaller degree
is almost similar as that of a longer recovery-time.

Now, we use Weibull lifetime function and show the impact
of the expected link-time on the expected connection time
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Fig. 4. Impact of expected link-time, d = 10, E[Tf ] = 300s.
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Fig. 5. Impact of expected lifetime, λ = 0.01.

in Fig. 6(a) and 6(b). In the Weibull function, α = 2 and
β = E[Tc]/Γ(1 + 1/α). The result indicates that there is no
improvement gained if the lifetime is heavy-tailed distributed.
And the exponential lifetime can actually provide better upper
bound for E[TC].
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Fig. 6. Impact of expected link-time, d = 10, E[Tf ] = 300s.

IV. STOCHASTIC ANALYSIS ON RESILIENCE

In the previous section, we studied the expected connection
time for any generic node, which provides individual user’s the
expectation on how long they can have a stable connection
before the first disconnection. In this section, we further
investigate the probability that a node is isolated and the
network resilience in terms of the global connectivity.

A. Probability of Node Isolation

In this paper, the node isolation event is the case that a
generic node u outlives all its neighbors, which is equivalent to
the fact of u’s lifetime T {u}

c being greater than u’s connection
time TC. Thus, the probability of node isolation, denoted by
γ, is formally defined as follows
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Definition 2: For a generic node u, the probability of u
being isolated is γ = P (TC < T

{u}
c ).

If we know the CDF of TC, say FTC(t), we can use the
following equation to calculate γ:

P (TC < T {u}
c ) =

∫ ∞

0

FTC(t)fTc
(t)dt, (15)

where fTc
(t) is the PDF (probability density function) of

Tc (node lifetime). However, the exact distribution of TC is
generally difficult to represent in a close-form since it depends
on the evolution of the cooperative degree, i.e., random process
Y (t) defined in (1). Fortunately, we have already touched
the isolation probability γ in Section III-B. Notice that γ
defined above is actually equivalent to the probability that the
cooperative node degree becomes 0, then we have

γ = lim
t→∞P (Y (t) = 0) ≈ ( E[Tf ]

E[Ton] + E[Tf ]
)d
, (16)

where d is the average node degree (not cooperative degree).
In addition, if we substitute (16) into (13), we can obtain

E(TC) ≈ E[Tf ]
d

((
1
γ

)d − 1), (17)

which yields:

γ ≈ ( E[Tf ]
E[Tf ] + d · E[TC]

) 1
d . (18)

Equation (18) provides new insight into the relationship be-
tween the node isolation probability and expected connection
time. It can be easily predicted that as E[TC] increasing, the
isolation probability γ decreases in logarithm.

B. Analysis on Network Resilience

In this subsection, we utilize the earlier derived metric γ
to characterize the evolution of wireless multi-hop networks
under random failures. In particular, we address the question:
what is the probability that a wireless multi-hop network
survives N end-users from potential node isolations during
their entire lifetimes? We call this probability as network
resilience and denote it by Ψ in the later context.

To address the question aforementioned, we take a close
look at some useful results in random graph theory, especially
the studies on geometric random graph. It has been proved that
with high probability, the network becomes k-connected when
the minimum node degree in the communication (geometric
random) graph becomes k [9] (Theorem-6.1.2, p.p. 64). In
other words, a wireless multi-hop network is connected if and
only if every node has its cooperative degree (Y (t)) greater
than 0, conditional on a sufficiently large system size N . Thus,
the resilience of a network can be approximated by

Ψ ≈ lim
t→∞(1 − P (Y (t) = 0))N . (19)

Since limt→∞ P (Y (t) = 0) is the isolation probability γ, by
substituting (18) into (19), we finally have

Ψ ≈
(
1 − ( E[Tf ]

E[Tf ] + d · E[TC]
) 1

d

)N

. (20)

From (20), it is clear that the ratio between the ex-
pected recovery-time and expected connection time (i.e.,
E[Tf ]/E[TC]) determines the value of resilience given fixed
(maximum) node degree d and system size N . Specifically,
suppose E[Tf ] � E[TC], then for any number 0 < ψ < 1
we can obtain from (20) that the ratio should satisfy E[Tf ]

E[TC] <

d · (1 − ψ
1
N )d so that the resilience is no less than the given

number, i.e., Ψ ≥ ψ, asymptotically.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we analyzed the stochastic property of node
connection time and provided a close-form approximation. In
addition, we derived the isolate probability and the network
resilience as functions of the expected connection time. Our
analysis indicates that networks with heavy-tailed lifetime
(such as Weibull) distributions provides no improvement than
those with light-tailed (e.g., Exponential) distributions in
terms of longer expected connection lifetime for any end-
user. Instead, node mobility has more significant impact than
lifetime does. In our future works, we will take potential node
misbehaviors into consideration to investigate their impact on
the connection time and network resilience. Since this work is
conducted on flat wireless multi-hop networks with uniform
node distribution, we will also consider whether end-users and
network can achieve better resilience in the networks with
clusters or scale-free property.
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