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Abstract—In hierarchical mobile ad hoc networks, the ar-
chitectual stability is a key factor in determining the network
performance. There are many solutions proposed to construct
stable clusters, none of which has however revealed the maximum
stability attainable in the mobile environments. In this paper,
we define two metrics to measure the stability of hierarchical
networks: the cluster lifetime and the inter-cluster link lifetime.
We model and analyze the maximum of these two lifetimes with
consideration of node mobility. The analytical understanding of
maximum stability provides a guideline for the clustering and
routing protocol design to optimize network performance.

I. INTRODUCTION

The mobile ad hoc networks have attracted much attention
in the research community for their flexible deployment.
Coming with the flexibility, there are however limitations
that prevent these networks from efficient and optimal per-
formance. The node mobility is one of such factors that have
significant impact on the network performance. Node move-
ment introduces network topology dynamics, which further
incurs frequent communication interruptions.

In large-scale ad hoc networks, the hierarchical architec-
ture has been proven effective in addressing the scalability
problems. However, node mobility still poses a big challenge.
In a hierarchical network, clusters are constructed from the
nodes in vicinity and communications are supported by the
connected clusters. When a node moves, it may be attached
to different clusters at different times, resulting in frequent
path rediscovery each time it changes the point of attachment.
The cluster connectivity affects the path stability too. When an
inter-cluster link fails, all the communication paths traversing
the broken link have to be replaced. Ideally, the stability of the
clusters and their connections should be maximized in order
to optimize the network performance.

A lot of work has been done to construct stable clusters
in mobile environments [1]–[5]. They improve the cluster
lifetime effectively. However, as these clustering algorithms
are heuristic based, the maximum stability of the hierarchical
architecture remains unknown yet. We study in this paper
the longest possible lifetimes of the clusters and the inter-
cluster links under the constraint of node mobility. We first
identify the conditions under which the longest lifetimes will
take place. Then we mathematically model and derive the
expected maximum lifetimes. These lifetime bounds provide
a clearer idea of the achievable network stability in mobile
environments than the previous heuristic approaches. The
conditions under which these bounds are reached also suggest
the strategies to optimize the network performance.

The rest of this paper is organized as follows. We discuss
the existing work on the clustering algorithms in Section II.
We formulate the lifetime problem in Section III and present
our analysis in Section IV. Section V provides the numerical
results. Finally, Section VI concludes this paper.

II. RELATED WORK

The clustering algorithms construct clusters by determining
the clusterheads and their affiliated clustermembers. To de-
termine the clusterheads, node characteristic values may be
used, such as the Lowest-ID [6] and the Weight-Based [7]
algorithms. These algorithms have the problem of frequent
cluster changes in mobile environments.

Node mobility [2], [3] has also been considered in the
way that the low mobility nodes are selected to serve as
clusterheads. Other strategies like the Least Cluster Change
[4], Cluster Contention Interval [1] and GDMAC algorithm [5]
extend the cluster lifetime after the clusters are constructed.

Although the consideration of mobility and the avoidance of
excessive cluster changes have enhanced the cluster stability,
all the discussed work has followed heuristic approaches and
therefore does not provide the understanding of the maximum
attainable stability of the hierarchical structure, which is the
foundation for optimizing the network performance.

III. PROBLEM FORMULATION

In this paper we focus on the mobility impact on the
architectural stability of hierarchical mobile ad hoc networks.
Specifically, we assume the following node mobility model.

A. Node Mobility Model

This mobility model is very similar to the Random Walk
model [8] except a few modifications to represent more
realistic moving behaviors. In this model, a node alternates in
the moving and the pausing phases. In the moving phase, the
node chooses a random direction from [0, 2π] and a random
speed from [vmin, vmax]. The direction and the speed are both
uniformly distributed random variables. The node also chooses
a random destination in its travel direction. The travel distance
to the destination is uniformly distributed in [0, dmax]. If the
node hits the network boundary, it bounces back into the
network to finish its planned travel distance. When the node
arrives at the destination, it stays in the pausing phase for an
exponentially distributed time with mean τs and then starts
another movement. This Random-Walk-like mobility model
maintains uniform node spacial distribution over time.
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Fig. 1. The clustered structure and the communication path.

B. Network Model

The network consists of N uniformly distributed mobile
nodes in an area of l2 square meters. Every node moves
independently and obeys the mobility model defined above.
The communication range is r meters for every node. We
assume link existence is solely determined by the distance
between nodes and ignore the link disruptions due to wireless
signal interferences and obstructions. A cluster is constructed
by determining the clusterhead and its affiliated clustermem-
bers. A clustermember is always connected directly to its
clusterhead. Two clusters are neighbors if there exists at
least one link that connects two nodes from the two clusters
respectively. We illustrate the hierarchical network in Fig. 1.

C. Hierarchical Architecture Lifetime Bounds

Before we model and analyze the maximum lifetimes of
the clusters and the inter-cluster links, we first identify the
conditions for such maximum lifetimes to occur.

1) Maximum Cluster Lifetime: The lifetime of a cluster is
determined by both the node mobility and the re-clustering
criterion. A cluster breaks down when the composing nodes
move apart. Besides, when certain conditions occur, for ex-
ample two clusterheads come into contact or a clustermember
hears a better clusterhead than its current one, additional re-
clustering takes place. It is straightforward to see that if we
defer re-clustering to the time of cluster breakdown due to
node mobility, the cluster lifetime will achieve its maximum.

2) Maximum Inter-Cluster Link Lifetime: Since two clus-
terheads are connected if there exists at least one link that
connects any two nodes from their respective clusters, the
maximum inter-cluster link lifetime is determined by the
continuous availability of such links.

IV. MODELING AND ANALYSIS OF THE LIFETIME BOUNDS

Next, we model and analyze the maximum lifetimes of the
hierarchical architecture based on our identified conditions.

A. Cluster Lifetime

The longest cluster lifetime is achieved when the clusterhead
undertakes its role without interruption until all of its affiliated
clustermembers have moved away. Since it is determined by
the time when the last clustermember leaves, we investigate a
clustermember’s membership time first.

T 3

T 2 T 2T 1T 1T 1 T 2

time

moving
away

T 4

Fig. 2. The intervals of pauses and movements.

1) Cluster Membership Time: The longest membership
time takes place when the clustermember stays affiliated to its
clusterhead all the time until they move to r meters apart. This
is measured by their neighboring time. We denote the longest
membership time as the random variable Tm and discuss it
in three cases corresponding to the initial mobility phases of
the clusterhead and the clustermember at the time of cluster
construction: i) both are stationary, ii) one is stationary and
the other is moving, and iii) both are moving.

In the first case, for the ease of analysis we first assume
that one node is fixed to its location such that it never moves.
The other node pauses and moves in its vicinity. Tm in this
case consists of an interval sequence of alternated pauses and
movements until the movable node finally moves away from
the fixed node. Fig. 2 depicts the interval sequence, in which
T1 and T2 represent the random durations in the pausing and
the moving phases respectively. T1 is exponentially distributed
with the mean E(T1) = τs, as specified in the mobility model.
The mean of T2 is determined as E(T2) = τ1,I = E(DI

V ) =
E(DI)E( 1

V ), where τ1,I denotes the mean time of one node
moving inside the transmission area of the fixed node, DI is
the random travel distance inside the transmission area, and
V is the random speed. We illustrate such a movement in
Fig. 3(a). E(DI) is determined by

E(DI) =
1

(πr2)2

∫ 2π

0

∫ r

0

∫ 2π

0

∫ r

0

d(r1,θ1,r2,θ2) r1dr1dθ1 r2dr2dθ2

≈ 1
(πr2)2

∑
{r1,θ1,r2,θ2}

d(r1,θ1,r2,θ2) r1(
r

k
)(

2π

k
)r2(

r

k
)(

2π

k
)

=
4

k4r2

∑
{r1,θ1,r2,θ2}

d(r1,θ1,r2,θ2) r1r2, (1)

where

d(r1,θ1,r2,θ2)=
√

(r1cosθ1−r2cosθ2)2+(r1sinθ1− r2sinθ2)2.
(2)

Because no closed-form solution exists for the integral in (1),
we approximate it by the numerical computation that divides
the domain of each variable into k subsets and sums up the
approximate integration result in each subset combination. The
speed V is uniformly distributed and we compute E( 1

V ) as

E(
1
V

) =
∫ vmax

vmin

1
v
· 1
vmax − vmin

dv =
ln(vmax) − ln(vmin)

vmax − vmin
.

(3)
We define T3 = T1 + T2. For mathematical tractability,
T3 is approximated by an exponential distribution. Its mean
is E(T3) = E(T1) + E(T2) = τs + τ1,I . As there is a

probability of PO = d2
max−r2

d2
max

in each moving phase that
the movable node travels beyond the reach of the fixed node,
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Fig. 3. The movements inside and beyond the coverage area of another node.

the total neighboring time T4 is an exponentially distributed
random variable with the mean E(T4) = E(T3)

PO
. Then we

remove the assumption of one node fixed and consider the
independent movements of both nodes. Let us denote the two
nodes as A and B, and denote the neighboring time when A
is fixed as T4,A and that when B is fixed as T4,B . We have
Tm = min(T4,A, T4,B) and determine its mean as

Es,s(Tm) =
E(T4)

2
=

τs + τ1,I

2PO
, (4)

where Es,s(Tm) denotes the mean in the case of both nodes
being initially stationary.

In the second case, one node is stationary and the other
is moving initially. With probability PI = 1 − PO = r2

d2
max

,
the moving node stops inside the transmission area of the
stationary node. The mean of this duration is τ1,I . After that,
the rest neighboring time is exactly what we have discussed in
case 1 where the mean duration is Es,s(Tm). With probability
PO, the moving node has a destination outside the coverage
of the stationary node. Let us denote the time before the two
nodes become r meters apart as T5, its mean is determined
by E(T5) = τ1,E = E(DE

V ) = E(DE)E( 1
V ), where τ1,E

denotes the mean time of one node moving to the edge of the
transmission area of the stationary node. The random travel
distance to the edge, denoted as DE , is shown in Fig. 3(b).
Its mean is determined by

E(DE) =
1

2π · πr2

∫ 2π

0

∫ 2π

0

∫ r

0

d(r1,θ1,θ2) r1dr1dθ1 dθ2,

≈ 2
k3r

∑
{r1,θ1,θ2}

d(r1,θ1,θ2) r1, (5)

where

d(r1,θ1,θ2)=
√

(r1cosθ1−rcosθ2)2+(r1sinθ1− rsinθ2)2. (6)

Numerical approximation is used in (5) similar to (1). Sum-
marizing both possibilities, the mean membership time in the
case of initially one node stationary and the other moving is

Es,m(Tm) = PI(τ1,I + Es,s(Tm)) + POτ1,E . (7)

In the third case, both nodes are moving initially. With
probability PI , they stop within each other’s transmission
area. Denoting the time to one node stopping as T6, we
have E(T6) = τ2,I = E(DI

VR
) = E(DI)E( 1

VR
), where τ2,I

denotes the mean time of two nodes moving inside each other’s
transmission area, and VR is their relative speed. Fig. 4 depicts
the formation of VR, from which we obtain

v2

v1

2−v

θ
θ

vR

Fig. 4. The relative speed VR.

E(
1

VR
) =

1
π(vmax − vmin)2

∫ vmax

vmin

∫ vmax

vmin

∫ π

0

1
VR

dθdv1dv2

≈ 1
k3

∑
{θ,v1,v2}

1
VR

, (8)

where

VR =
√

v2
1 + v2

2 − 2v1v2 cos θ. (9)

Numerical integral approximation is used in (8) as before.
E(DI) is obtained from (1). After one node has come to
stop, the time to the other node stopping is described by
T2 and E(T2) = τ1,I . After both nodes become stationary,
the rest of their neighboring time is again the case 1. With
probability PO, the two nodes will move apart. There are
two possibilities of their mobility phases at the time of being
apart: both moving or one moving and the other stationary.
Let us denote the respective probabilities as γ and 1 − γ.
In the former case, we denote the random neighboring time
as T7 and obtain E(T7) = τ2,E = E(DE

VR
) = E(DE)E( 1

VR
),

where τ2,E denotes the mean time of two nodes moving to the
edge of each other’s transmission area. E(DE) and E( 1

VR
) are

obtained from (5) and (8) respectively. In the latter case, one
node stops inside the transmission area of the other node first
and then the other node continues to move away. The time to
one node stopping is described by T6 with mean τ2,I and the
time to the other node moving away is described by T5 with
mean τ1,E . γ is determined as follows. The probability of one
node stopping before the two nodes become apart is

Q ≈ P
{W · X

V
< τ2,E

}
=

∫∫∫
w·x

v <τ2,E

1
dmax(vmax − vmin)

dwdxdv

≈ 1
k3

∑
{w,x,v}

1{w·x
v <τ2,E}(w, x, v) (10)

where W is uniformly distributed in [0, 1], X is the random
travel distance, W ·X is the residual travel distance at the time
of cluster formation, and 1{w·x

v <τ2,E}(w, x, v) is an indicator
function. Numerical approximation is used to compute Q.
Then the probability of both nodes moving at the time they
are apart is (1 − Q)2 and the probability of one moving and
one stationary is 2Q(1 − Q). Normalizing them, we obtain

γ =
(1 − Q)2

(1 − Q)2 + 2Q(1 − Q)
, 1−γ =

2Q(1 − Q)
(1 − Q)2 + 2Q(1 − Q)

.

(11)
Considering both PI and PO, the mean membership time is

Em,m(Tm) = PI(τ2,I + τ1,I + Es,s(Tm))
+PO(γτ2,E + (1 − γ)(τ2,I + τ1,E)) (12)
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Fig. 5. The Markov transition diagram.

where Em,m(Tm) denotes the mean of Tm in the case that
both nodes are moving initially.

Summarizing all the three cases, we can write

E(Tm) = Ps,sEs,s(Tm)+Ps,mEs,m(Tm)+Pm,mEm,m(Tm),
(13)

where Ps,s, Ps,m, Pm,m are the probabilities of the respective
cases. We know from the mobility model that the mean
pausing and moving durations are τs and τm = E(D

V ) =
E(D)E( 1

V ) = dmax

2 E( 1
V ) respectively. Thus, the probabilities

of a node’s mobility phases are Ps = τs

τs+τm
and Pm = τm

τs+τm
,

from which we have Ps,s = P 2
s , Ps,m = 2PsPm, Pm,m = P 2

m.

2) Cluster Lifetime: Let Th denote the longest cluster
lifetime. We use the Markov model shown in Fig. 5 to
study its mean value, where a state represents the number
of clustermembers in the cluster. We assume clustermembers
come and leave in Poisson processes. Transitions take place
when nodes join and leave. By denoting Sinit as the initial
state, we see that Th is the transition time from Sinit to S0.

On state S0 the clusterhead will re-cluster to merge into
another cluster, so the clustermember joining rate λ0 = 0. The
joining rate λj on the other states Sj is state dependent with
finite node population. To simplify the model, we truncate the
Markov chain at state Sn, where n � N . In this truncated
model λj = λ (1 ≤ j ≤ n− 1). We observe from simulations
that the cluster size always fluctuates within a few multiples
of its initial value, so we choose Sn = 5Sinit. λ is determined
as follows. Denoting Nm and Nh as the total number of
clustermembers and clusterheads in the network respectively,

λj = λ =
( Nm

E(Tm)
+

Nh

E(Th)

)
· πr2

l2
·β1 ·β2 (1 ≤ j ≤ n−1),

(14)
where Nm

E(Tm) + Nh

E(Th) accounts for the networkwide arrival

rate of nodes seeking a cluster to join, πr2

l2 is the geographical
factor considering the percentage that takes place in the
clusterhead’s transmission area, β1 is the mobility factor, and
β2 is the clusterhead selection factor. β1 is concerned with
the fact that a node is able to join the clusterhead only when
they have relative movement: a relative stationary node inside
the clusterhead’s neighborhood is likely to be an affiliated
clustermember already and a relative stationary node out of
the reach of the clusterhead does not have the chance to
join this clusterhead. β2 considers the chance for a node to
join a particular clusterhead given the possibilities that it may
hear several candidate clusterheads in its neighborhood and it
may also become a clusterhead itself. We determine them as
β1 = Pm + PsPm and β2 = 1

πr2

l2
Nh+1

. The state dependent

3−hop connection2−hop connection1−hop connection

clusterhead clustermember

(a)

3−hop connections

2−hop connections

(b)

Fig. 6. The connection types and the logical link.

clustermember departure rate is

µj = jµ, µ =
1

E(Tm)
(1 ≤ j ≤ n). (15)

On average Sinit has Nm

Nh
number of clustermembers.

Defining tj as the mean transition time from Sj to S0,


t0 = 0,

tj = 1
λj+µj

+ µj

λj+µj
tj−1 + λj

λj+µj
tj+1 (1 ≤ j ≤ n − 1),

tn = 1
µn

+ tn−1.
(16)

The transition time from Sj to S0 is the sum of the sojourn
time on Sj and the transition time from the successive state
(Sj−1 or Sj+1) to S0. The mean sojourn time on Sj is
determined as 1

λj+µj
. After that, a left transition occurs with

probability µj

λj+µj
or a right transition occurs with probability

λj

λj+µj
. At the boundary state Sn, only the left transition is

possible because there are no joining nodes. Combining (14),
(15) and (16), the solutions of tj (0 ≤ j ≤ n) can be obtained.
Then E(Th) = tinit. Note that (14) requires the knowledge of
E(Th). In the computations, E(Th) is first assigned an initial
value and then computed recursively until it converges.

B. Inter-Cluster Link Lifetime

Fig. 6(a) illustrates all the connection types between neigh-
bor clusterheads. We define the inter-cluster Logical Link to
be the set of all these connections, as shown in Fig. 6(b). The
logical link exists as long as any of the connection types exists.
The longest inter-cluster link lifetime is then the lifetime of
the logical link. The mean cluster membership time E(Tm)
can be generalized as the mean neighboring time between
any two neighbor nodes. Thus we assume the inter-node links
contained in the logical link have identical and exponential
lifetime distributions with mean 1

µ = E(Tm).
The lifetime of the logical link is determined by the initial

composition of the link, the new connection arrivals and the
failures of existing connections. Due to the unmanageable
difficulty in determining the new connection arrival process,
we approximate the lifetime with the time to the failures of
all the initial connections, which serves as a lower bound on
the real lifetime. Let ni (i = 1, 2, 3) denote the initial number
of i-hop connections, F = {F (j)

x } (j = 1, 2, · · · ,
∑3

i=1 ni)
denote a permutation of the failure sequence of the

∑3
i=1 ni

connections where F
(j)
x ∈{F1, F2, F3} denotes that the j-th

failure happens on an x-hop connection, n
(j)
i denote the

number of remaining i-hop connections after the (j − 1)-th
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TABLE I
MOBILITY PATTERNS

Pattern τs (min) [vmin, vmax] (m/s) dmax (m)

MP1 8 [1, 3] 1000
MP2 6 [1, 5] 1000
MP3 4 [1, 7] 1000
MP4 2 [1, 9] 1000

but before the j-th failure in the sequence F , and 1i(F
(j)
x )

denote the indicator functions such that

1i(F (j)
x ) =

{
1 x = i

0 x �= i
(i = 1, 2, 3). (17)

The mean lifetime of the logical link is written as

E(Tl) =
∑
{F}

P (F)T (F), (18)

where P (F) is the probability of F , T (F) is the mean lifetime
given F , and {F} has cardinality

(
n1+n2+n3

n1

)(
n2+n3

n2

)(
n3
n3

)
=

(n1+n2+n3)!
n1!n2!n3!

. P (F) and T (F) are determined by

P (F)=
n1+n2+n3∏

j=1

P (F (j)
x )=

n1+n2+n3∏
j=1

∑3
i=1i·n(j)

i ·1i(F
(j)
x )∑3

i=1i·n(j)
i

, (19)

T (F)=
n1+n2+n3∑

j=1

T (F (j)
x )=

n1+n2+n3∑
j=1

1∑3
i=1i·n(j)

i ·µ
. (20)

In (19),
∑3

i=1 i·n(j)
i is the total number of inter-node links

before the j-th connection failure,
∑3

i=1 i·n(j)
i ·1i(F

(j)
x ) is the

number of inter-node links of which any break will result
in F

(j)
x , their ratio determines P (F (j)

x ), and P (F) is the
multiplication of all the P (F (j)

x )’s. In (20), 1∑3
i=1 i·n(j)

i ·µ is

the mean time between the (j − 1)-th and the j-th connection
failures, and T (F) is the sum of all these intervals.

V. NUMERICAL RESULTS

Due to problem complexity, analytical determination of Nh,
Nm and ni (i = 1, 2, 3) are difficult, so their average values are
obtained from simulations and then applied to the analysis. We
configure an example network as N = 240, l = 2000m, r =
250m, and specify four mobility patterns by tuning the node
moving speed and pause time as shown in Table I. Besides, we
have also implemented the Lowest-ID and the GDMAC (K =
3, H = 32 as in [5]) algorithms in NS-2 [9] as comparison.

The mean cluster membership times from the analysis and
the simulations are shown in Fig. 7. The Lowest-ID has a quite
short cluster membership time as compared to the theoretical
bound. The GDMAC improves over the Lowest-ID, but there
is still a noticeable gap from the analytical bound. Similar
observation on the mean cluster lifetime is shown in Fig. 8.
We determine Nh and Nm by letting each node stay in its role
(clusterhead/clustermember) as long as its cluster is still valid.
The measured averages are Nh = 56 and Nm = 184 across
the four mobility patterns with very slight variations (±2).
The transition times tj are then determined and t3 is chosen
to be tinit, as S3 is the state closest to the mean cluster size
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184
56 = 3.28. We see in Fig. 8 that the cluster lifetime of the

Lowest-ID is significantly shorter than the analytical bound
and the GDMAC does not reach this bound yet.

With Nh = 56 and Nm = 184, we measure the average
number of connections between neighbor clusterheads and
obtain n1 = 0.23 (±0.03), n2 = 1.85 (±0.1), n3 = 1.05
(±0.15) across the four mobility patterns. As they are not
integers, we approximate them as the following:

n1 =
{

1 w.p. 0.23
0 w.p. 0.77, n2 =

{
2 w.p. 0.85
1 w.p. 0.15, n3 =

{
2 w.p. 0.05
1 w.p. 0.95.

The mean inter-cluster link lifetime is then determined from
(18). Fig. 9 plots the results from analysis and simulations.
Again we observe the similar instability of Lowest-ID and the
gap between GDMAC and the analytical bound.

VI. CONCLUSIONS

Node mobility has a significant impact on the stability
of hierarchical architectures in ad hoc networks. We have
presented in this paper the mathematical modeling and analysis
of the network stability in terms of the cluster lifetime and the
inter-cluster link lifetime, using a Random-Walk-like mobility
model. Our analysis demonstrates that the network stability
can be maximized by two strategies: keeping the existing
clusters unchanged to the largest extent and maximizing the
connectivity among the existing clusters. These findings pro-
vide helpful guidelines for the clustering and routing protocol
design to optimize the performance of mobile ad hoc networks.
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