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Abstract— The network resilience has been studied as a fault
tolerance measure in wired networks for decades; however, little
effort has been made to analyze the resilience of wireless multi-
hop networks, especially in the presence of misbehaving nodes.
In this work, we study such a problem: whether there exists an
overlay achieving “strong” resilience when misbehaving nodes
are present in the underlying wireless multi-hop network. To
address this problem, We first introduce two new metrics,
k-connected survivability and resilience capacity. The former
metric is used to measure the network connectivity proba-
bilistically; while the latter one is used to evaluate the ability
of accommodating misbehaving nodes deterministically. We
then derive an approximate representation of the k-connected
survivability, and provide the close-form representations of
resilience capacity for k = 1 and k = 2 and a heuristic
algorithm to calculate it when k ≥ 3. Finally, based on our
analytical results, we prove that an overlay can achieve the
derived resilience by satisfying three conditions: (i) containing
all and only cooperative nodes of the original network, (ii)
keeping the minimum cooperative degree at least k, (iii) having
Θ(log

2
N) neighbors of each node in average.

I. INTRODUCTION

The term “resilience” has been used for decades in wired
networks to evaluate the fault tolerance and recoverability of
a network. Due to some inherent features, such as error-prone
wireless channels and dynamic topology, wireless multi-hop
networks are more vulnerable to potential node and link
failures, compared with wired networks. Thus, the resilience
to failures has become an important issue recently in the
design of wireless multi-hop networks. In addition to failures
caused by node mobility, it has been noticed that node
misbehaviors can cause failures as well. For example, nodes
may behave selfishly to refuse the packet forwarding for
other nodes, or behave maliciously by launching Denial of
Service (DoS) attacks. These misbehaviors can undermine
the performance and even the connectivity of networks, and
have prompted new open and challenging problems to the
resilient wireless network design.

A few efforts have been done to analyze the impact of
misbehaving nodes. For example, the average throughput
was degraded by 16% − 32% if 10% − 40% of the nodes
misbehave in [1]. It was shown that Jellyfish and Blackhole
attacks have a network partitioning effect [2], and may isolate
their neighbors [3]. Also, a number of studies were conducted
to enhance the resilience to node misbehaviors. For exam-
ple, Ariadne [4] uses symmetric cryptographic primitives to
prevent attacks from tampering routing control messages.
CONFIDANT [5] uses a reputation system to to detect misbe-

having nodes and stimulate cooperation. Nevertheless, little
effort has yet been made to analyze the resilience to node
misbehaviors for wireless multi-hop networks, and provide
quantitative evaluations to the impact of node misbehaviors.
In addition, due to lack of the concrete metrics, none of
the current works had resilience defined in the presence of
node misbehaviors, which makes it infeasible to evaluate and
compare the effectiveness of resilience designs.

The limitations above motivate us to provide concrete
definitions and theoretic analysis to the resilience of wireless
multi-hop networks in the presence of misbehaving nodes,
and draw new insights into the design of future resilience-
enhancing mechanisms. In particular, we are interested in the
question: given a wireless multi-hop network in the presence
of misbehaving nodes, whether we can find an overlay over
it such that the overlay achieves “strong” resilience against
misbehaving nodes, called perfect resilient overlay (PRO).
By the term overlay we refer to a network which is built
on top of another network by containing only partial nodes
in the original network. The significance of the PRO is in
that it provides a resilient platform for network services such
as routing and forwarding, and it may simplify the design
of other resilient-enhancing solutions once such a resilient
platform is generated.

To address this problem, we must first investigate a funda-
mental question, what is the resilience of wireless multi-hop
networks in the presence of misbehaving nodes? We use two
metrics, k-connected survivability and resilient capacity, to
analyze the resilience of wireless multi-hop networks. The
former metric measures the connectivity of a network in
the presence of misbehaving nodes; while the latter metric
presents the ability of a connected network to accommodate
misbehaving nodes. Our resilience metrics distinguish them-
selves from all previous definitions, reviewed in Section II,
by taking the impact of node misbehaviors into account. We
then derive an approximate representation of the k-connected
survivability, and provide the close-form representations of
resilience capacity for k = 1 and k = 2 and a heuristic
algorithm to calculate it when k ≥ 3. Based on the theoretical
analysis on the two resilience metrics, we are able to find
the essential properties that an overlay should possess to
be resilient to node misbehaviors. Finally, we prove that if
an overlay contains all and only cooperative nodes of the
original network, and have the minimum cooperative degree
of k and the average degree of Θ(log2N), then the overlay is
a PRO, which achieves the maximum resilient capacity and
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highest k-connected survivability.
The remainder of this paper is organized as follows. In

Section II, we present an overview of previous resilience def-
initions and analysis. In Section III, we define two resilience
metrics and formulate the problem. In Section IV, we analyze
the network resilience in terms of the two resilience metrics.
In Section V, we provide the essential properties of perfect
resilient overlays, followed by conclusions in Section VI.

II. RELATED WORKS

To the best of our knowledge, the measure network re-
silience was first introduced by Colbourn [6], which was
defined as the expected number of node pairs which can
communicate. In [6], network resilience was solved by the
summation of two-terminal reliabilities of all unordered node
pairs. Another resilience definition was presented by Najjar
and Gaudiot in [7], [8] which measures the maximum number
of node failures that can be sustained while the network re-
mains connected with a given probability. Our newly defined
metric, resilience capacity, is partially based on the definition
above; however, resilience capacity measures the relative
capacity of a network to accommodate misbehaving nodes,
defined in Section III-B later. In [9], [10], resilience is mainly
referred as the ability of ATM and MPLS networks to recover
failed paths in a timely manner. Similarly, Ganesan et al.
defined resilience to isolated failure in [11] as the probability
of at least one alternate path being available within a certain
time interval given at least one node failures on the primary
path. The resilience to DoS attacks was studied analytically
by Aad et al in [2], in which two DoS attacks, Jellyfish and
Blackhole, were introduced and their impacts on multiple
performance factors, such as system fairness, throughput, and
hop count, were revealed by both analysis and simulation.
It was shown that DoS attacks have a network partitioning
effect and cause damage to network connectivity; however,
no metric was defined to measure the resilience to DoS
quantitatively.

As a summary, we can see that all definitions of resilience
in previous works only take node failures into consideration.
Due to lack of the concrete resilience modeling, the theoretic
research on the resilience of wireless multi-hop networks in
the presence of node misbehaviors are also limited. We will
patch this gap by introducing two new resilience metrics in
the next section.

III. RESILIENCE DEFINITION

In this section, we define the resilience to node misbe-
haviors in wireless multi-hop networks and formulate the
problem studied in this work. We begin with the description
of the system model.

A. System Model and Assumptions

In this paper, we assume that all nodes are distributed on
a two-dimensional plane, independently and uniformly. The
transmission radius r of all nodes is same. When the distance
of two nodes u and v, denoted by d(u, v), is smaller than
r, the two nodes are connected by a link. The topology of
wireless multi-hop networks can be defined by a Geometric
Random Graph (GRG) [12] model, which is defined as:

Definition 1: A GRG G(N, r) is a graph in which N
nodes are independently and uniformly distributed in a metric
space, and a link exists between two nodes u and v if and
only if d(u, v) ≤ r.
This system model will be used in Section IV to derive our
resilience metrics.

Since both selfish and malicious nodes can cause multiple
failures, we refer them together as misbehaving nodes, de-
noted by NM . On the contrary, cooperative nodes, denoted
by NC , comply with the standards in the route discovery
and packet forwarding. In this paper, we consider a network
comprising these two types of nodes only, so a node is
either misbehaving or cooperative. Consequently, we use
M(N ) to denote a network M with the node set N , for
N , NC ∪ NM .
B. Resilience Metric Definition

In the design of resilient networks, a fundamental question
is what is the resilience of networks? Though it has been
well-defined and used for wired networks, as described in
Section II, there is no concrete and quantitative definition of
resilience for wireless multi-hop networks in the presence
of misbehaving nodes. In order to understand statistical
and limit of network resilience, and more importantly, to
design overlay topology that is resilient to failures, we define
two new metrics, k-connected survivability and resilience
capacity, in this paper.

Considering that keeping the underlying network con-
nected is a prerequisite for any networking operation, the
first metric is used to evaluate the k-connectivity of wireless
multi-hop networks, which is defined as:

Definition 2: A graph G is connected if any two distinct
vertices are joined by a path, and is disconnected otherwise.
Generally, if the removal of any k − 1 vertices does not
disconnect G, G is said to be k-connected. The maximal
value of k for which G is k-connected is the connectivity of
G, denoted by κ(G) [13].
Based on Definition 2, for any connectivity requirement k,
we define the k-connected survivability as:

Definition 3: The k-connected survivability of M, de-
noted by Ψ(k,M), is the probability that the connectivity
of M is k conditional on the system size N , i.e.,

Ψ(k,M) = Pr(κ(M) = k | |N | = N), (1)

where κ(M) is the connectivity of M and |N | is the
cardinality of set N .

For a better understanding of the resilience against misbe-
having nodes, we also propose the second metric, resilience
capacity, to evaluate the ability of accommodating additional
misbehaving nodes in the following scenario. For a wireless
multi-hop network M, we assume the number of existing
misbehaving nodes known and denote it by N 0

M . Given a
connectivity requirement k and a survivability preference ψ0

(0 < ψ0 ≤ 1), if Ψ(k,M) ≤ ψ0, the resilience capacity of
M is defined to be zero, which means no more misbehaving
nodes can be accommodated by M. If Ψ(k,M) > ψ0, we
need to find out the maximum number of misbehaving nodes,
denoted by N∗

M , that M can sustain and keep its survivability
greater than ψ0. Then we define the resilience capacity as:
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Definition 4: The resilience capacity of M, denoted by
Λ(ψ0,M), is the ratio between the extra number of misbe-
having nodes that can be sustained in M and the system size
N , i.e.,

Λ(ψ0,M) =

{

0, if N∗
M ≤ N0

M
N∗

M
−N0

M

N
, if N∗

M > N0
M

(2)

where N∗
M is subject to a given survivability preference ψ0.

Note that in (2), when N∗
M > N0

M , N∗
M −N0

M is divided
by the system size N , which makes this metric applicable
to compare the resilience between networks of different
system sizes. With the two metrics defined, we can evaluate
and analyze the resilience against misbehaving nodes in a
quantitative manner.

C. Problem Formulation

Here we formulate the Existence of Perfect Resilient Over-
lay (E-PRO) problem, described in Section I, as follows.

Definition 5: E-PRO Problem: Let Ms denote any over-
lay of a wireless multi-hop network M, given a connectivity
requirement k and a survivability preference ψ0 (ψ0 → 1),
if an overlay M− satisfies the following requirements:

Ψ(k,M−) ≥ ψ0 and M− = argmax
Ms⊆M

Λ(ψ0,Ms),

then M− is called a perfect resilient overlay (PRO) of M.
Now, given any M, how to determine whether a PRO exists?

To tackle the E-PRO problem, we analyze the network
resilience in terms of k-connected survivability and resilience
capacity in Section IV, then find the essential attributes of a
PRO in Section V.

IV. RESILIENCE ANALYSIS

In this section, we analyze the resilience by k-connected
survivability and resilience capacity.

A. Preliminary Background

Let κ(G) and δ(G) denote the connectivity and minimum
degree of a graph G, respectively, then κ(G) ≤ δ(G) holds
generally, which implies that Pr(κ(G) = k) ≤ Pr(δ(G) =
k) for any k ∈ N

+. Nevertheless, in the random graph theory,
it was proved in [14] (Theorem 6, pp. 154) that

Pr(κ(G) = δ(G)) → 1. (3)

The moral of this result is that a random graph G becomes k-
connected at the instant when it achieves a minimum degree
of k with a high probability. However, (3) holds for non-
geometric random graphs, in which links may exist between
any pair of nodes regardless of node distances, so this results
cannot be directly applied to wireless multi-hop networks.

Fortunately, a few recent literatures shown that the similar
result also holds for geometric random graphs (GRGs).
According to Definition 1, given r > 0, a random set XN

consisting of finite N independent points in a metric space
forms a GRG if there exists an edge connecting each pair of
points separated by a distance of at most r. It was provide in
[15] (Theorem 1.1) that, if let %(XN , κ ≥ k) and %(XN , δ ≥
k) be the minimum r at which G(N, r) is k-connected and

has minimum degree k, respectively, then the following result
holds for an arbitrary constant k (1 ≤ k < N ),

lim
N→∞

Pr(%(XN , κ ≥ k) = %(XN , δ ≥ k)) = 1. (4)

In words, (4) implies that, with high probability, the network
becomes k-connected when the minimum node degree in the
communication graph becomes k [12] (p.p. 64).

In [16], (4) was further extended to a similar format as
(3). We recite this result as

Lemma 1: Theorem 3 [16]: For a GRG G(N, r) it holds

Pr(κ(G) = k) ≈ Pr(δ(G) ≥ k) (5)

for N � 1 and Pr(δ(G) ≥ k) almost one.
Lemma 1 has been verified by extensive simulations in [16],
[17], and [18]. By (5), the problem of k-connectivity can be
simplified by evaluating the minimum degree, which is very
useful for us to analyze k-connected survivability.

B. k-connected Survivability

For a real wireless multi-hop network, due to the existence
of misbehaving nodes, a node can be isolated from the
rest of the network by adjacent misbehaving nodes [3]. In
other words, whether a node can be connected to a network
depends on whether the node has cooperative adjacent nodes.
Let Dc(u) be the number of cooperative adjacent nodes of
a node u, called the cooperative degree of u, then Dc(u)
is i.i.d due to our network model. We define θ(M) as the
minimum cooperative degree of a network M, i.e., θ(M) ,

min{Dc(u), ∀u ∈ M}. Then we have
Theorem 1: Given a wireless multi-hop network M with

the node set N , if |N | � 1 and Pr(θ(M) ≥ k) → 1, then

Pr(κ(M) = k | |N | = N) ≈ Pr(θ(M) ≥ k) | |N | = N).
(6)

The proof of Theorem 1 can be derived from Lemma 1. This
result provides us an approach to approximate close-form
representation of the survivability, which is shown right next.

Corollary 1: Given a network M with N nodes (N � 1)
and a connectivity requirement k, let PM denote the proba-
bility of a node being misbehaving, and µ denote the average
number of nodes within one node’s transmission range, then
the k-connected survivability of M is approximated by

Ψ(k,M) ≈

(

1 −
Γ(k, µ(1 − PM ))

Γ(k)

)N

, (7)

where Γ(h) and Γ(h, x) are complete and incomplete Gamma
functions, respectively.

Proof: By omitting the notation u, we have

Pr(θ(M) ≥ k) | |N | = N) = (1 − Pr(Dc < k))N , (8)

To obtain Ψ(k,M), Pr(Dc < k) needs to be determined. We
derive Pr(Dc < k) by calculating the probability Pr(Dc =
k|D = d) and Pr(D = d) first, where D is the node degree,
then applying the total probability law to get Pr(Dc = k).

We first derive Pr(Dc = k|D = d). Since a node is
either misbehaving or cooperative and PM is the probability
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of a node being misbehaving, the probability of a node being
cooperative is 1 − PM . By a binomial distribution,

Pr(Dc = k|D = d) =

(

d

k

)

· (1 − PM )k · P d−k
M (9)

Second, we investigate the probability of node degree, i.e.,
Pr(D = d). Based on our network model in Definition 1,
all nodes are independently and uniformly distributed over
a finite area at random, so node distribution can modeled
by a Poisson point process [18]. In this process, the Poisson
parameter µ actually presents the average number of nodes
within the area covered by one node’s transmission range.
Then Pr(D = d) is given by

Pr(D = d) =
µd

d!
e−µ, (10)

Next, by using the total probability law with (9) and (10),
Pr(Dc = k) is

Pr(Dc = k) =

N−1
∑

d=k

(

d

k

)

(1 − PM )k · P d−k
M

µd

d!
e−µ. (11)

Note that in (11), d is bounded within [k,N − 1]. Since N
is sufficiently large (N � 1), (11) can be rewritten by,

Pr(Dc = k) ≈
∞
∑

d=k

(

d

k

)

(1 − PM )k · P d−k
M

µd

d!
e−µ. (12)

Then, by using (12), Pr(Dc < k) can be approximated by

Pr(Dc < k) ≈
k−1
∑

m=0

∞
∑

d=k

(

d

m

)

(1 − PM )m · P d−m
M

µd

d!
e−µ

≈
Γ(k, µ(1 − PM ))

Γ(k)
. (13)

Finally, by substituting (13) into (1), (6), and (8), the k-
connected survivability can be given by (7).

Until now, we have obtained an approximate representation
of k-connected survivability, which is shown to be a function
of k, µ, N , and PM . An observation from this result is that
for fixed k, µ and N , a network can have the maximum
survivability only if PM = 0. This metric sheds a better
insight on the resilience evaluation and can be used for
designing resilient, robust networks against failures.

C. Resilience Capacity to Misbehaving Nodes

In this section, we continue to analyze the resilience
capacity, Λ(ψ0,M). Recall that Λ(ψ0,M) is defined as
(N∗

M − N0
M )/N when N∗

M > N0
M , in which N∗

M is the
maximal number of misbehaving nodes with respect to a
survivability preference. To analyze Λ(ψ0,M), we need to
obtain N∗

M , which is derived by the following steps.
First, for a network with the node set N , if the behavior

of each node is i.i.d., we can prove that

lim
N→∞

NM

N
= PM , (14)

where NM = |NM | and N = |N |. (14) implies that the
limiting probability of any node being misbehaving can be
calculated by the ratio between the number of misbehaving

nodes and that of all nodes. By using (14), given ψ0, we can
use the following equation to derive N ∗

M ,

ψ0 =

(

1 −
Γ(k, µ(1 − N∗

M

N
))

Γ(k)

)N

. (15)

We next solve (15) in three cases with regard to k = 1,
k = 2, and k ≥ 3 as follows.

Case 1: k = 1. When k = 1, (15) is simplified as

1 − exp(−µ(1 −
N∗

M

N
)) = ψ

1

N

0 . (16)

By calculations, we have

µ(1 −
N∗

M

N
) = − ln(1 − ψ

1

N

0 ). (17)

Since (1− N∗

M

N
) ≤ 1, µ > − ln(1−ψ

1

N

0 ) should hold in (17).
From (17), N∗

M is given by:

N∗
M = bN(1 +

1

µ
ln(1 − ψ

1

N

0 ))c. (18)

Case 2: k = 2. When k = 2, (15) is

1 − (1 + µ(1 −
N∗

M

N
)) · e−(1+µ(1−

N
∗

M

N
)) = ψ

1

N

0 . (19)

It is non-trivial to solve N∗
M from the equality above, so we

refer to Lambert W function [19], which is defined to be the
function satisfying

W(z)eW(z) = z. (20)

If z is real, then for −1/e ≤ z < 0 there are two possible
real values of W(z). The branch satisfying −1 ≤ W(z) is
denoted by W0(z) or just W(z), while the branch satisfying
W(z) ≤ −1 is denoted by W−1(z). To use the W function
defined above, we rewrite (19) as

−(1+µ(1−
N∗

M

N
)) · e−(1+µ(1−

N
∗

M

N
)) = (ψ

1

N

0 −1)e−1. (21)

In (21), W(z) = −(1 + µ(1− N∗

M

N
)) and z = (ψ

1

N

0 − 1)e−1.
Since W(z) < −1, we can use W−1(z) to solve N∗

M from
(21) as:

µ(1 −
N∗

M

N
) = −

(

W−1(e
−1(ψ

1

N

0 − 1)) + 1
)

. (22)

Similarly, µ > −
(

W−1(e
−1(ψ

1

N

0 − 1)) + 1
)

should hold in
(22). From (22), N∗

M is given by:

N∗
M = bN

(

1 +
1

µ

(

W−1(e
−1(ψ

1

N

0 − 1)) + 1
)

)

c. (23)

Case 3: k ≥ 3. When k ≥ 3, let z = 1 − ψ
1

N

0 and x =

µ(1 − N∗

M

N
), then (15) is:

e−x(1 + x+
x2

2
+ · · · +

xk−1

(k − 1)!
) = z. (24)

(24) is a transcendental equation. In general, there are no
systematic methods of solving transcendental equations, so
we use a heuristic algorithm to find the approximate value
of N∗

M , which is described as follows.

4



Given a network M with N0
M misbehaving nodes and ψ0,

we initiate a variable NM as N0
M and calculate Ψ(k,M). If

the result is greater than ψ0, we increase the value of NM ,
calculate Ψ(k,M), and compare the result with ψ0 again.
Until the calculated result is less than ψ0, then we obtain
N∗

M as the current value of NM . Algorithm 1 summarizes
the heuristic calculation procedure.

Algorithm 1 Calculate N∗
M for k ≥ 3

Input: N,N0
M , µ, k, ψ0

1: Ψ := 1, NM := N0
M

2: while (NM < N AND Ψ > ψ0) do

3: Ψ := (1 −
Γ(k,µ(1−

NM

N
))

Γ(k) )N

4: NM := NM + 1
5: end while
6: return N∗

M := NM

Finally, we can use the results obtained from (18), (23),
and Algorithm 1 to calculate the resilient capacity, by using
the following algorithm. From Algorithm 2, we know that

Algorithm 2 Calculate Λ(ψ0,M)

Input: N,N0
M , µ, k, ψ0

1: Ψ := (1 −
Γ(k,µ(1−

N
0

M

N
))

Γ(k) )N

2: if (Ψ ≤ ψ0) then
3: return Λ := 0
4: else
5: if (k == 1) then
6: calculate N∗

M by (18)
7: else if (k == 2) then
8: calculate N∗

M by (23)
9: else if (k ≥ 3) then

10: calculate N∗
M by Algorithm 1

11: end if
12: return Λ := 1

N
(N∗

M −N0
M )

13: end if

decreasing N0
M can increase Λ(ψ0,M) effectively.

In the next section, we find the properties of a perfect
resilient overlay by using the resilience metrics, thereby
solving the E-PRO problem.

V. PERFECT RESILIENT OVERLAY ANALYSIS

In this section, we solve the E-PRO problem formulated in
Section III-C, that is, for a given wireless multi-hop networks
with misbehaving nodes, how to determine whether a PRO
exists? We find the essential properties of a PRO first, then
discuss how to check the existence of a PRO.

A. Perfect Resilient Overlay Properties

Based on the analysis on the two resilience metrics, we
have the following conclusion.

Theorem 2: Given a wireless multi-hop network M, if an
overlay M− has the following two properties:

1) M− comprises all and only cooperative nodes of M,
2) θ(M−) ≥ k, and the average node degree of M− is

Θ(log2N) asymptotically,

then M− is a perfect resilient overlay of M.
The proof of Theorem 2 is based on the following lemmas.

Lemma 2: Let NM be a variable for the number of
misbehaving nodes, if NM = 0, Ψ(k,M) is maximum as

Ψmax = (1 −
Γ(k, µ)

Γ(k)
)N , and

Ψmax ≈ 1 −N
Γ(k, µ)

Γ(k)
, if Γ(k, µ)

Γ(k)
→ 0, (25)

where µ and N are defined as previously.
Proof: By (7), Λ(k,M) increases as PM decreases for

fixed k, µ, and N . Since PM ∝ NM , the statement holds.
Lemma 3: If an overlay M− contains all and only M’s

cooperative nodes, then Λ(ψ0,M−) is maximized among all
overlays on M.

To validate this lemma, we conduct a numeric simulation
on three networks with 1000 nodes and different numbers of
initial misbehaving nodes N 0

M . For each network, a series
of overlays are constructed by removing misbehaving nodes
first, then cooperative nodes afterwards. For each overlay, its
resilient capacity is calculated by using Algorithm 1. The
results of this simulation are shown in Fig.1. From this
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Fig. 1. Illustration of the maximized resilience capacity.

figure, we can see that for each network, the overlay with
all its cooperative nodes and no misbehaving nodes has the
maximal resilience capacity. Take the curve for the network
with N0

M = 100 as an example, the resilient capacity of
overlays reaches the maximum value 0.27 when all 100
misbehaving nodes are removed.

Lemma 4: If a wireless multihop network M is k-
connected, i.e., κ(M) = k, then the minimum cooperative
degree of M is at least k, i.e., θ(M) ≥ k.

Proof: The statement follows from Theorem 1.
Lemma 5: For a wireless multi-hop network M to be

asymptotically connected (Ψ(1,M) ≥ 0.95), the average
node degree, denoted by ∆, should be Θ(log2N), where
N is the system size of M.

To validate this lemma, we recall the following constraint
used in the derivation of resilience capacity (Section IV-
C). When k = 1, the average number of nodes in one
transmission range, µ, should satisfy µ > − ln(1 − ψ

1

N

0 ),
which indicates that for a network to be connected with a
probability ψ0, the average node degree should be greater
than − ln(1−ψ

1

N

0 )− 1. To illustrate how the result above is
bounded by Θ(log2N) as the system size N increasing, we
depict the numeric values of − ln(1−ψ

1

N

0 )− 1 and log2N ,
respectively, against N in Fig. 2. In the figure, we show
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Fig. 2. Average node degree bound for a connected network.

that as N increases, the curve of ∆ can be bounded by
log2N even for ψ0 = 0.99. Nevertheless, when ψ0 → 1, the
analytical value of ∆ will be eventually greater than log2N
but still bounded by c log2N , where c is a finite constant and
c > 1. The result of Lemma 5 is in accordance with the main
conclusion shown in [20], where a tight bound of average
node degree, 5.1774 logN , was provided for any connected
networks.

Based on the lemmas above, we can prove Theorem 2.
Proof: By Lemma 2 and 3, if M− satisfies the first property,
then M− achieves the maximized resilience. By Lemma 4
and 5, if M− satisfies the second property, then (M−) is
k-connected with high probability. Thus M− is a perfect
resilient overlay.

Theorem 2 provides the essential properties of a PRO,
which offers us a simple method to verify the existence of a
PRO, addressed right next.

B. E-PRO Problem Solution

Based on Theorem 2, we are ready to solve the E-PRO
problem by a simple, but carefully designed, algorithm,
which is described as follows. For a given wireless multi-
hop network M in the presence of misbehaving nodes,
here we assume that there exists a mechanism that can
detect and remove misbehaving nodes. After all misbehaving
nodes are removed from M, an overlay M− is obtained
which contains all cooperative nodes. Then we calculate the
minimum (cooperative) degree θ(M−) and average degree
∆(M−) of M−. If θ(M−) ≥ k and ∆(M−) ≥ log2N ,
then there exists a PRO, i.e., M−, in network M; otherwise
the PRO does not exist. We summarize this procedure in
Algorithm 3.

VI. CONCLUSIONS

In this paper, We defined and analyzed the resilience
against misbehaving nodes for wireless multi-hop networks
by two metrics: k-connected survivability and resilience
capacity. Based on our theoretical analysis, we concluded the
essential properties that an overlay should have such that the
overlay can achieve maximized survivability and resilience
capacity. Our theoretical analysis will shed new insights into
the design of resilient wireless multi-hop networks. New
topology control paradigms can be developed to form co-
operative platforms based on the concept of perfect resilient
overlays, and evaluated by our resilience metrics, which will
be our future research directions.

Algorithm 3 Check the existence of PRO
Input: M(NM ) with N nodes, k

1: initialize M− := ∅
2: for all u ∈ M do
3: if u ∈ NM , remove u from M
4: end for
5: obtain overlay M− := M
6: calculate θ(M−) := min{Dc(v), ∀v ∈ M−}
7: calculate ∆(M−) := 1

|M−|

∑

v∈M− Dc(v)

8: if (θ(M−) ≥ k AND ∆(M−) ≥ log2N ) then
9: M− is a PRO of M

10: else
11: NO PRO exists in M
12: end if
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