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Abstract— Understanding the impacts of node mobility on
topology dynamics is essential to design a mobility resilient ad
hoc network. Current research showed that mobility models can
heavily affect the study of network topology due to different
mobility patterns. In this paper, we analyze topology dynamics
based on the smooth model [1], because it generates smooth
nodal movements, has no speed decay problem, and maintains
a uniform spatial node distribution. Specifically, we study two
topology metrics: expected link lifetime and expected link change
rate by using a distance transition probability matrix P, in
which an element represents the distance change between two
neighboring nodes. By this means, we predict the existence of a
link based on the present distance between a pair of nodes and
their relative speed. The analytical results of topology dynamics
are validated by extensive simulations. In addition, by combing
graph theory and queuing theory, we apply the topology metrics
expected link lifetime and expected link change rate to formulate
the upper bound connectivity of a mobile ad hoc network.

I. INTRODUCTION

In mobile ad hoc networks (MANETs), node mobility
induces the network topology to change randomly and rapidly
at unpredictable times. Hence, the network topology is vulner-
able to frequent link failure and network partitioning, which
could incur substantial routing overhead, excessive transmis-
sion delay and packet loss among mobile nodes. Hence, in
order to design a mobility resilient MANET, an intuitive
solution is to enlarge the transmission range of the mobile
wireless devices for reducing the network topology change
rate. However, by this way, the mobile nodes would suffer
more radio interference, channel contention, and energy con-
sumption, which may seriously degrade the utilization of the
network resources. Therefore, to achieve the desired network
performance, it is necessary to investigate the property of node
mobility and its effect on topology dynamics of MANETs.

In a MANET, routing protocols are used to deliver data
between mobile nodes, depending on the link status between
any pair of mobile nodes. The dynamics of links directly
dominates the network topology change rate and the network
performance. Hence, we investigate topology dynamics by
analyzing two key topology metrics: expected link lifetime
and expected link change rate in this paper. The study of
link properties is based on mobility models, which specify
node moving behaviors in a MANET [2]. Random mobility
models [3], such as random waypoint (RWP) model [4],

are the most widely used mobility models in the current
research of MANETs. Because nodal movements in random
mobility models are total randomness, the unrealistic moving
behaviors, such as sudden speed change and sharp turn, may
invalidate the analytical and simulation results of topology
metrics [3]. Moreover, Yoon et al. showed that the average
node speed of the RWP model decreases over time [5]. Hence,
the unexpected lower mobility level will increase the expected
link lifetime in the RWP model. Furthermore, Bettstetter et
al. found that the RWP model yields non-uniform spatial
node distribution, with the maximum node density in the
center of simulation region [6]. This non-uniform spatial node
distribution could invalidate many analytical and simulation
results that are based on the assumption of uniform spatial
node distribution of a MAENT. Because of the limitations of
the random mobility models, it is highly desirable to use a
new mobility model for analyzing topology dynamics.

In this paper, we analyze topology dynamics based on the
smooth mobility model proposed in [1]. The smooth move-
ments specified in the model abide by the physical law of real-
life moving objects, so that mobile nodes can smoothly change
their velocities within a movement, which avoids the abrupt
moving behaviors happening in the random mobility models.
In addition, the smooth model generates stable node speed and
maintains a uniform spatial node distribution. We assume that
all mobile nodes of a MANET have the same transmission
range R. Hence, at an arbitrary time, by comparing the
distance of a pair of nodes with their common transmission
range R, we can determine the existence of their link. Further,
we can predict the link duration and link change rate based
on the present distance between a pair of nodes and their
relative speed. Specifically, we analyze expected link lifetime
and expected link change rate of MANETs by using a distance
transition probability matrix P. Based on these analytical
results, we investigate how to utilize the topology metrics
to estimate network connectivity. Our study on topology
dynamics can help people design mobility resilient routing
protocols and optimize topology control schemes of MANETs.

The remainder of the paper is organized as follows. Section
II characterizes the relative movement of two nodes under
the smooth model and describes all preliminaries necessary
for analyzing topology dynamics. In Section III, we derive



theoretical expressions of topology metrics and validate them
by simulations. Then, we utilize topology metrics to evaluate
MAENT connectivity. Section IV concludes this paper.

II. MOBILITY CHARACTERIZATION IN MANETS

We study topology dynamics by analyzing MANET link
properties, which are characterized by the relative movement
and separated distance of two neighboring nodes. Hence,
in this section, we first specify the mobility pattern of the
smooth model, upon which we propose a relative movement
trajectory model of two nodes for analyzing link properties.
Next, we develop a distance transition probability matrix P

based on the distribution of the relative speed in the smooth
model. Each element of the matrix P represents a single step
transition probability of distance change between two nodes.
By applying the matrix P, we can predict the link lifetime and
link change rate based on the present distance and the relative
speed between two neighboring nodes.

A. Smooth Mobility Model

To follow the physical law of a smooth motion, each move-
ment in the smooth model contains three consecutive moving
phases: Speed Up (α–phase), Middle Smooth (β–phase), and
Slow Down (γ–phase). Each movement is quantized into
random K equidistant time steps, where K = α + β + γ
and K ∈ Z. The time interval between two consecutive time
steps is ∆t (sec). For each movement, a node will select a
target direction φα, and a target speed vα, which is the stable
speed of the movement. Specifically, in α–phase, it uniformly
accelerates its speed to vα for α time steps along the direction
φα. For each time step in β–phase, where the node moves
at the stable velocity of the movement, the node speed and
direction gently fluctuate around vα and φα, respectively. In
γ–phase, the node uniformly decelerates its speed to 0 for γ
time steps along a selected direction φγ . After the movement,
the node pauses at a random time Tp, which is considered as
the pause phase of the smooth model [1].

Since the node movement abides by the physical law of
a smooth motion, the smooth model is more realistic than
random mobility models. Furthermore, as proved in [1], the
smooth model has no speed decay problem [5] and maintains
uniform nodal spatial distribution. These nice properties are
crucial to analyze topology dynamics of MANETs.

B. Relative Movement Trajectory Model

A valid analysis of topology dynamics should be based
on a realistic moving scenario of MANETs. In reality, the
relative velocity of two mobile nodes changes during their
link connection, due to their speed acceleration/deceleration
and possible direction change within each movement. Based
on this observation, we provide a relative movement trajectory
model upon which Fig. 1 illustrates a sample relative move-
ment trajectory between a node pair (u,w) during their link
connection. As the reference node, node u lies in the original
point of Cartesian coordinate system XY. We assume that the
link between the node pair (u,w) forms immediately after
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Fig. 1. A sample of a relative movement trajectory between a node pair
(u,w) during their link connection.

the time step when node w transits the border of node u’s
transmission zone. Given the example shown in Fig. 1, the
link forms at time t0. Then, it takes k time steps for node w
to first move outside the transmission zone from position B.
For the sake of simplicity, the time step ∆t is normalized to
1 second in this paper. Hence, the link lifetime Tlink of the
node pair (u,w) is Tlink = k seconds, where k >> 1. We
denote −→vi as the relative speed and −→ρi as the vector of the
ending position of ith time step of node w according to the
XY coordinate. Correspondingly, ρi is the magnitude of −→ρi

, where ρi =
p

Xi
2 + Yi

2. We assume that both the relative
speed −→vi and the angle ψi are i.i.d. random variables (RVs).

C. Distance Transition Probability Matrix P

As shown in Fig. 1, once node w moves into node u’s
transmission zone, the link status is determined by the distance
between two nodes at every ∆t, i.e., every time step. Hence,
we develop a distance transition probability matrix P to
analyze link properties of MANETs.

In Fig. 1, the transmission range R of node u is quantized
into n equidistant length intervals with a width of ε meters.
Hence, R = n · ε. Each length interval is corresponding to a
state representing the distance between node u and node w. For
example, the range of distance indexed by state Si is over [(i−
1)ε, iε]. Because of the node mobility, the distance between
node pair (u,w) may vary after each time step. Hence, We
denote P as the distance transition probability matrix, and Pij

as the probability of state transition from Si to Sj after a single
time step. From Fig. 1, the link expires when the event of
ρk > R first happens. Accordingly, we let state Sn+1 represent
all the locations which lie outside node u’s transmission zone.
Since link connection breaks as long as node w reaches state
Sn+1, we define state Sn+1 as the absorbing state of P.

As the target speed vα represents the stable speed of a
movement in the smooth model, Pij is characterized by the
target speed vα of mobile nodes. Moreover, because the node
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speed at each time step of β–phase fluctuates around vα based
on the Gauss-Markov mobility pattern [1], the relative speed
range of node w according to vα is over [0, 2(vα +δv)], where
the empirical value of δv is 2 m/sec. For instance, being at
state Si, the possible states for node w after one time step
movement are in the range [max(1, i− r),min(i+ r, n+ 1)],
where r = d2(vα + δv)/εe. Based on this argument, Fig. 2
demonstrates the distance transition probability matrix P, in
which all positive elements, i.e., ( Pij > 0, 1 ≤ i, j ≤ n+ 1 ),
are within the shadow area.

The distance transition probability matrix P plays an es-
sential role for deriving topology metrics. Next, following
the similar strategy described in [7], we provide a way for
calculating Pij in terms of target speed vα.

1) Single-Step Transition Probability Pij : From Fig. 1, at
the mth step, −→ρ m = −→ρ m−1 + −→v m. Hence, we have

ρm =
√

ρ2
m−1 + vm

2 − 2ρm−1vm cosψm, (1)

where ψm is uniformly distributed from [0, π). From (1), ψm

can be represented as:

ψm = arccos
ρm−1

2 + vm
2 − ρm

2

2ρm−1vm

. (2)

Given the relationship between ρm−1 and ρm, the single-
step transition probability Pij can be derived as:

Pij = Prob{ρm ∈ Sj | ρm−1 ∈ Si}

=

R jε

(j−1)ε

R iε

(i−1)ε
fρm|ρm−1

(ρm|ρm−1)f(ρm−1)dρm−1dρm
R iε

(i−1)ε
f(ρm−1)dρm−1

.

(3)
Upon (3), it is necessary to find the conditional distribution

fρm|ρm−1
(ρm | ρm−1) to solve Pij . Here, vm and ψm are

independent RVs. From (2), ψm is a strictly monotonous
function of ρm. Hence, given a specific target speed vα for
mobile nodes in the smooth model, we have

fρm|ρm−1
(ρm | ρm−1)

=

Z 2(vα+δv)

0

fρm|ρm−1,vm
(ρm | ρm−1, vm) · fV (vm)dvm

=

Z 2(vα+δv)

0

fψm
(ψ) ·

˛

˛

˛

∂ψm

∂ρm

˛

˛

˛ · fV (vm)dvm

=

Z 2(vα+δv)

0

2
π
ρm · fV (vm)dvm

[4ρ2
m−1vm

2 − (ρm−1
2 + vm2 − ρm2)2]1/2

,(4)

where fV (v) is the PDF of the relative speed. From (3) and
(4), fV (v) is a key element for calculating the value of Pij .
However, a node speed for an arbitrary time step may stay in
one of the four phases of the smooth model. Furthermore,
a node speed varies in every time step within a moving
phase. Hence, how to derive the relative speed distribution
in the smooth model is very challenging. Next, we derive
the distribution of fV (v) through the statistical analysis of
simulation data of the relative speed in the smooth model.

2) Relative Speed Distribution fV (v): As shown in Fig. 1,
both the relative speed −→vi and the angle ψi of node w are i.i.d.
RVs. Then, according to the analytical result in [8], both Xk

and Yk can be efficiently approximated by Gaussian random
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Fig. 2. Distance transition probability matrix P.

distribution when k >> 1. Given Fig. 1, the magnitude of kth

step relative speed vk is represented as:

vk =
√

(Xk −Xk−1)2 + (Yk − Yk−1)2, (5)

where both RV Xk −Xk−1 and Yk −Yk−1 can be effectively
approximated by an identical Gaussian distribution with zero
mean. Furthermore, from the theoretical result shown on pp.
140 in [9]: If the RVs X and Y are normal, independent with
zero mean and equal variance, then the RV Z =

√
X2 + Y 2

has a Rayleigh density as follows:

fZ(z) =
z

a2
e

−z
2

2a2 U(z) and E{z} = a
√

π/2. (6)

Therefore, when k is large, we found that the distribution
of relative speed in (5) can be approximated by Rayleigh
distribution. As the target speed vα characterizes the stable
speed of a movement in the smooth model, we set the expected
relative speed E{v} as vα. Corresponding to (6), E{v} =
vα = a

√

π/2, then the PDF of relative speed is:

fV (v) =
v

(vα

√

2
π
)2

e

−v
2

2(vα

√
2
π

)2 =
πv

2vα
2
e

−πv
2

4vα
2 . (7)

To validate the expression in (7), we obtain the experimental
relative speed distribution fV (v) between two neighboring
nodes by simulations. The smooth model is simulated through
ns-2 simulator. In detail, 50 mobile nodes, with the same trans-
mission range R = 250 m, move in an area of 1401×1401m2

for a period of 500 seconds, such that the node density is σ =
5/πR2. On purpose to investigate the distribution fV (v) under
different levels of node speed, we respectively set the target
speed vα to 2, 5, 10, 15, 20 m/sec. In each scenario, E{α} =
E{β} = E{γ}, and pause time Tp = 0. Fig. 3 illustrates the
PDF of relative speed resulted from both simulation and the
theoretical expression in (7) versus different values of vα. We
observed that the proposed Rayleigh distribution with metric
vα matches very well with the distribution of relative speed
obtained by simulation, especially when vα is small. This is
because a smaller vα implies a larger number of k relative
steps, such that a better Gaussian approximation of Xk/Yk,
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in turn, a better Rayleigh distribution approximation of the
relative speed in the smooth model can be achieved. Therefore,
fρm|ρm−1

(ρm | ρm−1) can be calculated by substituting fV (v)
obtained from (7) into (4).
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Fig. 3. Comparison of the experimental relative speed distribution with the
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Upon the arguments of Pij in [7], if the number of states in
the matrix P is larger enough, i.e., ε is sufficiently small, we
can effectively use the middle points (i− 1

2 ) · ε and (j− 1
2 ) · ε

to represent the value of ρm−1 and ρm, respectively. Then,
Pij derived in (3) can be effectively approximated as:

Pij ≈ ε · fρm|ρm−1
[(j − 1

2
) · ε | (i− 1

2
) · ε)]. (8)

By far, we obtained all the necessary knowledge for con-
structing the matrix P with respect to different target speeds
vα of the smooth model. By using the matrix P, we analyze
topology dynamics of MANETs in the next section.

III. ANALYSIS OF TOPOLOGY DYNAMICS

The expected link lifetime T link and expected link change
rate ηl are two fundamental topology metrics, which can
effectively indicate the dynamic degree of network topology
in the presence of the node mobility. In this section, we first
analyze these topology metrics by using the distance transition
probability matrix P and validate the theoretical results by
simulation. Then, we apply T link and ηl to formulate the upper
bound connectivity of a MANET.

A. Expected Link Lifetime

In order to derive the expected link lifetime, we first analyze
the CDF and PMF of link lifetime as follows.

Let π(0) denote the probability of the initial state that node
w lies when the link is setting up. Thus, π(0) is a row vector
with n + 1 elements. Correspondingly, we denote πi(m) as
the probability that node w lies in state Si after the mth

step. Hence, π(m) =
(

π1(m), · · · , πi(m), · · · , πn+1(m)
)

.
For easy representation, we denote the distance transition
probability matrix P as P = [P1, · · · , Pi, · · · , Pn+1] and
Pi is the ith column vector of P. Upon the law of
matrix multiplication, we have the equation π(0) · P =

[π(0)P1, · · · , π(0)Pi, · · · , π(0)Pn+1]. As Sn+1 is the absorbing
state, π(0)Pn+1 represents the probability that node w moves
outside the transmission zone after 1st time step from its initial
position. Hence, given the knowledge of π(0) and the distance
transition probability matrix P, we can derive the CDF of link
lifetime distribution as follows:

Prob{Tlink ≤ m} = πn+1(m) = π(0)
P

m(n+ 1), (9)

where π(0)
P

m(n+1) is the probability of the (n+1)th element
of the row vector π(0)

P
m. Following (9), the PMF of link

lifetime distribution is derived as:

Prob{Tlink = m}
= Prob{Tlink ≤ m} − Prob{Tlink ≤ m− 1}
= π(0)

P
m(n+ 1) − π(0)

P
m−1(n+ 1). (10)

From (10), the expected link lifetime T link as a function of
m is represented as:

T link =

∞
∑

m=1

m[π(0)
P

m(n+ 1) − π(0)
P

m−1(n+ 1)]. (11)

According to Fig. 1, the initial state distribution π(0) relies
on the initial position (X0, Y0) of node w. Following the
same argument in Section II-C, when node w transits into
node u’s transmission zone, there is maximum r possible
states that node w can reach within one time step, where
r = d2(vα + δv)/εe. Hence, the possible states that the initial
position (X0, Y0) of node w can stay are from Sn−r+1 to Sn.
To obtain π(0), we assume that node w lies in these r states
with an equal probability as 1

r
. Hence, given π(0) and P, the

expected link lifetime T link is obtained from (11). To validate
the analytical results of T link derived in (11), Fig. 4 demon-
strates both simulation results and theoretical calculation of
expected link lifetime with respect to different node target
speed vα = 2, 5, 10, 15, 20 m/s, respectively. We can see that
the theoretical results match with the simulation data. As the
node speed increases, T link decreases dramatically when vα

is within the range [2, 10] m/sec, and the downtrend of T link

slows down when vα > 10 m/sec. As an illustration, T link

lasts 4 times longer for nodes moving at the target speed of 2
m/sec than that at the target speed of 20 m/sec.
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B. Expected Link Change Rate

Here, we analyze the expected link change rate, which is
defined as the expected number of link changes per second
observed by a single node. From the viewpoint of node u,
assume that the total number of new link arrivals, i.e., the
total number of new mobile nodes moving into its transmission
zone, during time interval [0, t] is Na(t). And the total number
of link breakages for the node u during time interval [0, t] is
Nb(t). Then, we denote the expected new link arrival rate λ
as λ = limt→∞

Na(t)
t

and the expected new link breakage rate
µb as µb = limt→∞

Nb(t)
t

, respectively. In [10], Samar et al.
showed that the expected new link arrival rate λ is equal to
the expected link breakage rate µb in a MANET. Let ηl denote
the expected link change rate. Then, we have

ηl = λ+ µb = 2λ. (12)

From (12), the expected link change rate ηl is two times
as large as the expected new link arrival rate λ. According to
Fig. 1, λ is equivalent to the expected number of new nodes
entering node u’s transmission zone at every time step. As
shown in Fig. 5, we extend the total number of states to n+r,
where r = d2(vα + δv)/εe. Hence, within one time step, the
furthest state a node can reach is r states away from its current
state. Therefore, a node could enter node u’s transmission zone
at the next time step, only if it is currently lying in one of the
states among {Sn+1, Sn+2, ..., Sn+r}. Let Pla(n + i) denote
the probability that a node in state Sn+i will move into the
transmission zone of node u within the next time step. Then,
Pla(n+ i) is represented as:

Pla(n+ i) =

n
∑

j=n+i−r

Pn+i,j , 1 ≤ i ≤ r, (13)

where Pn+i,j can be obtained from (4) and (8), respectively.
Furthermore, according to the state Sn+i, we denote the region
Dn+i as the the set of all positions whose distances to the
reference node u are in the range [(n+ i− 1)ε, (n+ i)ε]. As
shown in Fig. 5, the area of Dn+i is the area of a circular
ring, which has the outer radius (n+ i)ε and the inner radius
(n+i−1)ε, respectively. Hence, we have S(Dn+i) = πε2[(n+
i)2 − (n+ i− 1)2] = πε2(2i+2n− 1). Let σ denote the node
density of a MANET, which maintains a uniform distribution
of node location. Then, σ · S(Dn+i) is the average number
of nodes lie inside the area Dn+i. Therefore, by combing all
possible regions Dn+i, 1 ≤ i ≤ r, λ is derived as:

λ =
r

∑

i=1

Pla(n+ i) · σ · S(Dn+i)

= σπε2
r

∑

i=1

n
∑

j=n+i−r

Pn+i,j · (2i+ 2n− 1). (14)

To validate the analytical results for ηl and λ in (12) and
(14), respectively. We compare the theoretical results to the
simulation results according to the node target speed vα in
Fig.6. As can be observed, the analytical results are verified
by the the simulations results. Upon Fig. 6, we also found

ε(n+i)ε(n+r) (n+i−r)ε(n+1)ε nε

Pn+i,n+i−r
Pn+i,n−1

P n+i,n

R

D (n+i)

(n+1)D

D (n+r)

S1 n+i−rS Sn n+1S S n+i S n+r

Fig. 5. Derivation of expected new link arrival rate λ.

that given a fixed transmission change R, both ηl and λ grow
linearly with the increase of the node speed, especially when
vα ≥ 5 m/sec. For instance, when R = 250 m, the slope of the
expected link change rate versus the node speed is 0.28. Based
on this relation between ηl and vα, we can directly estimate
the change rate of network topology with different node speed
level in the smooth model.
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C. Discussion on Network Connectivity

Here, we utilize the knowledge of expected link lifetime
T link and expected link change rate ηl to investigate their
relationship with the average node degree for estimating
the network connectivity. Based on the definition of graph
connectivity in [11], the connectivity of the network G(t)
denoted by κ(G(t)) is defined as: the maximum value of k,
for which a connected network G(t) is k-connected at time t.
Let dG(t)(u) denote the degree of node u in G(t), which is the
number of edges of G(t) incident with node u. Let δ(G(t))
and E{dG(t)} be the minimum degree and average degree of
G(t), respectively. From the graph theory, κ(G(t)), δ(G(t))
and E{dG(t)} satisfy the inequality [11]:

κ(G(t)) ≤ δ(G(t)) ≤ E{dG(t)}. (15)

From (15), E{dG(t)} is the upper bound of the connectivity
of a MANET G(t). Thus, E{dG(t)} is a key parameter for
evaluating network connectivity. Next, we study the property
of MANET connectivity based on E{dG(t)} as follows.
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In a MANET G(t), we consider that each node is associated
with a queuing system. As shown in Fig. 1, for the queuing
system of node u, the event that node w is moving into
its transmission zone, denoted by Au, is referred to a new
arrival coming into the system. And the event of node w
moving outside the transmission zone Au is regarded as a
departure to the system. According to the Little’s law of a
queuing system [9]: the average number of customers L in
the system is equal to the average arrival rate Λ of customer
to the system multiplied by the average system time W per
customer, that is, L = ΛW . Because the link between the
node pair (u,w) immediately forms once node w transits into
node u’s transmission zone, there is no waiting time for node
w in the queuing system of node u. Thus, the system time
node w spends is from the instant of its arrival into Au to the
instant of its departure from Au, which is equivalent to the
link lifetime of the node pair (u,w), i.e., W = T link. And
the average customer arrival rate Λ to the queuing system of
node u is equivalent to the expected new link arrival rate λ
of node u, i.e., Λ = λ. Consequently, the average number of
system customers of a mobile node is equivalent to the average
number of neighbors of that node, that is, L = E{dG(t)}.
Hence, with (12) and (15), E{dG(t)} is represented as:

κ(G(t)) ≤ E{dG(t)} = ΛW = λ · T link =
1

2
ηl · T link, (16)

where T link derived in (11) is the function of node target
speed vα and transmission range R. And λ derived in (14) is
the function of node density σ, R and vα. According to (16),
Fig. 7 illustrates the relationship among E{dG(t)}, vα, and σ
for a MANET G(t) with a fixed transmission range R = 250
m. As an illustration, for the network with a node density
σ = 20/πR2, when nodes move at target speed vα = 20 m/s,
the expected number of neighboring nodes E{dG(t)} observed
by a specific node at an arbitrary time t is 5. In Fig. 7, we
found that the impact of node speed on average node degree
E{dG(t)} is more significant than the node density σ. This
is because the expected new link arrival rate λ rises linearly
with the increase of the node density, while the expected
link lifetime T link decreases exponentially with the growth
of node target speed. According to Fig. 7, given a fixed σ,
E{dG(t)} is generally 4 times larger for nodes moving at
the target speed of 2 m/sec than those at the target speed
of 20 m/sec. Given (12), (15) and (16), we found the upper
bound connectivity of a MANET can be directly obtained from
the values of expected link lifetime T link and expected link
change rate ηl. Hence, these two topology metrics establish
a clear relationship among network connectivity, topology
dynamics and node mobility in a MANET.

IV. CONCLUSIONS

In this paper, we studied topology dynamics by analyzing
MANET link properties under the smooth mobility model
because it generates smooth node movements, holds stable
node speed and maintains a uniform node distribution. To
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Fig. 7. Expected number of neighbors per node according to different node
target speeds vα and node density σ= number/πR2 , where R = 250m.

mimic a realistic moving scenario of MANETs, we provided
a relative movement trajectory model, in which the relative
velocity of two mobile nodes changes during their link con-
nection. We developed a distance transition probability matrix
P, so that we can predict the future link status based on the
the present distance between two neighboring nodes and their
relative speed. Hence, by using the matrix P, we derived the
analytical results of expected link lifetime T link and expected
link change rate ηl, and further validated them by extensive
simulations. Finally, we applied these two topology metrics
T link and ηl to formulate the upper bound connectivity of a
MANET. Our study in this paper can help people on mobility
related research issues of MANETs, such as routing protocol
design and topology control optimization.
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