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Abstract—In battery-constrained large-scale sensor networks,
nodes are prone to random failures due to various reasons, such
as energy depletion and hostile environment. Random failures
can substantially impact the communication connectivity, which
in turn impairs the sensing coverage. Redeploying additional
sensors is one effective way to maintain the connectivity; however,
it may be infeasible and costly to replace failed sensors one by
one. When should a redeployment be conducted is an interesting
and important question in designing resilient sensor networks.
In this paper, we tackle this problem by investigating the
devolution process of large-scale sensor networks. We first define
a new metric called the first partition time, which is the first
time that a network starts to discomposes to multiple isolated
small components. Then we analyze the devolution process in a
geometric random graph from a percolation-based connectivity
perspective and obtain the condition under which the graph is
not percolated. Finally, we find out that the lower bound of the
first partition time depends on the node lifetime distribution and
should be of the order between log(log n) and (log n)1/ρ for
ρ > 1. This result provides a theoretical upper bound of the
latest time that a redeployment has to be carried out.

I. INTRODUCTION

In large-scale wireless sensor networks, nodes are vulner-
able to multiple failures caused by devastating environment,
software or hardware malfunctioning, and energy depletion.
These random failures can impact connectivity, which is the
necessary condition for coverage since the transmission ranges
of sensors are typically greater than their sensing ranges. As
pointed out in [1], redeploying additional nodes is necessary
to replace failed sensors and maintain a connected topology;
however, for many unattended outdoor sensor network ap-
plications, such as military surveillance and environmental
monitoring, it is usually inefficient and costly to replace failed
sensors one by one. Therefore, it is important for us to know
the proper time before the breakdown of network topology so
that a batch of new sensors can be redeployed at once. This
demands an in-depth understanding on the devolution process
of wireless networks, especially the critical time when network
partitioning happens due to random failures.

We notice that the connectivity of wireless networks has
attracted growing interest and been studied extensively [2]–
[10]. While the only work addressing the transition time in the
devolution of sensor networks, to the best of our knowledge,
was presented in [10]. In the paper, authors showed that the
appearance of isolated nodes or parts occurs very sharply in
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time and there exists a critical time, determined solely by
sensor lifetime distribution, at which the number of emergent
lacunae of a given (geometric) size is asymptotically Poisson,
as the number of sensors grows. Nevertheless, in traditional
connectivity studies, a network is disconnected as long as there
exist isolated nodes, which is, however, not applicable for
sensor networks. Sensor nodes are usually densely deployed
hence the underlying network has high redundancy for sensing
and communications [1], which implies that a few of dead
nodes or isolated nodes should not be considered as the sign
of network partitioning. Thus, a full connectivity requirement
is unnecessary and impractical for sensor networks, and we
need a new concept characterizing the connectivity change
due to random failures.

In this paper, we are interested in the following questions:
for a large-scale wireless sensor network in the presence of
random failures, when does the network first become fully
partitioned? Here a network is called fully partitioned if the
network discomposes into many isolated parts so that even
the largest component contains a small potion of sensors only
[11]. To tackle this problem, we couple the devolution process
in a wireless sensor network with a continuum percolation
process [12], [13] in a geometric random graph [14]. By
using the concept of percolation probability, we first define
first partition time as the first time at which a network is
fully partitioned, then we analyze the percolation condition
under which a geometric random graph does not have a
giant component. Through the analysis, we find out that
the first partition time is dependent on the network size n,
initial density λ0, transmission radius r, and individual node’s
lifetime distribution S(t). Finally, when S(t) is light-tailed
(exponential), the lower bound of the first partition time is
shown to be of the order log(log n); while if S(t) is heavy-
tailed (Pareto), the order is (log n)1/ρ, where ρ is the shape
parameter of Pareto distribution and ρ > 1.

The rest of this paper is organized as follows. In Section II,
we define the first partition time and formulate the problem. In
Section III, we overview the application of percolation theory
in wireless networks. In Section IV, we derive the lower bound
of first partition time, followed by conclusion in Section V.

II. PROBLEM FORMULATION

In this work, we assume that all nodes of a wireless sensor
networks are uniformly and randomly distributed on R

2 and
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confined into a square B(s) with side length s =
√

n/λ0 > 0,
where n is the (expected) number of nodes in B(s) and
λ0 is the node density. When n is sufficiently large, the
node deployment can be governed by a homogeneous Poisson
point process with density λ0 in the Euclidean plane, denoted
by Hλ0 . We further assume that all nodes have the same
transmission radius r (r > 0). Then the communication graph
of such a network is modeled by a geometric random graph
[14], denoted by G(Hλ0,s, r), where Hλ0,s � Hλ0 ∩ B(s)
with λ0 = n/s2 fixed as n → ∞ and a link exists between a
pair of nodes only if their distance is less than r.

To describe the impact of node failures on the devolution
of wireless multi-hop networks, we introduce a random failure
model to extend the basic geometric random graph model. In
this model, each node is either operational or failed at any
time and a failed node does not recover back to operational
state. Let Ti (1 ≤ i ≤ n) denote the lifetime of node i before
it is failed, then T1, · · · , Tn are random variables, which are
assumed independently and identically distributed (i.i.d.). The
complementary cumulative distribution function (c.d.f.) of the
node lifetime is called the survival function, denoted by S(t) �
Pr(Ti > t). The survival function S(t) actually serves as the
probability that a node is surviving at time t, which will be
used extensively in our succeeding analysis.

In order to explain how the devolution process of a large-
scale sensor network is related with a continuum percolation
process on the geometric random graph, we need to introduce
some percolation terminologies first. Let C0 be the component
of a graph G(Hλ,s, r) containing the origin 0 in R

2, then the
percolation probability, denoted by p∞(λ), is the probability
that C0 contains infinite nodes as n → ∞, i.e., p∞(λ) �
Pr(|C0| = ∞). A fundamental result of continuum percolation
is there exists a critical density λc. If λ > λc, G(Hλ,s, r) is in
the supercritical phase with a giant component and p∞(λ) >
0; while if λ < λc then G(Hλ,0, r) is in the sub-critical phase
with no giant component and p∞(λ) = 0.

Now given a large-scale sensor network represented by
G(Hλ0,s, r) with each node associated with a survival function
S(t), according to the Thinning theorem [14], the set of
operational nodes is also a Poisson process with density
function λ1(t) � λ0S(t). As time goes, although more and
more failures are present, as long as λ1(t) is high enough,
most of remaining nodes are still connected in a giant com-
ponent; while once λ1(t) drops below λc, the connectivity
among remaining operational nodes breakdowns quickly and
the network is fully partitioned. Thus, the percolation process
is an analogy to the devolution process aforementioned. To
understand the phase transition time, we formally define a new
metric called first partition time as follows.

Definition 1: Let G(Hλ0,s, r) be a geometric random
graph, in which each point is independently associated with
the same survival function S(t). Given λ0 = λ1(0) > λc, the
first partition time is defined by

tp(n) � inf{t > 0 : p∞(λ1(t)) = 0}. (1)

where λ1(t) � λ0S(t).
With the definition of tp(n), we formulate the question

raised in Section I as follows.

Definition 2: Network Partition Time (NPT) Problem:
For a geometric random graph G(Hλ0,s, r) with a common
survival function S(t), suppose the graph is initially fully
connected but devolves as time goes, find out a lower bound
of the first partition time tp(n) with respect to S(t).

Before we solve the NPT problem, we provide a brief
overview on the percolation theory and its applications in
wireless multi-hop networks in the next section.

III. PERCOLATION IN WIRELESS MULTI-HOP NETWORKS

Percolation theory, originally developed in physics, chem-
istry, and material science, has been used to describe the
behavior of connected clusters in a (large) random graph
for decades. The main concept of percolation theory is the
existence of a percolation threshold (e.g., critical density),
below which only finite clusters are present and above which
an infinite cluster is possible to appear. The appearance of
the infinite cluster in percolation theory corresponds to the
emergence of the giant component in graph theory, which
makes percolation theory a powerful mathematical tool in
network connectivity analysis.

In the standard discrete percolation model, of the main
concern is the existence of infinite “open paths” in the plane
square lattice Z

2, where each edge of Z
2 is either open

with probability p and closed otherwise. The percolation
threshold in this model is the critical probability defined
by pc � inf{p : p∞(p) > 0}, which is actually equal
to 1

2 in two dimensions [13]. Different from the discrete
percolation model, the continuum percolation model is induced
by a homogeneous Poisson point process defined on the
continuous space R

2 [12], where the percolation threshold
is just the critical density λc aforementioned in Section II.
Nevertheless, the exact value for the critical density λc is still
unknown so far, although some numeric bounds were obtained
from rigorous mathematical proofs with poor estimation (e.g.,
0.696 < λc < 3.372) or from computer experiments with little
theoretical justification [15].

We notice that the percolation theory, especially the con-
tinuum percolation model, has been used to analyze the con-
nectivity, capacity, and latency of wireless networks recently
[6]–[8], [11]. For example, the impact of signal interference
on the connectivity of wireless ad hoc networks was studied
in [6] and it was found that long-distance multi-hop com-
munications are achievable only if the orthogonal factor is
below a certain critical value. In [7], it was shown that if the
attenuation function does not have a singularity at the origin
and is uniformly bounded, then either the network becomes
disconnected or the available rate per node decreases like
1/n based on the percolation condition obtained for large
node densities. And in [8], the latency of message deliveries
between any sensing node and a fixed sink was studied for
wireless sensor networks by using an extension of first passage
percolation theory, which was also used in [11] to evaluate
the performance of a degree-dependent energy management
algorithm. The above works demonstrate the applications of
the percolation theory in wireless multi-hop networks; while
none of them ever addresses our NPT-problem.
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IV. ANALYSIS ON THE FIRST PARTITION TIME

In fact, a trivial solution to the NPT problem tells that:
when S(t) < λc/λ0, no giant component exists and thus
the network is fully partitioned. However, as we mentioned
in Section III, the exact value for λc is unknown, which
makes the NPT problem an open and challenging problem
in the continuous domain. In our approach, we first map
the continuum percolation process onto a discrete lattice and
obtain the percolation condition for the discrete lattice. Then,
we carry out a reverse mapping back to the continuous plane
so that the infinite edge cluster on the discrete plane implies a
giant component on the continuous plane. At last, we obtain
the continuum percolation condition involving the survival
function S(t), which enables us to provide the scaling law
on tp(n) by giving S(t) specific distributions.

A. Mapping and Open Edge Definition

We begin by constructing a square lattice, denoted by L
over the plane, with edge length d. Let L′ be the dual lattice
of L, constructed by putting a vertex in the center of every
face (square) of L, and an edge across every edge of L. Since
L is a square lattice, L′ is simply the same lattice shifted by
d/2 horizontally and vertically, as depicted in Fig. 1.

d
0

o′k

Fig. 1. Lattice L (solid), its dual L′ (dashed), and a circuit (bold).

To define an open edge, we need to use the crossing property
[12]–[14] to describe the connection among multiple points.

Definition 3: In a 2-D plane, let Xv = (xv, yv) be the
position of a point v. For a 2-D box B � [0, l1] × [0, l2], if
there exist a series of points v1, v2, · · · , vm within B such that
∀1 ≤ i < j ≤ m xvi

< xvj
, 0 < xv1 < r, l1 − xvm

< r, and
‖Xvi+1 −Xvi

‖ ≤ r, then B has a connected path from left to
right called LR-crossing. If the conditions above are satisfied
in B when x and l1 are substituted by y and l2, respectively, B
has a connected path from top to bottom called TB-crossing.

2d

d

d

a

Fig. 2. A horizontal edge a that fulfills the LR-crossing and TB-crossing.

Now for every horizontal edge a of L, let (xa, ya) be the
coordinates of the point in the center of a. We use a similar
way used in [16] to define the vicinity of a and introduce an
event Ea that occurs if the following three events occur,

1) LRa � { there is an LR-crossing in the rectangle Ba �
[xa − d, xa + d] × [ya − d

2 , ya + d
2 ]},

2) TBL
a � { there is a TB-crossing in the “left” square

BL
a � [xa − d, xa] × [ya − d

2 , ya + d
2 ]}, and

3) TBR
a � { there is a TB-crossing in the “right” square

BR
a � [xa, xa + d] × [ya − d

2 , ya + d
2 ]}.

The occurrence of the event Ea is illustrated in Fig. 2 where
balls represent Poisson points. Ea can be defined similarly for
vertical edges by exchanging the notations of xa and ya in the
conditions above.

Now we can define open edges as follows
Definition 4: In L, an edge a is open iff the event Ea

occurs in its associated rectangle Ba; and closed otherwise. In
L′, an edge a′ is open if there is an open edge of L crossing
a′; otherwise, a′ is closed.

This open edge definition bridges the discrete and con-
tinuous planes in that a cluster comprised of adjacent open
edges in L corresponds to a unique component (comprised of
operational nodes) in G(Hλ0,s, r). This rationale guarantees
the validity of our mapping approach.

Lemma 1: Given the mapping and open edge defined
above, if there exists an infinite open edge cluster in L, then
there exists a giant component in G(Hλ0,0, r).

Sketch of proof: For two adjacent edges (of the same
direction), a and b, in L, suppose they are associated with
rectangles Ba and Bb, respectively, then Ba and Bb intersect
in the same square Sab, i.e., Sab = Ba ∩ Bb. If a and b are
open, there exists at least one TB-crossing Ps in Sab. Let Pa

and Pb be the LR-crossings in Ba and Bb, respectively, then
both of them must intersect with the same TB-crossing in Sab.
This implies an LR-crossing of the rectangle Ba∪Bb, formed
by Pa, Pb, and Ps. For perpendicular adjacent edges, similar
rationale also applies. Further, the union of the rectangles of
all edges in L actually covers the whole area of the graph in
the continuous plane, then the result follows.

Pa

Pb

PsBa Bb

a b

Sab

Fig. 3. A long horizontal crossing formed by two adjacent open edges.

Fig. 3 gives an illustration for the formation of the LR-
crossing described in the proof above. Lemma 1 implies that
if the lattice L is percolated then the continuum percolation
also occurs in the graph G(Hλ0,0, r); and vice versa. Thus,
the percolation condition obtained in L can be applied for
continuum percolation, which will be explained next.

B. Non-Percolation Condition for Discrete Lattices

As we mentioned in Section III, in the discrete percolation
theory, the open or close state of every edge is independent
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from others [17]. In our discrete lattice mapping, the state
of an edge is, however, dependent on how Poisson points
surrounding the edge are connected, which implies at least
adjacent edges are not independent. Therefore, we cannot
directly use the critical probability (i.e., pc = 1

2 ) and we need
to derive an alternative percolation condition for our mapping,
which is based on the following fact.

Lemma 2: Given a lattice L containing the origin 0, let
σ(m) be the number of paths with length m (i.e., comprising
m edges) that start at 0, then σ(m) ≤ 4 · 3m−1.

By using the fact above, we have
Lemma 3: For the given lattice L constructed above, let p

be the probability that an edge is open, if p < 1
9 , then p∞ = 0.

Sketch of proof: The largest open edge cluster is finite iff
no infinite open path (comprised of open edges) exists. Let Pm

be any path having a length m and beginning at the origin in
L, then Pr(Pm is open) = Pr(all m edges are open). Based
on the open edge definition in Section IV-A, the states of
non-adjacent edges are independent, so at least m/2 edges
among m edges of Pm have independent states, which implies
Pr(Pm is open) ≤ pm/2. Thus the probability that there exists
an open path of length m is given by

Pr(∃ open path Pm) ≤ p
m
2 σ(m) =

4
3
(9p)

m
2 . (2)

If 9p is strictly less than 1, i.e., p < 1
9 , then (2) converges to

0 as m → ∞, which implies no infinite open path existing in
L and thus p∞ = 0. This finishes the proof.

Lemma 3 provides us a useful tool to study the percolation
on the continuous plane. Based on the definition of open edge,
we know that p = Pr(Ea), so if Pr(Ea) < 1

9 the graph is
fully partitioned. By deriving an upper bound of Pr(Ea), we
can obtain the non-percolation condition with respect to the
survival function S(t), presented right next.

C. Non-Percolation Condition for Continuum Space

The critical condition under which no giant component
exists in the graph G(Hλ0,s, r) is concluded as follows.

Theorem 1: Given a graph G(Hλ0,s, r) with each node
associated with a common survival function S(t), If S(t)
satisfies the following condition,

S(t) <
ln
√

3 − ln(
√

3 − 1)
crλ0 log n

, (3)

where 0 < c < ∞ is a finite positive number independent of
n, then G(Hλ0,s, r) is in the sub-critical phase.

Proof: Let SLRL
a and SLRR

a denote the events that there
is an LR-crossing in BL

a and BR
a , respectively, where BL

a and
BR

a are defined in Section IV-A. Then the occurrence of event
LRa guarantees the occurrences of both events SLRL

a and
SLRR

a , and thus

Pr(Ea) ≤ Pr(SLRL
a ∩ TBL

a ∩ SLRR
a ∩ TBR

a )
= Pr(SLRL

a ∩ TBL
a )Pr(SLRR

a ∩ TBR
a ). (4)

The last equality in (4) is due to the fact that events SLRL
a ∩

TBL
a and SLRR

a ∩ TBR
a occur in disjoint sets BL

a and BR
a ,

i.e., they are independent events. We further assume that the

points used for the LR-crossing are different than those used
for the TB-crossing in BL

a (and BR
a ), then by the BK inequality

(Theorem 2.3 [12]), we have

Pr(Ea) ≤ (Pr(SLRL
a )Pr(TBL

a ))2 = Pr(SLRL
a )4. (5)

To calculate Pr(SLRL
a ), we study the occurrence of the

complementary event of SLRL
a , denoted by SLRa, i.e.,

SLRa � { no LR-crossing exists in BL
a (or BR

a ) }. Suppose
that there is a band with width length r crossing vertically
through BL

a , then the intersection of the band and BL
a forms

a rectangular with length d and width r, denoted by Br. Let
SLRc � { no surviving nodes located in Br}, then SLRa

surely occurs when SLRc occurs, which is illustrated in Fig.
4. Since SLRc is only one cause for the occurrence of SLRa,
it is obvious that Pr(SLRc) < Pr(SLRa), which yields

Pr(Ea) < (1 − Pr(SLRc))4. (6)

d

d r

BL
a

Br

Fig. 4. An illustration of the event that intercepts an LR-crossing.

As aforementioned, the point process of (remaining) opera-
tional nodes is a Poisson process with density function λ1(t) =
λ0S(t), then we have Pr(SLRc) = exp(−λ0S(t)dr). To
move forward, the challenge here is confining the side length
d (of the lattice L) to a proper order. On one hand, d cannot be
a constant number or in the order of O(1); otherwise the event
Ea could not be guaranteed to occur with a high probability.
On the other hand, d cannot be too large or even in the order
of O(

√
n); otherwise the problem of finding the probability of

an open edge will be equivalent to the problem of finding the
probability that there exists a giant component in graph. Notice
that the percolation conditions for the discrete plane, given in
Lemma 3, are obtained under the condition that there are an
infinite number of edges in the lattice L (L′). This implies that

limn→∞
√

n/λ0

d → ∞, i.e., d = o(s). Thus, we conjecture that
d should be in the order of log n; more specifically, we define
d as d � c ln(n), where 0 < c < ∞ is a finite positive number
independent of n. Then (6) can be written as

Pr(Ea) < (1 − exp(−crλ0S(t) ln n))4. (7)

Since p � Pr(Ea), if the following inequality holds

(1 − exp(−crλ0S(t) ln n))4 <
1
9
, (8)

then p < 1
9 and thus no infinite open edge cluster exists

in the discrete lattice by Lemma 3. Finally, we can obtain
the condition given in (3) from (8) easily by elementary
derivations. Applying Lemma 1, when S(t) satisfies (3), the
original graph on the continuous plane is in the sub-critical
phase. The proof completes.
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Fig. 5. The lower bounds of the first partition time.

D. Lower Bound of the First Partition Time

In the last subsection, we have obtained the condition
under which a large-scale wireless sensor network starts to
be partitioned fully, we can use the condition given in (3) to
derive the lower bound of the first partition time tp(n) once
the survival function S(t) is given.

From reliability engineering, we know that many lifetime
distributions (e.g., exponential, log-normal, Pareto, Weibull)
are either light-tailed or heavy-tailed according to the decay
speed of their tails. Since the exponential distribution is the
only distribution to have a constant failure rate and applies
naturally to model memoryless lifetime, it is used to represent
light-tailed survival functions; while the Pareto distribution is
used to represent heavy-tailed survival functions when node
lifetime is power law or with very large variance.

Now we present the lower bounds of tp(n) with respect to
the exponential and Pareto survival functions as follows.

Corollary 1: When S(t) is light-tailed exponential with
mean 1/α, i.e., S(t) = e−αt, the lower bound of tp(n) is,

tp(n) =
1
α

ln(ln(n)) + c1 ∼ Θ(log log n), (9)

where c1 = 1
α (ln(crλ0)−ln(ln

√
3−ln(

√
3−1))) and c > 0 is

a finite constant. When S(t) is heavy-tailed Pareto with mean
ηρ/(ρ − 1) and ρ > 1, i.e., S(t) = (t/η)−ρ, the lower bound
of tp(n) is given by

tp(n) = c2(ln n)1/ρ ∼ Θ((log n)1/ρ), (10)

where c2 = η(crλ0/(ln
√

3 − ln(
√

3 − 1)))1/ρ.
By substituting S(t) = e−αt and S(t) = (t/η)−ρ into (3),

(9) and (10) can be obtained easily. Up to now, we have solved
the NPT-Problem and quantified the first partition time.

To confirm the correctiveness of our analysis, we conduct a
numeric simulation in which the relative giant component size
is used to examine the devolution process of a network. The
parameters used in the simulation are as follows: n = 10000,
r = 150 m, λ0 = 0.00025, α = 0.001, η = 500, and ρ = 2.
The simulation results are shown in Fig. 5 with theoretical
values of tp(n) annotated. From the figure, we can see that the
relative giant component is very low after tp(n), indicating a
fully partition network, and our analytical results provide good
approximations to the lower bound of the critical time.

V. CONCLUSIONS

In this paper, we studied the devolution process of large-
scale sensor networks represented by a geometric random
graph of n nodes in which each node is associated with a
common survival function S(t). By couping with a contin-
uum percolation process on the geometric random graph, we
obtained the condition involving the survival function under
which the graph is in the sub-critical phase. We found that
the first time that the graph starts to discompose into many
isolated finite components, defined as the first partition time,
only depends on the network parameters (node density λ0,
transmission radius r, network size n, and survival function
S(t)). Further, by analyzing exponential and Pareto survival
functions, the lower bound of the first partition time was
shown to be of the order between log log n and (log n)1/ρ for
ρ > 1. This result can be used as a theoretical guideline for
scheduling the redeployment of additional nodes to maintain
the connectivity of sensor networks, and will serve as the
basis for our further understanding on the phase transition
phenomena in the network devolution.
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