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Abstract—The timeliness of packet delivery is an important
performance measure in wireless networks, especially when
urgent messages need to be transported through a network.
This paper investigates the fastest packet transportation in
light-loaded wireless networks. We show that the end-to-end
packet delay depends largely on the locations of the relay nodes
that forward the packet and there exists a shortest-delay path
theoretically. We also propose a routing algorithm to locate a
fast relay path in actual networks to achieve the near-shortest
packet delay.

I. INTRODUCTION

Multihop routing is an important strategy for information
transmission in wireless ad hoc networks. The nodes in the
network cooperate to relay a packet if the source and destina-
tion are not within each other’s transmission range. In order
to establish the multihop path, a routing protocol is needed
that may consider a variety of factors, such as shortening the
path discovery delay [1], minimizing the routing overhead [2],
improving the protocol scalability [3], and saving the node
energy [4]. However, the shortest-delay routing is not studied
sufficiently in the wireless networks.

We study in this paper the routing strategy to expedite
packet transportation in wireless networks by finding the
shortest-delay path. Locating the shortest-delay path in a
wireless network not only provides the support for express
communications, but also enhances our understanding on the
best achievable network performance in terms of the packet
delay. Previous study on the shortest-delay path discovery is
mainly from the load balancing perspective [5], [6], where the
path traversing the least loaded nodes is selected such that
a packet experiences the least queuing and processing delays
at the intermediate relay nodes. In some network scenarios,
however, the traffic load is low everywhere, for example
the sensor networks. As the task of a sensor network is
environmental monitoring, there are few message exchanges
most of the time when no concerned event occurs in the
area of surveillance. When events happen and reports are sent
to the sink, the load on the relay nodes is also well below
the processing and the communication capability of these
nodes, because the reports are generated only from the limited
number of sensors near the event locations and the sensors are
designed to handle such amount of traffic without difficulty.
In these light-loaded networks, load balancing does not gain
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noticeable improvement on the packet transportation delay.
Instead, the wireless link capacity becomes the dominant factor
in determining the packet delay.

The well-known Shannon Capacity defines the maximum
bandwidth that a communication link can provide, which is
expressed as C = B log2(1 + S

N ), where C is the available
bandwidth, B is the frequency band, and S

N is the signal-to-
noise ratio at the receiver. For wireless links, due to path loss,
the received signal at a receiver is S = Pd−α, in which P
is the transmitted power, d is the Euclidean distance between
the sender and the receiver, and α is the attenuation exponent.
Thus, the length d of a wireless link directly affects the link
capacity, which in turn determines the transmission delay of
a packet on this link. The end-to-end delay experienced by a
packet, which is the summation of all the transmission delays
on the traversed links, thus depends on the specific path chosen
by the packet. As such, identifying the relay path that has the
shortest transmission delay is the key to achieving the fastest
packet transportation in light-loaded wireless networks.

In order to guide the path search, we define the concept
of Packet Transportation Speed. Minimizing the end-to-end
packet transmission delay is equivalent to maximizing this
packet transportation speed. Investigation shows that this speed
has an upper bound that is reached under certain conditions.
We identify these conditions and apply them as the guidance
for path search through designing a new routing algorithm.
This routing algorithm finds the near-optimal relay path in
terms of the shortest end-to-end packet delay.

The rest of this paper is organized as follows. We formulate
the packet transportation speed problem and identify the
conditions for the maximum speed in Section II. Based on the
theoretical result, we propose in Section III a routing algorithm
that locates the shortest-delay path in light-loaded random
wireless networks, the performance of which is evaluated in
Section IV. Finally, Section V concludes this paper.

II. FASTEST PACKET TRANSMISSION

A. Problem Formulation and Assumptions

We define the Packet Transportation Speed as follows to
measure how fast a packet is transmitted in a network:

v(t) =
d(t)
t

, (1)

where t is the time duration since the packet has left its
source node and d(t) is the straightline distance travelled
by the packet during the period t. In this paper, we study
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Fig. 1. An example of multihop transmission, where a packet is transmitted
from u0 to un in n hops with transmission delay ti on the i-th hop. ‖u0un‖
denotes the straightline distance between u0 and un.

a light-loaded network where the packet queuing, processing
and collision-incurred retransmission delays are negligible as
compared to the packet transmission delay. We also ignore
the propagation delay of the electrical wave that travels in the
speed of light in the air. As such, the duration t may be written
as t =

∑n
i=1 ti, where ti is the transmission delay over the i-

th hop. An example of the multihop transmission is illustrated
in Fig. 1. For a given pair of source and destination nodes u0

and ud, d(t) = ‖u0ud‖ is fixed. Hence, minimizing the end-
to-end transmission delay t is equivalent to maximizing the
speed v(t), which allows us to transform the packet delay
minimization problem into the packet transportation speed
maximization problem. The solution for the latter problem will
simultaneously serve the former problem.

Next, we show that there exists an upper bound v∗ such
that v(t) ≤ v∗ for any relay path. For clearer presentation, we
first list our assumptions and notations below.

• The nodes are static and randomly located in the network
in a Poisson point process with density λ.

• A total of B Hz spectrum is shared by all the nodes.
• Every node has a fixed transmission power P .
• The noise N including the ambient and the interference

noise is constant everywhere in the network.
• The wireless link between two nodes is characterized by

a path loss model with the attenuation exponent α ≥ 2
[7]. Some typical values of α include α = 2 as in the
free space and α = 4 as in the urban area.

• The capacity of a wireless link is C = B log2(1+ P
N d−α),

where d is the Euclidean length of the link.
• Advanced error control codes are used such that the

available link bandwidth equates its capacity C.
• A packet contains L bits.

B. Fastest Packet Transportation Speed

Let us denote ‖ui−1ui‖ as the Euclidean distance between
nodes ui−1 and ui, and ti as the time to transmit a packet
from ui−1 directly to ui. By definition,

v(t) =
d(t)
t

=
‖u0un‖

t

≤
∑n

i=1‖ui−1ui‖∑n
i=1 ti

(2)

≤ max
i

‖ui−1ui‖
ti

(3)
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Fig. 2. An illustration of the transmission radius x∗, where ‖u1u2‖ = x∗,
‖u1u3‖ < x∗, and ‖u1u4‖ > x∗. As Cuiuj = B log2(1+ P

N
‖uiuj‖−α),

Cu1u3 > Cu1u2 > Cu1u4 . When u1 sends a packet to u2 in the rate
Cu1u2 , u3 receives the same packet correctly, but u4 does not.

= max
i

B

L
‖ui−1ui‖ log2(1 +

P

N
‖ui−1ui‖−α)

≤ B

L
x∗ log2(1 +

P

N
(x∗)−α). (4)

It is shown in [8] that there exists a maximizer x∗ to
the function x log2(1 + P

N x−α). Hence, v(t) ≤ v∗, where
v∗ = B

L x∗ log2(1 + P
N (x∗)−α). In order to achieve v∗, all the

Inequalities (2), (3) and (4) must be tight, which takes place
when all of the following conditions are satisfied:

1) The relay nodes are located in a straightline such that
‖u0un‖ =

∑n
i=1‖ui−1ui‖ (see Inequality (2)).

2) The neighboring relay nodes are separated from each
other in equal distance such that ‖u0u1‖

t1
= · · · =

‖un−1un‖
tn

(see Inequality (3)).
3) The separation distance equals x∗, i.e., ‖ui−1ui‖ = x∗

(i = 1, · · · , n) (see Inequality (4)).
These optimal conditions identify a packet relay path that
transmits a packet at the fastest speed.

C. Transmission Radius (x∗) Determination

Note that when a node forwards a packet to the next node
located in x∗ distance away using the full capacity of the
wireless link between them, any node located in a distance less
than x∗ from the sender can also receive the packet correctly,
but any node located more than x∗ distance away from the
sender cannot receive the packet. Fig. 2 depicts an example of
such situation. As such, we name x∗ the transmission radius
in the sense of achieving the fastest packet transmission.

The value of x∗ is critical, as it determines the desired
location of the next-hop relay node as well as the data
rate a forwarding node can use. However, its solution is
not given in [8]. We derive its solution next. By defining
f(x) = x log2(1 + P

N x−α), we know that x∗ satisfies the
equation f ′(x∗) = 0, which is expressed as

(1 + y) log2(1 + y) =
α

ln 2
y, (5)

where y = P
N (x∗)−α. Equation (5) can be rewritten as

y = e
αy
1+y − 1, (6)

which allows us to compute y in a recursive way:{
y0 = eα − 1,

yi = e
αyi−1
1+yi−1 − 1 i = 1, 2, · · · .

(7)
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TABLE I
SAMPLE VALUES OF y(α) AND k(α)

α y(α) eα − 1 k(α) ( 1
eα−1

)
1
α

2 3.9216 6.3891 0.5050 0.3956
3 15.8010 19.0855 0.3985 0.3742
4 49.4353 53.5982 0.3771 0.3696
5 142.3249 147.4132 0.3710 0.3684
6 396.3833 402.4288 0.3690 0.3680
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Fig. 3. The values of transmission radius x∗.

The final value of yi after it has converged is the solution to
Equation (5). Since y depends on α, we write y = y(α). By
defining k(α) = ( 1

y(α) )
1
α , we obtain

x∗ = (
P

Ny(α)
)

1
α = k(α)(

P

N
)

1
α . (8)

Table I lists the computed y(α) and k(α) for some sample
α values, in which we also compute eα − 1 and ( 1

eα−1 )
1
α

as the closed-form approximation to y(α) and k(α). We see
that y(α) and k(α) can be approximated well by eα − 1 and
( 1

eα−1 )
1
α , especially for large values of α. Thus, for any given

α, P and N , we can either determine y(α), k(α) and x∗ by
Equations (7) and (8) or approximate x∗ as

x∗ ≈ (
P

N(eα − 1)
)

1
α . (9)

Some sample values of x∗ are plotted in Fig. 3 with respect
to different signal-to-noise ratios and different α values. Next,
we apply the result of x∗ to design a new routing algorithm,
the goal of which is to discover the path with the shortest
end-to-end transmission delay.

III. THE FASTEST PACKET TRANSMISSION ALGORITHM

Based on the analysis, we know that a packet is transmitted
at the fastest speed if the next-hop node is located at a
distance of x∗ from the forwarding node and in the direction
towards the destination. In this section, we design a routing
algorithm that identifies the next-hop relay nodes to achieve
the fastest packet transmission. As this new algorithm assumes
the knowledge of node locations, it can be viewed as a variant
of the geographic routing algorithms. Specifically, we assume
the following information is available to every node [9]:

• the location of the node itself,
• the location of the packet destination,

The Fastest Packet Transmission Algorithm
1 find x∗ by Equations (7) and (8) or by Equation (9)
2 determine γ = x∗

‖uiud‖
3 if γ ≥ 1
4 then compute C = B log2(1 + P

N ‖uiud‖−α)
5 transmit the packet to ud at rate C
6 else determine z = (1 − γ)ui + γud

7 find node ui+1 = argu min{‖zu‖ : ‖zu‖ < δ}
8 compute C = B log2(1 + P

N ‖uiui+1‖−α)
9 transmit the packet to ui+1 at rate C

Fig. 4. The fastest packet transmission algorithm running on node ui that
forwards a packet to destination ud. The vectors ui and ud denote the
locations of ui and ud. The environmental parameters α, B, P and N are
constant and known. δ defines the radius of the region in which the next-hop
relay node is searched for.

• the locations of the neighbor nodes that are defined by a
neighborhood radius ρ.

We comment briefly on the availability of node locations. In
static networks, since the nodes do not move, each node can
be configured to be aware of its own location. The locations of
packet destinations are known in some scenarios, e.g. in sensor
networks, where the designated data sinks that collect event
reports from the other nodes have publicly known locations.
Furthermore, a node is able to learn the locations of its
neighbors through local information exchange.

By assuming the availability of location information, we
design a fastest packet transmission algorithm as in Fig. 4,
which runs on every node in the network distributively and
independently. To identify the next-hop node, a forwarding
node ui finds out the transmission radius x∗ first. x∗ can be
either accurately determined by using the Equations (7) and
(8) or approximated by the Equation (9). Next, if x∗ ≥ ‖uiud‖
where ud is the destination node, the packet is sent directly to
ud. In this case, ui computes the capacity C of the wireless
link connecting itself and the destination node ud, and then
sends the packet at the computed bit rate C. Higher rate than
C will cause incorrect reception at ud and lower rate than C
will introduce extra unnessary transmission delay. Otherwise,
if x∗ < ‖uiud‖, at least one more relay node is needed. In this
case, ui first determines the desired location of the next-hop
node, then finds the node closest to the desired location, and
finally computes the link capacity to send the packet at the
correct rate to the identified next-hop node.

Note that the neighborhood radius ρ and the search region
radius δ need to be determined for the algorithm completeness.
In order to minimize the scope of local information exchange
(which incurs overhead) and to guarantee that a packet is
transmitted in the correct direction, ρ and δ are determined as
follows. To ensure the packet is approaching the destination
ud in each hop, the following must hold:

‖ui+1ud‖ < ‖uiud‖. (10)

From Fig. 5, the triangle inequality requires

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

3190



x*

ui udui+1

+δx*ρ =

δ
z

Fig. 5. The neighborhood radius ρ and the search region radius δ.

‖ui+1ud‖ ≤ ‖zud‖ + ‖zui+1‖
< ‖zud‖ + δ. (11)

Therefore, if ‖zud‖ + δ ≤ ‖uiud‖, which is equivalent to

δ ≤ ‖zui‖ = x∗, (12)

the packet is guaranteed to be forwarded in the correct direc-
tion. Because large δ reduces the likelihood of finding no relay
node in the search region, we choose δ = x∗. Considering the
arbitrary location of ud, ui needs to know the locations of all
the nodes within a neighborhood radius ρ = x∗ + δ = 2x∗.

However, there is a special case that we need to discuss on
the proposed algorithm. If the network is sparse, there may not
exist any node in the search region defined by the radius δ.
Should this case occur, ui may enlarge its search region until
it finds a node that is closer to ud than itself. In the extreme
case that ui still cannot find any next-hop node before ud

is covered by its enlarged search region, ui sends the packet
directly to ud.

IV. ALGORITHM EVALUATION

We evaluate the performance of our proposed algorithm in
this section. As it assumes the availability of node location
information, we first compare its performance with the other
geographic routing algorithms which also use node location
information.

A. Comparison to Geographic Routing Algorithms

All the geographic routing algorithms select the next-hop
relay node based on the relative locations of the forwarding
node, its neighbors and the packet destination. We will con-
sider in particular the following two algorithms in this paper.

• Greedy Routing. The greedy routing algorithm chooses
the neighbor node closest to the destination to be the
next-hop relay node [9], i.e., ui+1 = argu min{‖uud‖ :
‖uui‖ < r}, where r defines the radius of the neigh-
borhood. There also exist other algorithms similar to the
greedy routing, in which the packet forwarding progress
is measured by different metrics and the node resulting in
the largest one-hop progress is selected as the next relay
node. We use the greedy routing algorithm as proposed
in [9] to represent this broader category of algorithms.

• Random Routing. We introduce the random routing al-
gorithm to represent a probabilistic version of the greedy

(50,50)

(50,25)(0,25)
Source Destination

(0,0)

Fig. 6. The simulation network.

algorithms. Rather than deterministic selection, it chooses
the next-hop relay node according to a probability distri-
bution. The probability to choose node u is defined to be
Pr[u] = w(u)∑

{u} w(u) , where w(u) = ‖uiud‖ − ‖uud‖ and

{u} = {u : w(u) > 0, ‖uui‖ < r}.

We simulate a network of area 50×50 m2, as shown in Fig.
6, in which the nodes are randomly distributed in a Poisson
point process with density λ = 100 nodes/m2. All the nodes
share a total of B = 100KHz frequency bandwidth. The source
and the destination nodes are located at the coordinates (0, 25)
and (50, 25) respectively. In the simulation, we let the source
node send a packet of length L = 128 bytes to the destination
node by using our proposed transmission algorithm as well
as the greedy and the random geographic routing algorithms.
We vary the values of α, P

N and r, and in each setting an
algorithm is simulated for 500 times to obtain the average
end-to-end transmission delay of the packet. The results of
the packet delay are plotted in Fig. 7. As a reference, we have
also included the theoretical bound of the shortest transmission
delay when the packet is transmitted along a perfect path in
which all the relay nodes are located at the desired locations.

We observe that the theoretical delay bound decreases as
the signal-to-noise ratio increases, because the improvement
on the wireless channel condition allows higher link capacity
and faster packet transmission. Our proposed fastest transmis-
sion algorithm achieves almost the same performance as the
theoretical delay bound in all the simulation settings. This is
because we can always find a relay node very close to the
desired location when the node density is high (100 nodes/m2

in the simulation). On the contrary, the greedy and the random
algorithms result in obviously longer packet delay. We notice
that, however, the greedy and the random algorithms approach
the delay bound closely at some points in the figures when they
happen to choose a neighborhood radius close to the value of
x∗. In such cases, given high node density, all these algorithms
find similar relay paths.

B. The Delay Gap

Since it is impossible to find the perfectly located relay
nodes due to location randomness, there is always a gap be-
tween the actual packet delay and the delay bound. Intuitively,
higher node density reduces the gap by allowing us to find
better relay nodes that are closer to the desired locations. As
shown in Fig. 7 where node density is high, the gap is not
noticeable. To be more accurate, the delay gap satisfies the
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Fig. 7. The end-to-end packet delay.

ui−1
ui

ε(β)

z

Fig. 8. The i-th hop transmission, where ‖zui−1‖ = x∗ and ε(β) is given
by Equation (14).

following inequality:

Pr[t ≤ βt∗] ≥ (
1 − e−λπε2(β)

)n−1
, (13)

where

ε(β) =
( P

N((1 + y(α))
1
β − 1)

) 1
α −

( P

Ny(α)

) 1
α

, (14)

t is the actual transmission delay through an n-hop relay path,
t∗ is the delay bound achieved when all the n−1 relay nodes
are perfectly located, and β > 1 is a factor to measure the gap
between t and t∗.

To prove (13), we first show that

Pr[ti ≤ βt∗i ] ≥ 1 − e−λπε2(β), (15)

where ti is the actual transmission delay on the i-th hop (from
ui−1 to ui as in Fig. 8) and t∗i = L

B log2(1+
P
N (x∗)−α)

is the
ideal delay if node ui is perfectly located (at point z as in
Fig. 8). From Fig. 8, if ‖zui‖ ≤ ε(β), ‖ui−1ui‖ ≤ x∗ + ε(β)
and ti = L

B log2(1+
P
N ‖ui−1ui‖−α)

≤ L
B log2(1+

P
N (x∗+ε(β))−α)

.
As Equation (14) can be equivalently changed into

L

B log2(1 + P
N (x∗ + ε(β))−α)

= β · L

B log2(1 + P
N (x∗)−α)

,

(16)
we obtain ti ≤ βt∗i . This result demonstrates that as long as
we can find a node within distance ε(β) from point z, which
occurs with probability 1−e−λπε2(β) according to the Poisson
point process, ti ≤ βt∗i holds. Considering the fact that finding
such a node is a sufficient but not necessary condition for
ti ≤ βt∗i , Pr[ti ≤ βt∗i ] ≥ 1 − e−λπε2(β). Now consider an n-
hop path. If all the n−1 relay nodes are located within distance

ε(β) from their respective desired locations, t =
∑n

i=1 ti ≤
nβt∗i = βt∗. Again, since this is a sufficient but not necessary
condition, we have Pr[t ≤ βt∗] ≥ (1 − e−λπε2(β))n−1. This
result indicates that the gap between t and t∗ is bounded by
a constant (β − 1)t∗ with higher probability when λ grows.
Thus on average the gap reduces as node density increases.

V. CONCLUSIONS

In this paper we have studied the problem of finding the
shortest-delay path in light-loaded wireless networks from the
link capacity perspective. Due to the correlation between link
capacity and link distance in the wireless environment, the
end-to-end packet transmission delay is determined by the
locations of the intermediate relay nodes. In order to identify
the fastest path, we have first determined the desired locations
of the relay nodes from a mathematical model. Then we have
designed a routing algorithm to discover this fastest path.
Investigation demonstrates that this new routing algorithm
can successfully transport a packet in the near-shortest time,
especially when node density is high.
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