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Abstract—This paper investigates the speed limit of informa-
tion propagation in large wireless networks, which provides fun-
damental understanding of the fastest information transportation
and delivery that a wireless network is able to accommodate. We
show that there is a unified speed upper bound for broadcast and
unicast communications in large wireless networks. When net-
work connectivity and successful packet delivery are considered,
this speed upper bound is a function of node density. As this
bound is unreachable with finite node density, we also quantify
the gap between the actually achieved speed and the desired
upper bound, which converges to zero exponentially as the node
density increases to infinity.

I. INTRODUCTION

Since the seminal work by Gupta and Kumar [1] on the ca-
pacity of wireless networks, there has been intensive research
on understanding the fundamental properties and performance
limits of wireless networks. Most work has focused on the traf-
fic throughput, the important metric to gauge the load accom-
modation capability of a network. The bounds on throughput
capacity have been derived under various assumptions [2]–[7],
different techniques have been studied to improve these bounds
[8]–[10], and algorithms have been proposed to achieve the
close-to-bound throughput [11], [12].

While the research results on throughput capacity have
greatly advanced our understanding of the maximum load
accommodation of wireless networks, another equally im-
portant performance indicator, the packet delay, has received
less attention. In the QoS-sensitive communications, the delay
perceived by a packet is more QoS relevant than the total
network throughput. The packet delay is the combinative
result of various components that can be categorized into the
bandwidth-incurred delay and the load-incurred delay. In this
paper we are interested in determining the lower bound on the
bandwidth-incurred delay, which is the transmission time spent
by a packet in all the links along its transportation path. As
a means to interpret the minimum packet transmission delay,
we define the metric Information Propagation Speed and find
out its upper bound.

In the pioneering paper [7], Zheng shows that there is a
constant upper bound W on the information diffusion rate
and a constant diffusion rate is achievable, regardless of the
network population, in both the extended and the dense net-
works. Achieving W requires three conditions: i) every node
uses an optimal transmission radius R, ii) the transportation

distance of a packet is a multiple of R, and iii) the relay nodes
are aligned with separation distance R. Lacking any of these
conditions results in W unreachable.

However, a few interesting questions remain unanswered
yet. First, if the packet transportation distance is known and
not equal to a multiple of R, what is the best propagation
strategy for the packet to achieve the fastest delivery? Since W
is unreachable, is there a tighter speed upper bound? Second,
when delivering a packet, we care about both how fast and
how well the packet is delivered, that is, whether all the
intended recipients can receive the packet successfully. When
the network connectivity and the packet delivery satisfaction
are considered, what is the speed upper bound under this
constraint? Third, if the optimal transmission radius R is used
but the relay nodes are not perfectly located, what is the gap
between the actually achieved speed and the desired upper
bound W ? We attempt to provide the answers to these three
questions in this paper.

As the first contribution, we show that there is another opti-
mal transmission radius other than R if the packet transporta-
tion distance is not a multiple of R. We note that in broadcast
communications, as the locations of packet recipients may not
be known in advance, R is the best transmission strategy. In
unicast communications, however, the location of the packet
recipient may be known. If the known transportation distance
is not a multiple of R, another transmission radius that opti-
mally fits the specific distance should be used. Interestingly,
we find that there is a unified optimal transmission radius and
speed upper bound in large wireless networks.

As the second contribution, we determine the speed upper
bound under the constraint of guaranteeing a given level
of packet delivery satisfaction. We examine two different
noise models. In the first model, the noise in the network
is determined by the environmental noise. We show that there
exists a threshold node density, above which there is a constant
speed upper bound. In the second model, interference is the
determinant source of noise. We show that there also exists a
threshold node density, above which, however, the speed upper
bound decreases to zero.

As the third contribution, we quantify the gap between the
actually achieved speed and the desired upper bound in random
networks. We prove that a packet propagates omnidirectionally
in large networks and the speed gap reduces as node density
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increases. Furthermore, we show that in both noise models,
there exists a threshold node density, below which the gap is
bounded by constants and above which the gap converges to
zero exponentially as node density increases to infinity.

The outline of this paper is as follows. We formulate the
problem of information propagation speed in Section II. In
Section III, we derive the unified speed upper bound for
broadcast and unicast communications. The speed upper bound
constrained by the packet delivery satisfaction is determined
in Section IV, and the speed gap quantification is provided in
Section V. Section VI concludes this paper.

II. PROBLEM FORMULATION

Before we investigate the speed of information propagation,
it is necessary to understand how information propagates in
multihop wireless networks. First, we describe the network
model used in this paper.

A. Network Model

We study a square-shaped network of n nodes in a large
area B = [− l

2 , l
2 ]2. The following assumptions are made in

this paper regarding the node locations and communications.

• The nodes are static and randomly distributed obeying a
Poisson point process with density λ.

• All the nodes share a B Hz available frequency band.
• Any two nodes can communicate over the direct link

between them. The link is characterized by a path loss
model with attenuation exponent α ≥ 2 [13] and its
bandwidth is subject to the Shannon Capacity: C =
B log2(1+SNR), where SNR is the signal-to-noise ratio.
Advanced coding algorithms are used such that the link
bandwidth approximates the Shannon capacity [14].

• Since higher transmission power gains larger link band-
width but imposes stronger interference on other nodes,
we assume that a uniform transmission power P is used
by every node for fairness.

• The noise N is the sum of the ambient noise NA

and the interference noise NI . For tractable modeling
and analysis, we consider two cases in this paper: i)
the ambience-dominant noise model (NA � NI , thus
N = NA), and ii) the interference-dominant noise model
(NI � NA, thus N = NI ). In both models, N is
assumed to be constant everywhere in the network.

• No directional antenna is used and no large signal-
blocking obstacle exists in the network.

• The length of a packet is L bits.

For clarity, we make a few comments on these assumptions.

• All the distances in this paper are the Euclidean distance.
• Given two nodes vi and vj separated by a distance dvivj

,
the bandwidth of the direct link between them is Cvivj

=
B log2(1 + P

N d−α
vivj

).
• If vi sends a packet to vj at the full link capacity Cvivj

,
a node vk also receives the same packet if dvivk

≤ dvivj
,

since Cvivk
≥ Cvivj

. On the other hand, if dvivk
> dvivj

,
vk does not receive the packet, as Cvivk

< Cvivj
. We
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Fig. 1. Information propagation in multihop networks.

define rvi
= dvivj

as the transmission radius of vi and
Avi

= {s|dvis ≤ rvi
, s ∈ B} as the coverage area of vi.

B. Information Propagation Speed

Information propagates in multihop wireless networks via
rebroadcasting. An illustration is shown in Fig. 1, in which
a packet is originated by node v0. Node v0 chooses a trans-
mission radius rv0 and broadcasts the packet. The packet is
received and rebroadcast by all the neighbor nodes in Av0 .
The rebroadcasting continues until the packet is received by
its destination. Fig. 1(a) depicts the area reached by the packet
after two hops.

Denote V(t) as the set of nodes that have received the packet
by time t and Ṽ(t) ⊂ V(t) as the subset that have forwarded
the packet by time t. The total area that the packet has reached
by time t is expressed as A(t) = ∪vi∈Ṽ(t)Avi

. In addition,
denote Lϕ as the line starting from v0 in the direction ϕ ∈
[0, 2π) and Lϕ(t) = Lϕ ∩ A(t). In Fig. 1(b), Lϕ(t) is the
line segment oz. The Information Propagation Speed in the
direction ϕ is then defined to be

wϕ(t) =
|Lϕ(t)|

t
=

maxs{dv0s|s ∈ Lϕ(t)}
t

. (1)

Note that when node density is sufficiently large, A(t) is solid
and Lϕ(t) is continuous. When node density is small, holes
may exist in A(t) and Lϕ(t) may be fragmentary. In both
cases, |Lϕ(t)| by definition is the distance from v0 to the
farthest location reached by the packet in direction ϕ.

In the rest of this paper, we will formally derive the
upper bound on wϕ(t), examine the feasibility of the upper
bound under the constraint of packet delivery satisfaction, and
determine the gap between wϕ(t) and its upper bound.

III. THE UPPER BOUND ON SPEED wϕ(t)

As discussed earlier, the speed upper bounds for broadcast
and unicast communications are different. Information may
propagate slower in unicast communications with a tighter
upper bound than in broadcast communications. In this section,
we formally derive these two upper bounds. We also show that
these two bounds converge in large networks.

A. Broadcast Communications

Suppose by time t a packet originated at v0 has reached
the location z in direction ϕ, as shown in Fig. 2. Denote
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Fig. 2. The packet relay path in direction ϕ.

{v0, v1, · · · , vm−1} as the relay path from o to z and τvi
=

L
B log2(1+

P
N r−α

vi
)

as the transmission duration of vi. Then,

wϕ(t) ≤
∑m−2

i=0 dvivi+1 + dvm−1z∑m−1
i=0 τvi

≤
∑m−1

i=0 rvi∑m−1
i=0 τvi

≤ max
i

rvi

τvi

≤ B

L
max

r
r log2(1 +

P

N
r−α).

The maximum of r log2(1 + P
N r−α) occurs when r = Rb =

( P
Ny(α) )

1
α , where y(α) is the non-zero root of the equation

(1 + y) log2(1 + y) =
α

ln 2
y. (2)

Thus,

wϕ(t) ≤ Wb =
B

L
Rb log2(1 +

P

N
R−α

b ). (3)

If B, L, P , N and α are constant, Rb and Wb are constant.
This is the same result as Zheng has obtained in [7]. The con-
ditions for wϕ(t) = Wb, also discussed in [7], require: i) every
relay node uses the optimal transmission radius Rb, ii) relay
nodes are aligned and separated from each other by distance
Rb, and iii) the distance from v0 to the destination node vd (or
the farthest recipient node in broadcast communications) is a
multiple of Rb. In broadcast communications, as the number
of potential recipients may be very large and their locations
may not be known in advance, using the transmission radius
Rb is the best strategy for the fastest packet delivery.

B. Unicast Communications

In unicast communications, since there is only one desti-
nation, the source and the relay nodes may be aware of its
location. If the distance between the source and the destination
dv0vd

is not a multiple of Rb, Wb is not achievable. In this
case, we show that there is a tighter upper bound Wu < Wb

on wϕ(t), as specified in the following theorem.
Theorem 1: There exists d∗ = ( P

N(2α−2) )
1
α such that:

i) if dv0vd
< d∗, direct transmission from v0 to vd achieves

the fastest speed;
ii) if dv0vd

> d∗, wϕ(t) ≤ Wu = B
L Ru log2(1 + P

N R−α
u ),

where Ru = dv0vd
/G(dv0vd

/Rb) and function G(·)
rounds dv0vd

/Rb to the nearest integer.

Before proving Theorem 1, we introduce a few nota-
tions and lemmas. Denote tv0vd

as the transmission time
from v0 to vd via any straightline relay path, P(m)

v0vd =
{v0, v1, · · · , vm−1, vd} (m ≥ 1) as an m-hop straightline relay
path from v0 to vd, and tv0vd

(P(m)
v0vd) as the transmission time

along P(m)
v0vd . We have the following lemmas.

Lemma 1: Consider P(1)
v0vd and P(2)

v0vd . Define min tv0vd
=

min{tv0vd
(P(1)

v0vd), tv0vd
(P(2)

v0vd)}, then

min tv0vd
=




L
B log2(1+

P
N d−α

v0vd
)

if dv0vd
< d∗,

2L

B log2(1+
P
N (

dv0vd
2 )−α)

if dv0vd
> d∗.

Proof: Define t(x) = L
B log2(1+

P
N x−α)

and tv0vd
(x) =

t(x) + t(dv0vd
− x) (0 ≤ x ≤ dv0vd

). When x = 0 or
x = dv0vd

, it is a 1-hop transmission. Otherwise, it is a 2-
hop transmission. Function t(x) has these properties:

t′(x) =
(ln 2)αLPx−α−1

BN(1 + P
N x−α) ln2(1 + P

N x−α)
> 0,

t′′(x) =
αLPx−α−2

(ln 2)2BN(1 + P
N x−α)2 log3

2(1 + P
N x−α)

·[2α
P

N
x−α − (α + 1 +

P

N
x−α) ln(1 +

P

N
x−α)].

Define y = P
N x−α and f(y) = 2αy−(α+1+y) ln(1+y). We

have f ′(y) = 2α− [ln(1 + y) + α
1+y + 1]. It is not difficult to

find the following properties of f ′(y): i) f ′(0) = α − 1 > 0,
ii) f ′(y) increases monotonically when y ∈ [0, α − 1), iii)
f ′(y) decreases monotonically when y ∈ (α − 1,∞), and iv)
limy→∞ f ′(y) = −∞. These properties indicate the existence
of y1 > 0 such that f ′(y) > 0 when y ∈ [0, y1) and f ′(y) < 0
when y ∈ (y1,∞). Since f(0) = 0, there must exist y2 > y1

such that f(y) > 0 when y ∈ (0, y2) and f(y) < 0 when y ∈
(y2,∞). Define x2 = ( P

Ny2
)

1
α and f(x) = 2α P

N x−α − (α +
1 + P

N x−α) ln(1 + P
N x−α). Then f(x) < 0 when x ∈ (0, x2)

and f(x) > 0 when x ∈ (x2,∞). Besides, since ∀x > 0,
αLPx−α−2

(ln 2)2BN(1+ P
N x−α)2 log3

2(1+
P
N x−α)

> 0, we have t′′(x) < 0
(i.e. t(x) is strictly concave) when x ∈ (0, x2) and t′′(x) > 0
(i.e. t(x) is strictly convex) when x ∈ (x2,∞).

Note that tv0vd
(x) is symmetric with respect to x = dv0vd

2 .

Besides, t′v0vd
(dv0vd

2 ) = 0 and t′′v0vd
(0) = t′′v0vd

(dv0vd
) <

0 (because t′′(0) = −∞, t′′(dv0vd
) < ∞, t′′v0vd

(0) =
t′′v0vd

(dv0vd
) = t′′(0) + t′′(dv0vd

) = −∞). Next, we discuss
the minimum of tv0vd

(x) in three cases.

i) dv0vd
∈ (0, x2]. t(x) and t(dv0vd

− x) are concave on
[0, dv0vd

], so tv0vd
(x) is concave with no local minimum.

ii) dv0vd
∈ (x2, 2x2]. t(x) is concave on [0, x2] and convex

on [x2, dv0vd
]. t(dv0vd

− x) is convex on [0, dv0vd
− x2]

and concave on [dv0vd
− x2, dv0vd

]. So, tv0vd
(x) must

be concave on [dv0vd
− x2, x2], while either concave

or convex on [0, dv0vd
− x2] ∪ [x2, dv0vd

]. However,
t′′v0vd

(0) = t′′v0vd
(dv0vd

) < 0 indicates concavity. Thus,
tv0vd

(x) is concave on [0, dv0vd
] with no local minimum.

iii) dv0vd
∈ (2x2,∞). Similar to the discussion in case ii),

tv0vd
(x) must be convex on [x2, dv0vd

−x2], while either
concave or convex on [0, x2]∪ [dv0vd

−x2, dv0vd
]. Again,

t′′v0vd
(0) = t′′v0vd

(dv0vd
) < 0 indicates concavity. Hence,

tv0vd
(x) has one local minimum at x = dv0vd

2 and two
local maxima in [0, x2] and [dv0vd

− x2, dv0vd
].
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Fig. 3. Two examples of the function tv0vd (x), B = 100 KHz, L = 1024
bits, P

N
= 103, α = 2.

Fig. 3 visualizes the function tv0vd
(x). In Fig. 3(a), dv0vd

∈
(0, 2x2], tv0vd

(x) is concave. It does not have local minimum.
In Fig. 3(b), dv0vd

∈ (2x2,∞), tv0vd
(x) is convex in the

middle while concave near the two ends. It has one local
minimum. Summarizing all the three cases, tv0vd

(x) has at
most one local minimum which occurs at x = dv0vd

2 . Hence,

min tv0vd
= min{tv0vd

(0), tv0vd
(
dv0vd

2
), tv0vd

(dv0vd
)}

=




L
B log2(1+

P
N d−α

v0vd
)

if dv0vd
< d∗,

2L

B log2(1+
P
N (

dv0vd
2 )−α)

if dv0vd
> d∗.

Lemma 1 states the fact that: i) if dv0vd
< d∗, 1-hop direct

transmission is faster than any 2-hop relay transmission; ii)
if dv0vd

> d∗, choosing a relay node at the exact middle
location between the source and the destination results in the
fastest transmission among all the 2-hop relay paths, and it is
also faster than the 1-hop direct transmission; iii) if dv0vd

=
d∗, 1-hop direct transmission is as fast as the 2-hop relay
transmission with the relay node at the exact middle location,
and both are faster than any other 2-hop transmissions.

Lemma 2: Consider all the m-hop relay paths P(m)
v0vd (m ≥

1). Define min tv0vd
= minm{tv0vd

(P(m)
v0vd)}. If dv0vd

< d∗,
min tv0vd

= tv0vd
(P(1)

v0vd). That is, 1-hop direct transmission
is faster than any multihop transmissions.

Proof: By Lemma 1, if dv0vd
< d∗, tv0vd

(P(1)
v0vd) <

tv0vd
(P(2)

v0vd). ∀ m ≥ 2, as dvm−1vd
< dvm−2vd

< · · · <
dv1vd

< dv0vd
< d∗, apply the result of Lemma 1 recursively,

tv0vd
(P(1)

v0vd
) <

0∑
i=0

tvivi+1(P(1)
vivi+1

) + tv1vd
(P(1)

v1vd
)

...

<
m−2∑
i=0

tvivi+1(P(1)
vivi+1

) + tvm−1vd
(P(1)

vm−1vd
)

= tv0vd
(P(m)

v0vd
).

Lemma 3: Consider all the m-hop relay path P(m)
v0vd (m ≥

1). Define min tv0vd
= minm{tv0vd

(P(m)
v0vd)}. If dv0vd

>

d∗, min tv0vd
= minm{tv0vd

(P(m),e
v0vd )}, in which P(m),e

v0vd =
{v0, v1, · · · , vm−1, vd} and dv0v1 = · · · = dvm−1vd

. That is,
the fastest transmission must be achieved along a relay path
in which the relay nodes are separated equally.

Proof: It is equivalent to show that ∀ P(m)
v0vd (m ≥ 1),

∃ P(m′),e
v0vd = {v0, v1, · · · , vm′−1, vd}, where dv0v1 = dv1v2 =

· · · = dvm′−1vd
, such that tv0vd

(P(m′),e
v0vd ) ≤ tv0vd

(P(m)
v0vd).

To prove the existence of P(m′),e
v0vd , we consider the following

node removal and relocation process on any P(m)
v0vd . For each

node vi ∈ P(m)
v0vd , we make the two changes below in sequence:

1) Node removal. Find the set of nodes {vj | dvivj
≤

d∗, j = i + 1, · · · , i + k}. If k > 1, remove the nodes
{vj , j = i + 1, · · · , i + k − 1} from P(m)

v0vd .
2) Node relocation. If vi is the last relay node or vi = vd,

skip this step. Otherwise, if k = 0 (k is the number of
nodes found in step 1), relocate vi+1 to the exact middle
point between vi and vi+2; if k > 0, relocate vi+k to
the exact middle point between vi and vi+k+1.

This process initiates at v0, proceeds node by node toward vd,
and iterates after vd until there is no more node removal and
no more node relocation in the resulting relay path P(m′),e

v0vd .

First, we show that the resulting path P(m′),e
v0vd has a shorter

transmission time than the original path P(m)
v0vd . In the node

removal step, since dvivi+k
≤ d∗, by Lemma 2, 1-hop

direct transmission from vi to vi+k is faster than the k-
hop transmission via vi+1, · · ·, vi+k−1. Therefore, removing
{vj , j = i + 1, · · · , i + k − 1} results in faster transmission.
In the node relocation step, because dvivi+2 > d∗ (if k = 0)
or dvivi+k+1 > d∗ (if k > 0), by Lemma 1, relocation of vi+1

(if k = 0) or vi+k (if k > 0) results in faster transmission.
Therefore, P(m′),e

v0vd has shorter transmission time than P(m)
v0vd .

Second, we prove that in the resulting path P(m′),e
v0vd , dv0v1 =

· · · = dvm′−1vd
. Because the node removal step takes relay

nodes away and the number of remaining relay nodes must
be non-negative, it is obvious that the number of relay nodes
converges to a value m′ (0 ≤ m′ ≤ m). After that, there are
no more removals, but relocations may continue. As the trans-
mission time from v0 to vd decreases during the relocations
(proven above) and it is non-negative, it must converge to some
value, after which there are no more relocations. If dv0v1 , · · ·,
dvm′−1vd

are not all equal, relocation will continue. Thus, they
must be all equal by the end of the relocation process.

Finally, it is obvious that m′ can be replaced by m safely,
so min tv0vd

= minm{tv0vd
(P(m),e

v0vd )}.

We are now ready to prove Theorem 1 as follows.

Proof: The statement i) is already proven in Lemma
2. The statement ii) considers dv0vd

> d∗. In this case,
Lemma 3 shows min tv0vd

= minm{tv0vd
(P(m),e

v0vd )}. Express-
ing tv0vd

(P(m),e
v0vd ) = mL/B log2(1 + P

N (dv0vd

m )−α) and solv-
ing dtv0vd

(P(m),e
v0vd )/dm = 0, we obtain the optimal number

of relay hops m = G(dv0vd
/( P

Ny(α) )
1
α ) = G(dv0vd

/Rb), the
optimal transmission radius Ru = dv0vd

/G(dv0vd
/Rb), and
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the upper bound on the information propagation speed

wϕ(t) ≤ Wu =
B

L
Ru log2(1 +

P

N
R−α

u ). (4)

Because Rb is the unique maximizer for r log2(1 + P
N r−α),

Wu < Wb if Ru �= Rb.
Unlike Rb and Wb, Ru and Wu are determined not only

by B, L, P , N and α, but also by dv0vd
. The conditions

for wϕ(t) = Wu are: i) every relay node uses the optimal
transmission radius Ru, and ii) the relay nodes are aligned and
separated by distance Ru. Note that limdv0vd

→∞ Ru = Rb,
indicating that the two bounds converge in large networks.

IV. THE FEASIBILITY-CONSTRAINED UPPER BOUND

We have shown that there is a unified upper bound on
wϕ(t) for broadcast and unicast communications in large
networks: Wb = Wu = W = B

L R log2(1 + P
N R−α), where

R = ( P
Ny(α) )

1
α . In this section, we study the feasibility of this

upper bound. As the nodes are randomly located, it is possible
that the network is not connected by using the transmission
radius R. If the destination node cannot be reached by using
R, the maximum propagation speed W becomes infeasible
because the packet is undeliverable. Therefore, we need to
understand the maximum information propagation speed under
the constraint of packet delivery satisfaction.

We define the term γ-feasible delivery to provide a mea-
surement on the degree of packet delivery satisfaction. The
delivery of a packet is γ-feasible if the packet can reach
all the intended recipients with a probability no less than γ
(0 ≤ γ ≤ 1). Subsequently, we define a transmission radius
r to be γ-feasible if this r provides γ-feasible delivery and
a speed upper bound W (denoted as Wγ) to be γ-feasible if
it is the maximum speed that guarantees γ-feasible delivery.
Obviously, given a γ-feasible r, any transmission radius larger
than r is also γ-feasible. However, since r log2(1+ P

N r−α) is
a decreasing function on r ∈ [R,∞), Wγ is achieved at the
γ-feasible r (denoted as Rγ) that is the closest to R.

In the next, we study Wγ in variable node densities. Before
the investigation, we first cite a relevant result that will be
referenced later. Penrose shows in [15] that the longest edge
Mn in the minimal spanning tree over n Poisson distributed
random nodes in a unit square satisfies

lim
n→∞Pr[nπM2

n − log(n) ≤ β] = exp(−e−β).

Zheng [7] further proves that in an extended network with unit
node density, if limn→∞ c(n) = ∞,

lim
n→∞Pr[−c(n) ≤ πM2

n − log(n) ≤ c(n)] = 1.

Scaling the extended network to the dense network, we have

lim
n→∞Pr[−c(n) ≤ nπM2

n − log(n) ≤ c(n)] = 1.

Choosing c(n) = ε log(n) (ε > 0) and replacing n with λ
(n = λ in a unit square), we have

lim
λ→∞

Pr
[√ (1 − ε) log(λ)

λπ
≤ Mλ ≤

√
(1 + ε) log(λ)

λπ

]
= 1.

(5)

Our network may be viewed as the tiles of unit squares with
node density λ over an area B. Thus Equation (5) applies to
our network model too. Next, we discuss Wγ with variable
node densities in two different noise models.

A. The Ambience-Dominant Noise Model

In the ambience-dominant noise model, the noise N is
determined by the ambient noise NA, which is irrelevant to
the node density λ. The γ-feasible speed upper bound Wγ is
given by the following theorem.

Theorem 2: In the ambience-dominant noise model (N =
NA), given the feasibility parameter γ, there exists a threshold

node density λA such that: i) if λ < λA, Rγ(λ) = RA

√
λA

λ

and Wγ(λ) = B
L

(
RA

√
λA

λ

)
log2

(
1 + P

N

(
RA

√
λA

λ

)−α)
,

where RA = ( P
Ny(α) )

1
α , and ii) if λ > λA, Rγ(λ) =(

P
Ny(α)

) 1
α and Wγ(λ) = B

L

(
P

Ny(α)

) 1
α log2(1 + y(α)).

Proof: By Equation (5), ∃ λ
(1)
A s.t. ∀ λ ≥ λ

(1)
A ,

Pr
[
Mλ ≤

√
(1 + ε) log(λ)

λπ

]
≥ γ.

Let λ
(2)
A denote the biggest root of the equation√

(1 + ε) log(λ)
λπ

=
( P

Ny(α)

) 1
α

.

If this equation has no real root, define λ
(2)
A = 0. We

see that, ∀ λ ≥ λ
(2)
A ,

√
(1+ε) log(λ)

λπ ≤ ( P
Ny(α) )

1
α , since

limλ→∞
√

(1+ε) log(λ)
λπ = 0. Denoting λA = max{λ(1)

A , λ
(2)
A },

we have ∀ λ > λA, Pr[Mλ ≤ ( P
Ny(α) )

1
α ] ≥ γ. This is to

say that when λ > λA a packet can be delivered to every
node in the network with probability no less than γ by using
the optimal transmission radius ( P

Ny(α) )
1
α and thus ( P

Ny(α) )
1
α

is γ-feasible. In this case, Wγ(λ) = B
L ( P

Ny(α) )
1
α log2(1 +

P
N ( P

Ny(α) )
1
α (−α)) = B

L

(
P

Ny(α)

) 1
α log2(1 + y(α)). This proves

the statement ii). When λ < λA, ( P
Ny(α) )

1
α is not γ-feasible.

Since ( P
Ny(α) )

1
α is the smallest γ-feasible transmission radius

in the network with node density λA and scaling the area of
this network by a factor λA

λ results in another network with

node density λ, ( P
Ny(α) )

1
α

√
λA

λ must be the smallest (also the

closest to the optimal radius ( P
Ny(α) )

1
α ) γ-feasible transmis-

sion radius in the network with node density λ. As such, when

λ < λA, Wγ(λ) = B
L

(
RA

√
λA

λ

)
log2

(
1 + P

N

(
RA

√
λA

λ

)−α)
,

where RA = ( P
Ny(α) )

1
α . This proves the statement i).

B. The Interference-Dominant Noise Model

In the interference-dominant noise model, the noise N is
determined by the interference NI , which is a linear function
of the node density λ, as proven in the following lemma.

Lemma 4: In a network where the nodes are randomly
distributed in a Poisson point process with density λ and a
uniform transmission power P is used by every node, the
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interference at any location is NI(λ) = λNI(1), where NI(1)
is the interfence at this location when λ = 1.

Proof: Choosing two arbitrary locations z1, z2 ∈ B and
defining NI,z1,z2 as the interference at z1 caused by the
transmissions at z2, we have

NI,z1,z2(λ) = lim
δ→0

NI,z1,z2(δ)(λ)
δ

= lim
δ→0

∑∞
k=0 e−λδ (λδ)k

k! · k · Pd−α
z1z2

δ
= λ · Pd−α

z1z2

= λ · NI,z1,z2(1),

where δ is a small area around z2 and NI,z1,z2(δ) is the
interference from δ. The total interference at z1 is

NI,z1(λ) =
∫

z2∈B
NI,z1,z2(λ) dz2 = λNI,z1(1).

As z1 is arbitrary, NI(λ) = λNI(1).
Since N = NI , we write N(λ) = λN(1). In this

noise model, the optimal transmission radius has the form
( P

λN(1)y(α) )
1
α . The γ-feasible speed upper bound Wγ is given

by the theorem below.
Theorem 3: In the interference-dominant noise model (N

= NI ), given the feasibility parameter γ, there exists a thresh-

old node density λI such that: i) if λ < λI , Rγ(λ) = RI

√
λI

λ

and Wγ(λ) = B
L

(
RI

√
λI

λ

)
log2

(
1 + P

λN(1)

(
RI

√
λI

λ

)−α)
,

where RI = ( P
λIN(1)y(α) )

1
α , and ii) if λ > λI , Rγ(λ) =(

P
λN(1)y(α)

) 1
α and Wγ(λ) = B

L

(
P

λN(1)y(α)

) 1
α log2(1 + y(α)).

Proof: Similar to Theorem 2, ∃ λ
(1)
I , s.t. ∀ λ ≥ λ

(1)
I ,

Pr
[
Mλ ≤

√
(1 + ε) log(λ)

λπ

]
≥ γ.

Let λ
(2)
I denote the biggest root of the equation√

(1 + ε) log(λ)
λπ

=
( P

λN(1)y(α)

) 1
α

.

If this equation has no real root, define λ
(2)
I = 0. We

see that ∀ λ ≥ λ
(2)
I ,

√
(1+ε) log(λ)

λπ ≤ ( P
λN(1)y(α) )

1
α ,

since limλ→∞
√

(1+ε) log(λ)
λπ

/
( P

λN(1)y(α) )
1
α = 0. By denot-

ing λI = max{λ(1)
I , λ

(2)
I }, we then have ∀ λ > λI ,

Pr[Mλ ≤ ( P
λN(1)y(α) )

1
α ] ≥ γ. This shows that when λ > λI

the optimal transmission radius ( P
λN(1)y(α) )

1
α is γ-feasible.

So, when λ > λI , Wγ(λ) = B
L ( P

λN(1)y(α) )
1
α log2(1 +

P
λN(1) (

P
λN(1)y(α) )

1
α (−α)) = B

L

(
P

λN(1)y(α)

) 1
α log2(1 + y(α)).

This proves the statement ii). When λ < λI , similar to
our discussion in Theorem 2, because ( P

λIN(1)y(α) )
1
α is the

smallest γ-feasible transmission radius for node density λI ,

( P
λIN(1)y(α) )

1
α

√
λI

λ is the smallest (thus the closest to the

optimal radius ( P
λIN(1)y(α) )

1
α ) γ-feasible transmission radius

for node density λ. Therefore, when λ < λI , Wγ(λ) =

B
L

(
RI

√
λI

λ

)
log2

(
1 + P

λN(1)

(
RI

√
λI

λ

)−α)
, where RI =

( P
λIN(1)y(α) )

1
α . This proves the statement i).

C. Comparison of the Two Noise Models

Interestingly, we find that the γ-feasible speed upper bound
Wγ(λ) behaves quite differently in these two noise models.

In the ambience-dominant noise model, when λ < λA,

Wγ(λ) = B
L

(
RA

√
λA

λ

)
log2

(
1 + P

N

(
RA

√
λA

λ

)−α)
. Because

Wγ(λ) achieves its maximum at λ = λA, Wγ(λ) is an
increasing function of λ when 0 < λ < λA. When λ > λA,

Wγ(λ) = B
L

(
P

Ny(α)

) 1
α log2(1 + y(α)), which is a constant.

This is to say, given sufficiently large node density, there is a
constant upper bound on the information propagation speed.

In the interference-dominant noise model, when λ < λI ,

Wγ(λ) = B
L

(
RI

√
λI

λ

)
log2

(
1 + P

λN(1)

(
RI

√
λI

λ

)−α)
. Wγ(λ)

reaches its maximum at λ = λI

(y(α−2)
y(α)

) 1
α
2 −1 , where y(α−2)

is the non-zero root of the equation

(1 + y) log2(1 + y) =
α − 2
ln 2

y. (6)

If 2 ≤ α ≤ 3, y(α−2) does not exist. In this case Wγ(λ) is a
decreasing function of λ when 0 < λ < λI . If α > 3, y(α−2)
exists and y(α−2) < y(α), indicating λI

(y(α−2)
y(α)

) 1
α
2 −1 < λI .

Thus, Wγ(λ) increases when 0 < λ < λI

(y(α−2)
y(α)

) 1
α
2 −1 and

decreases when λI

(y(α−2)
y(α)

) 1
α
2 −1 < λ < λI . When λ > λI ,

Wγ(λ) = B
L

(
P

λN(1)y(α)

) 1
α log2(1+ y(α)), which decreases to

zero as λ approaches infinity. Therefore, in the interference-
dominant noise model, information propagation becomes im-
possible when the node density is extremely large. The strong
interference prevents the transmission of any packet.

V. THE GAP BETWEEN wϕ(t) AND Wγ(λ)

We have shown that, given the parameter γ, there exists
an optimal transmission radius Rγ(λ) that may achieve the
maximum information propagation speed Wγ(λ) in a network
with node density λ. However, as we have discussed earlier,
actually achieving this maximum speed requires an additional
condition that all the relay nodes are aligned and separated
from each other by the distance Rγ(λ). Since the nodes are
randomly distributed, it is impossible to find these perfectly
located relay nodes when λ < ∞. There is always a gap
between the actually achievable speed wϕ(t) and the bound
Wγ(λ). We quantify this gap in this section.

By definition, the actual information propagation speed is
measured by wϕ(t) = |Lϕ(t)|

t . Due to the randomness of node
locations, this speed may be faster or slower when the packet
travels through different subareas in the network. To evaluate
wϕ(t) without introducing the subarea bias, we define the
long-term speed in the direction ϕ to be

wϕ = lim
t→∞wϕ(t) = lim

t→∞
|Lϕ(t)|

t
. (7)
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A(τ) A(2τ) A((m − 1)τ) A(mτ)

Lϕ

Fig. 4. Information propagation in multihops in direction ϕ.

Since every node uses the same optimal transmission radius
Rγ(λ), the 1-hop transmission time τ = L

B log2(1+
P
N R−α

γ (λ))

is the same for every node. Thus, Equation (7) is rewritten as

wϕ = lim
m→∞

Zm

mτ
= lim

m→∞

∑m
i=1 ρi

mτ
=

ρ

τ
, (8)

where Zi = dozi
, ρi = Zi−Zi−1 and ρ = limm→∞

∑ m
i=1 ρi

m =
E[ρi], as shown in Fig. 4.

First, we show that the actual information propagation speed
is omnidirectional in large networks. In the long term, a packet
is disseminated to the same distance away in any direction and
the frontier of propagation is in a circular shape centered at
the source node, as specified in the following theorem.

Theorem 4: In a network with homogeneous node distribu-
tions, ∀ ϕ1, ϕ2 ∈ [0, 2π), wϕ1 = wϕ2 = w.

Proof: By definition, wϕ = ρ
τ . All we need to show

is ρϕ1
= ρϕ2

. As the nodes are distributed homogeneously,
the propagation distances in ϕ1 and ϕ2 after i hops, Zi,ϕ1

and Zi,ϕ2 , are two random variables with the same proba-
bility distribution. For the same reason Zi−1,ϕ1 and Zi−1,ϕ2

also have the same probability distribution. Since ρi,ϕ1 =
Zi,ϕ1 − Zi−1,ϕ1 and ρi,ϕ2 = Zi,ϕ2 − Zi−1,ϕ2 , ρi,ϕ1 and
ρi,ϕ2 must have the same probability distribution. Therefore,
ρϕ1

= E[ρi,ϕ1 ] = E[ρi,ϕ2 ] = ρϕ2
.

As we will show next that w is determined by the node
density λ, we write w = w(λ) = ρ(λ)

τ . We define the gap
between the actual speed w(λ) and its upper bound Wγ(λ) as

ε(λ) =
Wγ(λ) − w(λ)

Wγ(λ)
=

Rγ(λ) − ρ(λ)
Rγ(λ)

. (9)

Theorem 5: In a network where the nodes are randomly
distributed in a Poisson point process with density λ, ∀
λ1 < λ2, ε(λ1) > ε(λ2). That is, ε(λ) is a strictly decreasing
function of λ.

Proof: By definition, ε(λ) = 1− ρ(λ)
Rγ(λ) . To prove ∀ λ1 <

λ2, ε(λ1) > ε(λ2), it is equivalent to show ρ(λ1)
Rγ(λ1)

< ρ(λ2)
Rγ(λ2)

.
First, we show ρ(λ1) < ρ(λ2). We start with a network

of node density λ2. Suppose a packet originated by node v0

has propagated over a distance of Zm(λ2) to reach location
zm(λ2) in an arbitrary direction ϕ after m hops and denote
P = {v0, v1, · · · , vm−1} as the m-hop relay path travelled
through by the packet to reach zm(λ2). Now reduce the node
density to λ1 by randomly removing each node (except v0)
from the network with probability λ2−λ1

λ2
. From the properties

of Poisson process, we know that the nodes in the resulting
network are Poisson distributed with density λ1. Since re-
moving any vi ∈ {v1, v2, · · · , vm−1} disrupts P , the survival

(b)(a)

o

o Xmin

Xmax

2π
3

Rγ(λ)

Rγ(λ)

Fig. 5. Definitions of Xmax and Xmin.

probability of P is

Pr[P survives] =
(λ1

λ2

)m−1

.

When m → ∞, Pr[P survives] → 0, implying zm(λ2) is
unreachable in the resulting network. Denoting Zm(λ1) as the
propagation distance of the packet in direction ϕ after m hops
in the resulting network, we have Zm(λ1) < Zm(λ2) as m →
∞, which gives

ρ(λ1) = lim
m→∞

Zm(λ1)
m

< lim
m→∞

Zm(λ2)
m

= ρ(λ2).

Next, we show Rγ(λ1) ≥ Rγ(λ2). In the ambience-domi-

nant noise model, Rγ(λ) = RA

√
λA

λ when λ < λA, and

Rγ(λ) =
(

P
Ny(α)

) 1
α when λ > λA. For all λ, Rγ(λ) is a

decreasing function (not strictly). In the interference-dominant

noise model, Rγ(λ) = RI

√
λI

λ when λ < λI , and Rγ(λ) =(
P

λN(1)y(α)

) 1
α when λ > λI . For all λ, Rγ(λ) is a strictly

decreasing function. So, Rγ(λ1) ≥ Rγ(λ2) in both models.
Combining ρ(λ1) < ρ(λ2) and Rγ(λ1) ≥ Rγ(λ2), we

obtain ρ(λ1)
Rγ(λ1)

< ρ(λ2)
Rγ(λ2)

, equivalent as ε(λ1) > ε(λ2).
Theorem 5 points out that ε(λ) decreases as λ increases.

The next theorem provides a quantified measurement of ε(λ).
Theorem 6: In a network where the nodes are randomly

distributed in a Poisson point process with density λ and
the optimal transmission radius Rγ(λ) is used, defining a =
λπR2

γ(λ), g1(a) =
∫ 1

0
ea(x2−1)dx and g2(a) =

∫ 1

0
e−

1
3 ax2

dx,

g1(a) ≤ ε(λ) ≤ g2(a). (10)

Proof: First, we define two relevant random variables that
will be used in this proof. As depicted in Fig. 5(a), we define
Xmax as the distance between a node and its farthest neighbor
within the transmission radius Rγ(λ). In Fig. 5(b), we draw a
sector at an arbitrary location o with radius Rγ(λ) and central
angle 2π

3 , and define Xmin as the distance between o and the
nearest node found in this sector.

Next, we prove ε(λ) ≥ g1(a). As shown in Fig. 6, letting
P = {v0, v1, · · · , vm−1} denote the relay path travelled by a
packet from v0 to reach zm in m hops,

Zm ≤
m−2∑
i=0

dvivi+1 + dvm−1zm
≤

m−1∑
i=0

Xmax,i + Rγ(λ),

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

409



o
v0

v1 v2 vm−1

zm

Zm
A(mτ)

Lϕ

Fig. 6. Propagation distance Zm in direction ϕ.

where Xmax,i is Xmax taking place at vi. Then,

ρ(λ) = lim
m→∞

Zm

m
≤ lim

m→∞

∑m−1
i=0 Xmax,i + Rγ(λ)

m

= lim
m→∞

∑m−1
i=0 Xmax,i

m
= E[Xmax],

since Xmax,i has i.i.d. probability distribution. We obtain
E[Xmax] as follows. According to the Poisson distribution,
with probability e−a a node vi has no neighbor, i.e., Xmax =
0. With probability 1− e−a, vi has at least one neighbor, i.e.,
Xmax > 0. Given 0 < x ≤ Rγ(λ),

Pr[Xmax ≤ x|Xmax > 0] =
1

1 − e−a

∞∑
k=1

e−a ak

k!

( πx2

πR2
γ(λ)

)k

=
e−a

1 − e−a

(
e

ax2

R2
γ (λ) − 1

)
.

The conditional expectation is

E[Xmax|Xmax > 0] =
∫ Rγ(λ)

0

x d Pr[Xmax ≤ x|Xmax > 0]

=
∫ Rγ(λ)

0

e−a

1 − e−a

( 2ax2

R2
γ(λ)

)
e

ax2

R2
γ (λ) dx

=
Rγ(λ)

1 − e−a

(
1 −

∫ 1

0

ea(x2−1)dx
)
.

The unconditional expectation is

E[Xmax] = e−a · 0 + (1 − e−a) · E[Xmax|Xmax > 0]

= Rγ(λ)
(
1 −

∫ 1

0

ea(x2−1)dx
)
.

Thus,

ε(λ) ≥ Rγ(λ) − E[Xmax]
Rγ(λ)

=
∫ 1

0

ea(x2−1)dx.

Finally, we prove ε(λ) ≤ g2(a). As Fig. 7 illustrates, denote
zm−1 as the farthest location that a packet has reached in
direction ϕ after m − 1 hops and P = {v0, v1, · · · , vm−2} as
the relay path travelled by the packet to reach zm−1. Draw
a sector at zm−1 with radius Rγ(λ) and central angle 2π

3 , as
illustrated by the dash-line encompassed area in Fig. 7, where
∠u4zm−1u6 = ∠u5zm−1u6 = π

3 . Note that for any node
v′ in this sector, dvm−2v′ ≤ Rγ(λ), implying that v′ must
have received the packet by time (m − 1)τ and forwarded
the packet by time mτ , i.e., v′ ∈ Ṽ(mτ). Since zm is the
farthest location from o on Lϕ covered by Ṽ(mτ), dozm

≥

o
v0

v1 v2
vm−2(u6)

v′(u1)

u2

u3u4

u5

zm−1 zm

A(mτ)

Lϕ

Fig. 7. The mth-hop propagation distance ρm = Zm −Zm−1 in direction
ϕ, dzm−1u4 = dzm−1u5 = dzm−1u6 = du1u2 = du1u3 = Rγ(λ),
∠u4zm−1u6 = ∠u5zm−1u6 = π

3
.

dou2 , where u2 is the farthest location reached by v′ on Lϕ.
So, ρm = dzm−1zm

≥ dzm−1u2 . By triangle inequality,

ρm ≥ dzm−1u2 ≥ du1u2 − du1zm−1 = Rγ(λ) − du1zm−1 .

As the above inequality holds for all the v′ in the sector,

ρm ≥ max
{v′}

{Rγ(λ) − du1zm−1} = Rγ(λ) − Xmin,

where Xmin is defined in Fig. 5(b). Replacing m with i,

ρ(λ) = lim
m→∞

∑m
i=1 ρi

m
≥ Rγ(λ) − lim

m→∞

∑m
i=1 Xmin,i

m
= Rγ(λ) − E[Xmin]

where Xmin,i is Xmin taking place at zi−1 and Xmin,i has
i.i.d. probability distribution. Next, we compute E[Xmin]. We
know from the Poisson distribution that with probability e−

1
3 a

there is no node in the sector, i.e., Xmin = Rγ(λ), and with
probability 1 − e−

1
3 a there is at least one node in the sector,

i.e., Xmin < Rγ(λ). Given 0 ≤ x < Rγ(λ),

Pr[Xmin≤x|Xmin<Rγ(λ)] = 1−Pr[Xmin>x|Xmin<Rγ(λ)]

= 1− e−
1
3 λπx2 − e−

1
3 a

1 − e−
1
3 a

.

The conditional expectation is

E[Xmin|Xmin<Rγ(λ)] =
∫ Rγ(λ)

0

x d Pr[Xmin≤x|Xmin<Rγ(λ)]

=
∫ Rγ(λ)

0

2
3λπx2e−

1
3 λπx2

1 − e−
1
3 a

=
Rγ(λ)

1 − e−
1
3 a

(∫ 1

0

e−
1
3 ax2

dx − e−
1
3 a
)
.

The unconditional expectation is

E[Xmin]=e−
1
3 aRγ(λ)+(1 − e−

1
3 a)E[Xmin|Xmin<Rγ(λ)]

=Rγ(λ)
∫ 1

0

e−
1
3 ax2

dx.

Thus,

ε(λ) ≤ Rγ(λ) − (Rγ(λ) − E[Xmin])
Rγ(λ)

=
∫ 1

0

e−
1
3 ax2

dx.

Based on the result of Theorem 6, we are able to determine
the asymptotic convergence rate of ε(λ). In order to present
this asymptotic rate, we prove the following lemma first.
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Lemma 5: Define h1(b) =
∫ 1

0
kb(x2−1)dx and h2(b) =∫ 1

0
k− 1

3 bx2
dx, where k > 1, b > 0. ∀ 0 < c < 1 and ε > 0,

h1(b) > cb and h2(b) < cb1−ε

as b → ∞.
Proof: ∀ 0 < c < 1, ∃ 0 < x0 < 1 s.t. kx2

0−1 > c. Since∫ 1

0
(kx2−1

c )bdx ≥ ∫ 1

x0
(kx2−1

c )bdx ≥ (1− x0)(kx2
0−1

c )b → ∞ >

1 as b → ∞, h1(b) =
∫ 1

0
kb(x2−1)dx > cb as b → ∞.

∀ 0 < c < 1, ε > 0 and x > 0, as b → ∞, cb−ε → 1 and

(k− 1
3 x2

cb−ε )b → 0. Hence,
∫ 1

0
(k− 1

3 x2

cb−ε )bdx → 0 < 1, which gives

h2(b) =
∫ 1

0
k− 1

3 bx2
dx < cb1−ε

as b → ∞.
The asymptotic convergence rates of ε(λ) in the two noise

models are then summarized in the next two theorems.
Theorem 7: In the ambience-dominant noise model, i)

when λ < λA, there exist two constants c1 and c2 such that
c1 ≤ ε(λ) ≤ c2; ii) when λ > λA, ∀ 0 < c < 1 and ε > 0,
cλ < ε(λ) < cλ1−ε

as λ → ∞.

Proof: When λ < λA, Rγ(λ) = RA

√
λA

λ and a =
λAπR2

A. By Theorem 6, letting c1 = g1(λAπR2
A) and c2 =

g2(λAπR2
A), we have c1 ≤ ε(λ) ≤ c2.

When λ > λA, Rγ(λ) =
(

P
Ny(α)

) 1
α and a = λπ( P

Ny(α) )
2
α .

Choosing k = eπ( P
Ny(α) )

2
α

and b = λ, by Theorem 6 and
Lemma 5, ∀ 0 < c < 1 and ε > 0, as λ → ∞,

ε(λ) ≥ g1(a) = h1(λ) > cλ,

and

ε(λ) ≤ g2(a) = h2(λ) < cλ1−ε

.

Theorem 8: In the interference-dominant noise model, i)
when λ < λI , there exist two constants c1 and c2 such that
c1 ≤ ε(λ) ≤ c2; ii) when λ > λI , ∀ 0 < c < 1 and ε > 0,

cλ1− 2
α < ε(λ) < cλ(1− 2

α
)(1−ε)

as λ → ∞.

Proof: When λ < λI , Rγ(λ) = RI

√
λI

λ and a = λIπR2
I .

By Theorem 6, letting c1 = g1(λIπR2
I) and c2 = g2(λIπR2

I),
we have c1 ≤ ε(λ) ≤ c2.

When λ > λI , Rγ(λ) =
(

P
λN(1)y(α)

) 1
α and a =

λ1− 2
α π( P

N(1)y(α) )
2
α . Choosing k = eπ( P

N(1)y(α) )
2
α

and b =
λ1− 2

α , by Theorem 6 and Lemma 5, ∀ 0 < c < 1 and ε > 0,
as λ → ∞,

ε(λ) ≥ g1(a) = h1(λ1− 2
α ) > cλ1− 2

α ,

and

ε(λ) ≤ g2(a) = h2(λ1− 2
α ) < cλ(1− 2

α
)(1−ε)

.

Theorems 7 and 8 reveal that in both noise models there is a
threshold node density, below which ε(λ) is bounded by con-
stants (the constants are determined by the choice of parameter
γ) and above which ε(λ) converges to zero exponentially in

the rates of cλ1−ε

and cλ(1− 2
α

)(1−ε)
respectively, where ε is an

arbitrarily small positive real number.

VI. CONCLUSIONS

In this paper we have studied the information propagation
speed in large wireless networks. We find that there is an
upper bound, determined by the network parameters, on the
information propagation speed. This upper bound is different
for broadcast communications and unicast communications,
but the two bounds converge in large networks. As a necessary
condition for achieving this upper bound, all the nodes in the
network must use an optimal transmission radius. We also
reveal that, when a certain degree of satisfaction is required
on delivering a packet to all the intended recipients, the
speed upper bound is a function of the node density. In the
ambience-dominant noise model, the bound is constant when
the node density exceeds a threshold, while in the interference-
dominant noise model, the bound decreases to zero as the
node density grows to infinity. Finally, we prove that a packet
propagates omnidirectionally in large random networks and the
gap between its actual speed and the upper bound decreases as
the node density increases. In both noise models, there exists
a threshold node density, below which the gap is bounded
by constants and above which the gap decreases to zero
exponentially as node density increases to infinity. The work
in this paper provides fundamental understanding of the fastest
information delivery in large wireless networks.
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