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ABSTRACT
In this paper, we study the critical phase transition time
of large-scale wireless multi-hop networks when the network
topology experiences a partition due to increasing random
node failures. We first define two new metrics, namely the
last connection time and first partition time. The former is
the last time that the network keeps a majority of surviving
nodes connected in a single giant component; while the lat-
ter is the first time that the remaining surviving nodes are
partitioned into multiple small components. Then we ana-
lyze the devolution process in a geometric random graph of
n nodes based on percolation-theory connectivity and obtain
the sufficient condition under which the graph is percolated.
Based on the percolation condition, the last connection time
and first partition time are found to be on the same order.
Particularly, when the survival function of node lifetime is
exponential, they are on the order of log(log n); while if the

survival function is Pareto, the order is (log n)1/ρ, where ρ
is the shape parameter of Pareto distribution. Finally, sim-
ulation results confirm that the last connection time and
first partition time serve as the lower and upper bounds of
the critical phase transition time, respectively. Further, an
interesting result is that the network with heavy-tailed sur-
vival functions is no more resilient to random failures than
the network with light-tailed ones, in terms of critical phase
transition time, if the expected node lifetimes are identical.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes;
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network topology

General Terms
Theory
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1. INTRODUCTION
Wireless multi-hop networks are expected to operate in

a decentralized and self-organized manner without fixed in-
frastructures, which makes them suitable to a variety of ap-
plication scenarios, such as ad hoc battlefield deployments,
environment surveillance/monitoring, and ubiquitous Inter-
net access. A prerequisite for upper-layer application op-
erations in such networks is that the underlying topologies
should be connected. Thus, many works have been done
to provide theoretical guidances on the critical transmission
power/range, critical node degree, and critical density re-
quired for establishing (asymptotic) full connectivity [1–4].
For example, Xue and Kumar in [3] provided the critical
degree for asymptotic connectivity to be Θ(log n), 1 where
n is the number of nodes in a network. Although these
works have extended our understanding on wireless network
connectivity and topology, a fundamental problem for large-
scale deployments remains unsolved, that is, given a con-
nected network in the presence of failures, how long can we
expect the network sustains its connectivity before a dra-
matical change to its topology?

We notice that in the previous studies on connectivity,
whether a network is connected or not is dependent on if
there are isolated nodes. However, this full connectivity is
impractical to achieve all the time in a large-scale wireless
network and it does not provide a deeper insight to the entire
topological devolution process. In a wireless network, node
failures are common due to various reasons, such as power
depletion, software or hardware malfunction, and arbitrary
leave intrigued by end-users. When the number of node
failures keeps increasing, the network inevitably devolves,
which is characterized by a gradual shrinkage of the giant
component size followed by an abrupt network connectiv-
ity breakdown. Understanding this process, especially the
critical time when the network experiences topological tran-
sitions, is of importance in both theory and practice. For
example, the critical phase transition time can be used as a

1We say f(n) = O(g(n)) if ∃n0 > 0 and constant c0 s.t.
f(n) ≤ c0g(n) ∀n ≥ n0. Similarly, we say f(n) = o(g(n)) if
f(n) < c0g(n). We say f(n) = Ω(g(n)) if g(n) = O(f(n))
and f(n) = ω(g(n)) if g(n) = o(f(n)). Finally, we say
f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).



theoretical estimation of network lifetime, a new metric for
network survivability evaluation, or a temporal guidance for
emergent network maintenance.

In this paper, we focus on the following question: for
a large-scale wireless multi-hop network in the presence of
random failures, when does the network change its behav-
ior from an almost connected phase to a fully partitioned
phase? Here a network is said to be almost-connected if there
exists a giant component that is composed most of surviv-
ing nodes with high probability (w.h.p.); while a network is
fully-partitioned if no such a giant component exists asymp-
totically almost surely (a.a.s.). 2 To tackle this problem,
we couple a network devolution process with a continuum
percolation process [5, 6] in a geometric random graph [7].
By using the concept of percolation probability, we first de-
fine two metrics, the last connection time and first partition
time, to characterize the critical phase transition time. The
former is the last time at which a network is almost con-
nected and the latter is the first time at which a network
is fully partitioned. Then we analyze the theoretical con-
ditions under which a geometric random graph does (not)
have a giant component of surviving nodes.

Through the analysis, we find that both the first partition
time and last connection time are on the same order and de-
pend on the network size n, initial density λ0, transmission
radius rn, and survival function of node lifetime S(t). In
particular, when S(t) is exponential, the order of the criti-
cal phase transition time is log(log n); while if S(t) is Pareto,

this order is (log n)1/ρ, where ρ is the shape parameter of
Pareto distribution. Finally, simulation results confirm that
the phase transition period is bounded by the last connection
time and first partition time from below and above, respec-
tively. An interesting observation from our simulations is
that a network with heavy-tailed S(t) may even experience
an earlier phase transition than a network with light-tailed
S(t) if expected node lifetimes are the same, which might
be quite opposite to our intuition.

The rest of this paper is organized as follows. In Section
2, we introduce the models and percolation theory, and for-
mulate the problem. In Section 3, we present our approach
and main results, followed by potential applications. In Sec-
tion 4, we provide detailed proofs for our analytical results.
In Section 5, we use simulations to validate our analysis,
followed by the conclusions in Section 6.

2. PROBLEM FORMULATION
In this section, we first introduce the models and assump-

tions, then define two new metrics by using preliminaries
from percolation theory, and formulate the problem last.

2.1 Models and Assumptions
Network model: In this paper, a wireless multi-hop net-

work is modeled by a geometric random graph [7] and de-

noted by G(Xn, rn), where Xn , {Xn, n ∈ N} denotes the
node set and rn denotes the node transmission radius. In
this model, X1, X2, · · · , Xn denote the random locations of
nodes in R

2 and they are independently and identically dis-
tributed (i.i.d.) in a square with area A according to a two
dimensional uniform distribution. The transmission radius

2An event An occurs w.h.p. or a.a.s. if Pr(An) → 1 as
n → ∞. We use “w.h.p.” and “a.a.s.” interchangeably in this
paper. For more details, please refer to [8] (Chapter 8).

rn is assumed to be identical for all nodes so that undirected
links exist in the graph if ‖xi−xj‖ ≤ rn holds for node pairs
(xi, xj). When n → ∞ and A → ∞ with n

A
= λ fixed, Xn

can be presented by a homogeneous Poisson point process
Hλ with density λ, which results in an (infinite) geometric
random graph G(Hλ, rn) [7, 8].

Nevertheless, in a real wireless multi-hop network, nodes
are actually distributed in a bounded domain. Although we
are interested in scaling laws on the critical phase transition
time for large-scale networks (in the sense of large n), it is
natural to study finite random geometric graphs. To define
precisely, let B(sn) denote a continuum box with side length

sn =
p

n/λ0 > 0 and let Hλ0,sn be the restriction of a
Poisson process Hλ0

of density λ0 to the box B(sn), i.e.,

Hλ0,sn , Hλ0
∩ B(sn). Then the network studied in this

work can be formally modeled by a random geometric graph
G(Hλ0,sn , rn) in which two points of Hλ0,sn are adjacent if
their distance is at most rn, as aforementioned.

Remark 1. In our network model, the node density λ0

is fixed to a given constant and the number of nodes n is
increased (to infinity) by increasing the deployment region
B(sn) (to infinity). This is also called the extended network
model [9,10]. Notice that it has been proved that the critical
node degree for connectivity is Θ(log n) [3,8]. Thus we need
to scale rn with n to obtain an initially connected network
with high probability.

Random failure model: In order to describe the impact
of node failures on the devolution of wireless multi-hop net-
works, we introduce a random failure model to extend our
network model G(Hλ0,sn , rn) defined above. In this failure
model, each node is either surviving or failed at any time
and a failed node does not recover back to surviving state.
Let Ti (1 ≤ i ≤ n) denote the lifetime of node i before it
is failed, then T1, · · · , Tn are random variables, which are
assumed i.i.d.. The complementary cumulative distribution
function (c.d.f.) of the node lifetime is called the survival

function, denoted by S(t) , Pr(Ti > t). The survival func-
tion S(t) actually serves as the probability that a node is
surviving at time t, which will be used extensively in our
succeeding analysis.

Interference model: An intrinsic feature of a wireless
multi-hop network is that all communications share open
radio channels, which makes signal interference as an un-
negligible factor in studying network connectivity [11]. In
a widely used interference model (see [9, 11–13] for exam-
ple), the condition for a successful transmission from node i
to node j is that the signal-to-interference-with-noise-ratio
(SINR) should be above a certain threshold, say β. For-

mally, the condition can be written as Pr(i,j)
N0+γ

P

k 6=i,j Pr(k,j)
>

β, where Pr(x, j) is the signal of x received by j, N0 is the
power of the thermal background noise, and γ is the inverse
of the processing gain of the system, called orthogonality
factor [11]. This interference model indicates that there is
an upper limit on the number of adjacent nodes (degree),
which was proved to be 1 + 1/(γβ) in [11]. This upper limit
on the node degree is of our interest and we call it the degree
bound, denoted by K , 1+1/(γβ), in the following context.

2.2 Preliminary of Percolation
To further explain how the continuum percolation pro-

cess on a geometric random graph is related to the topo-



logical devolution process of a large-scale wireless multi-hop
network, we introduce some percolation terminologies first.
From graph theory, we know that a component of a graph G
is a maximal connected subgraph of G. With this definition,
the percolation probability is defined as follows [5, 7, 8]

Definition 1. Let C0 be the component of a graph G(Hλ, rn)
containing the origin of R

2, |C0| be the number of points in
C0, then the percolation probability, denoted by p∞(λ) for
density λ, is the probability that C0 contains infinite points,
i.e., p∞(λ) , Pr(|C0| = ∞).

A fundamental result of continuum percolation is that
there exists a critical density λc defined by λc , inf{λ >
0 : p∞(λ) > 0} so that: if λ > λc, the graph G(Hλ, rn) is
in the super-critical phase and p∞(λ) > 0; while if λ < λc,
G(Hλ, rn) is said to be sub-critical and p∞(λ) = 0 [5, 6].
When the graph is super-critical, C0 is normally called the
giant component since it contains most of (and indeed, an
infinite number of) the nodes in a network.

Although we are interested in the percolation in large-
scale, finite wireless multi-hop networks, the above perco-
lation probability definition can be applied to our network
model G(Hλ0,sn , rn) as well. By using similar notations,
we can define the percolation probability with large n for
G(Hλ0,sn , rn) as p∞(λ) , Pr(|C0| ≥ n), where n is the ex-
pected number of points in the continuum box B(sn). Once
again, as n → ∞, our definition converges to the original
definition. Moreover, the critical density definition also ap-
plies to our network model and there exists a unique giant
component containing Θ(n) points in G(Hλ0,sn , rn) almost
surely as n→ ∞ if λ0 > λc.

Given a large-scale wireless network with each node asso-
ciated with a survival function S(t), according to the Thin-
ning theorem (Theorem 9.15 [7]), the point process of sur-
viving nodes is also a Poisson process with density function
λ1(t) , λ0S(t). As time goes, although more and more fail-
ures are present, as long as λ1(t) is high enough, most of
surviving nodes are still in a giant component. Once λ1(t)
drops below a certain point λc, the connectivity among the
surviving nodes breakdowns quickly and no giant component
exists any more. Thus, the percolation process is a natural
analogy to the devolution process aforementioned.

We notice that the percolation theory, especially the con-
tinuum percolation model, has been used to analyze the con-
nectivity, capacity, and latency of wireless networks recently
[11,14–16]. For example, Kong et al recently in [16] modeled
an energy scheduling mechanism by a degree-dependent dy-
namic site percolation process on random geometric graphs.
The above works demonstrate the applications of the perco-
lation theory in wireless networks; while none of them ever
addresses our NPT-problem, defined right next.

2.3 Problem Formulation
In order to understand the critical phase transition time

during network devolution, we first define almost connected
and fully partitioned networks as follows:

Definition 2. Let G(Hλ0,sn , rn) be a geometric random
graph, in which every point is associated with the same sur-
vival function S(t). Let λ1(t) , λ0S(t), then the network
represented by G(Hλ0,sn , rn) is said to be almost connected
if p∞(λ1(t)) > 0, and fully partitioned if p∞(λ1(t)) = 0,
where p∞(·) is the percolation probability.

Next we define two new metrics called the last connection
time and first partition time.

Definition 3. With the same conditions given in Defini-
tion 2, the last connection time is defined by

tc(n) , sup{t > 0 : p∞(λ1(t)) > 0}, (1)

where λ1(t) , λ0S(t). The first partition time is defined by

tp(n) , inf{t > 0 : p∞(λ1(t)) = 0}. (2)

Definition 4. The critical phase transition time, denoted
by TC , is the critical time point above which G(Hλ0,sn , rn) is
disconnected a.a.s. (sub-critical) and below which G(Hλ0,sn , rn)
is connected a.a.s., (super-critical), that is

lim
n→∞

Pr(G is connected) =



1, if t < TC ,
0, if t > TC . (3)

The exact value of Tc is unknown, but it is expected to be
bounded by tc(n) and tp(n) from below and above, respec-
tively, based on our definitions on tc(n) and tp(n).

Now we formulate the problem addressed in this paper as
the Network Partition Time (NPT) problem.

Definition 5. (NPT problem): For a large-scale wire-
less multi-hop network represented by a geometric random
graph G(Hλ0,sn , rn), every node is assumed to be indepen-
dently associated with survival function S(t). Given the net-
work is fully connected at initial time t = 0, find out

1. the relations among n, λ0, rn, and S(t) that would
be sufficient to guarantee that the network is almost
connected or fully partitioned, respectively;

2. the upper limit of tc(n) and the lower limit of tp(n),
such that the critical phase transition time TC can be
bounded by these limits.

The results of this problem reveal that when time t <
tc(n), the network is guaranteed to be almost connected
(super-critical); while t > tp(n) will be sufficient for the net-
work to be fully partitioned (sub-critical). We expect the
bounds of critical phase transition time (i.e., tc(n), tp(n)) to
be tight so that the phase transition is sharp and the period
of phase transition (i.e., the gap between tc(n) and tp(n))
converges to 0 as fast as possible. Nevertheless, in practical,
a longer period of phase transition might be preferable to
provide a smooth degradation of connectivity.

3. RESULTS AND APPLICATIONS
Intuitively, a trivial solution to the NPT problem tells

that: when S(t) > λc/λ0, most of surviving nodes are con-
nected in the giant component a.a.s.; otherwise, no surviving
node belongs to a component that is significantly larger than
any other components. If we know λc, given S(t) with any
specific distribution, we can find tc(n) and tp(n) directly.
However, the exact value for λc is unknown, although some
numeric bounds were obtained from rigorous mathematical
proofs with a wide range, e.g., 0.696 < λc < 3.372 [5], or
from computer experiments with little theoretical justifica-
tion [17]. Therefore, the NPT problem is a quite challenging
problem in the continuous domain.

Our approach takes following procedures. We first map
the percolation process defined on the continuous plane onto



a discrete lattice, whose edges are declared open if certain
properties of the Poisson process in their vicinities are met
(closed otherwise). In the discrete lattice, we then investi-
gate the condition when infinite open paths (composed of
open edges) exist with positive probability. With a careful
definition on the open edge in the lattice, a reverse mapping
can be carried out back to the continuous plane so that in-
finite open paths on the discrete plane indicate connected
components on the continuous plane. Finally, we obtain the
continuum percolation conditions, which enable us to derive
the bounds of critical phase transition time, i.e., tc(n) and
tp(n), for given survival functions.

3.1 Contributions
We summarize our main results as follows. First, following

theorems provide the critical conditions for a network to be
almost connected and fully partitioned, respectively, thus
solving the first part of the NPT problem.

Theorem 1. Given a graph G(Hλ0,sn , rn), assume µ0 =
λ0πr

2
n = Θ(log n) and the degree bound K = (1+εn)µ0 where

εn is an arbitrary increasing function of n. There exists a
positive constant cε, such that if the survival function S(t)
satisfies,

S(t) >

√
5(ln 18 − ln(1 − 15φn))

cεrn
√
λ0 lnn

, (4)

where φn = 1 − exp(− 2c2ε lnn

ε2nµ0
), then G(Hλ0,sn , rn) is in the

super-critical phase.

Theorem 2. Given a graph G(Hλ0,sn , rn), assume µ0 =
Θ(log n) and K = (1 + εn)µ0. There exists a positive con-
stant cε, such that if the survival function S(t) satisfies:

S(t) <
ln

√
3ψK − ln(

√
3ψK − 1)

cεrn
√
λ0 lnn

, (5)

where ψK = Γ(K,µ0)
(K−1)!

and Γ(x, y) is the incomplete Gamma

function, then G(Hλ0,sn , rn) is in the sub-critical phase.

Remark 2. The assumptions on µ0 and K are needed to
achieve an initial fully connectivity, which is the condition
of the NPT problem. Further, they also guarantee ψK > 1

3

such that ln(
√

3ψK − 1) is a real number in (5). In fact, the
format of K indicates that the impact of interference has
to be sufficiently small so that the degree bound could be
large enough to support the percolation as n → ∞, which
is in accordance with the result proved in [11]. Detailed
explanations are given in Section 4.3.

Next, following corollaries answer the second part of the
NPT problem, providing the theoretical bounds on the crit-
ical phase transition time.

Corollary 1. (Limits of tc(n) and tp(n) with light-tailed
S(t)): Assume that S(t) = e−αt (exponential), where the
positive 1/α represents the mean lifetime of a node, then the
upper limit of last connection time tc(n) is,

tc(n) =
1

α
ln(lnn) + c1 ∼ Θ(log(log n)), (6)

where c1 = 1
α
(ln(cε

p

c
π
) − ln(

√
5 ln 18

1−15φn
)) and c ,

µ0

lnn
.

The lower limit of first partition time tp(n) is,

tp(n) =
1

α
ln(lnn) + c2 ∼ Θ(log(log n)), (7)

where c2 = 1
α
(ln(cε

p

c
π
) − ln(ln

√
3ψK√

3ψK−1
)).

Corollary 2. (Limits of tc(n) and tp(n) with heavy-
tailed S(t)): Assume that S(t) = (t/η)−ρ (heavy-tailed Pareto,
ρ > 1) with mean ηρ

ρ−1
, then the upper limit of tc(n) is,

tc(n) = c3(lnn)1/ρ ∼ Θ((log n)1/ρ), (8)

where c3 = η(
cε

√
c/π√

5(ln 18−ln(1−15φn))
)1/ρ and c ,

µ0

lnn
. The

lower limit of tp(n) is

tp(n) = c4(lnn)1/ρ ∼ Θ((log n)1/ρ), (9)

where c4 = η(
cε

√
c/π

ln(
√

3ψK)−ln(
√

3ψK−1)
)1/ρ.

Corollary 3. The critical phase transition time, TC , is
bounded by the last connection time and first partition time,
i.e., tc(n) ≤ TC ≤ tp(n).

Remark 3. A premise used in above theorems is µ0 =
c lnn = Θ(log n), where c is some constant such that the
network is fully connected initially. In particular, Xue and
Kumar proved in [3] that 5.1774 log n is required for a.a.s.
connectivity and this threshold was further improved by Bal-
ister et al in [18] to 0.5139 log n (also see [8]). However, in
our simulations, we find that 0.5139 log n is far less suffi-
cient to achieve an initially connected random topology and
actually 5.1774 log n is a “good” threshold for connectivity.

Remark 4. From reliability engineering, we know that
many lifetime distributions (e.g., exponential, log-normal,
Pareto, Weibull) are either light-tailed or heavy-tailed ac-
cording to the decay speed of their tails. Since the exponen-
tial distribution is the only distribution to have a constant
failure rate and applies naturally to model memoryless life-
time, it is used to represent light-tailed survival functions;
while the Pareto distribution is used to represent heavy-
tailed survival functions when node lifetimes are power law
distributed or have very large variance.

3.2 Applications
Besides the theoretical importance of our findings, our

results can be used practically not only in the initial deploy-
ment and dynamic reconfiguration of a wireless multi-hop
network, but also as a benchmark in evaluating other pro-
tocol designs. Here are some examples.

• In the initial network deployment, an appropriate value
for the number of nodes can be decided to guarantee
an almost connected network lasting for an expected
time, if transmission radius rn and statistical distribu-
tion of node lifetime S(t) are known.

• In sensor networks, nodes are very vulnerable to multi-
ple failures, affecting the communication connectivity
and in turn impairing the sensing coverage. As pointed
out in [19], redeploying additional nodes is necessary
to replace failed sensors so that a connected network
topology can be maintained. However, for many unat-
tended outdoor sensor network applications, it is usu-
ally inefficient and costly to replace failed sensors one
by one. Our results provide network designers a guide-
line on the optimal time that the redeployment of ad-
ditional sensors should be carried out.



• There are many power management and topology con-
trol algorithms, such as [20,21], proposed to minimize
the energy consumption in order to maintain network
connectivity as well as prolong network lifetime. Our
results, without involving any specific power-saving
schemes, can be used as a benchmark for the expected
network lifetime to evaluate the performance of exist-
ing and future algorithm designs whenever the network
lifetime is of interest.

4. TRANSITION TIME ANALYSIS
In this section, we demonstrate how to obtain the results

given in Section 3. Our approach is to map the continuous
and discrete planes first, and define open (closed) edges on
the discrete plane. Then we find percolation conditions on
the continuous plane relating to the survival function S(t).
At last, we derive the limits on the first partition time and
last connection time by specifying S(t) with light-tailed and
heavy-tailed distributions.

4.1 Mapping and Open Edge Definition
We begin by constructing a square lattice, denoted by L

over the plane, with edge length d. Let L′ be the dual lattice
of L, constructed by putting a vertex in the center of every
face (square) of L, and an edge across every edge of L. Since
L is a square lattice, L′ is simply the same lattice shifted
by d/2 horizontally and vertically, as depicted in Figure 1.
Without losing generality, we further set the origin 0 of the
plane at a vertex of L.
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Figure 1: The lattice L (solid), its dual L′ (dashed),
and a circuit (bold dashed) on L′.

To define an open edge, we use the crossing property [5–7]
to describe the connection among multiple points.

Definition 6. In a 2-D plane, let Xv = (xv, yv) be the
position of a point v, where xv and yv denote v’s x-coordinate
and y-coordinate, respectively. For a 2-D box B , [0, l1] ×
[0, l2], if there exist a series of points v1, v2, · · · , vm within
B such that ∀1 ≤ i < j ≤ m xvi

< xvj
, 0 < xv1 < r,

l1 − xvm < r, and ‖Xvi+1
− Xvi

‖ ≤ r, then B is said to
be crossed by a component from left to right or have an LR-
crossing. If the conditions above are satisfied in B when x
and l1 are substituted by y and l2, respectively, B is said to
be crossed from top to bottom or have a TB-crossing.

For every horizontal edge a of L, let (xa, ya) be the coor-
dinates of the point in the center of a and the rectangle Ba
be the vicinity of a. We introduce an event Ea that occurs
as a result of following three events,

1. LRa , { there is an LR-crossing in the rectangle Ba ,

[xa − d, xa + d] × [ya − d
2
, ya + d

2
]},

PSfrag replacements

2d

d

d

a

Figure 2: A horizontal edge a that fulfills the LR-
crossing and TB-crossing.

2. TBLa , { there is a TB-crossing in the “left” square

BLa , [xa − d, xa] × [ya − d
2
, ya + d

2
]}, and

3. TBRa , { there is a TB-crossing in the “right” square

BRa , [xa, xa + d] × [ya − d
2
, ya + d

2
]}.

The occurrence of the event Ea is illustrated in Figure 2
where balls represent Poisson points. Note Ea can be defined
similarly for vertical edges by exchanging the notations of
xa and ya in the conditions above.

As aforementioned in Section 2.1, due to signal interfer-
ence, the number of neighbors of any node should be upper
bounded by the degree bound K (see Theorem 1 in [11] for
details). Thus we define another event E′

a that occurs in
the rectangle Ba if and only if each point in Ba has no more
than K neighbors. The occurrence of E′

a guarantees that no
point in Ba is isolated from others because of signal inter-
ferences. Let Dv be the number of neighbors of a point v,
E′
a is formally represented by

E′
a , {Dv < K, ∀ v and Xv ∈ Ba}. (10)

With the two events described above, we can rigorously
define open edges as follows.

Definition 7. In the lattice L, an edge a is said to be
open if and only if both events Ea and E′

a occur in its asso-
ciated rectangle Ba; and closed otherwise. In the dual lattice
L′, an edge a′ is open if there is an open edge of L crossing
a′; otherwise, a′ is closed.

This open edge definition bridges the discrete and contin-
uous planes in that a cluster comprised of adjacent 3 open
edges in L correspond to a unique component (comprised of
surviving nodes) in G(Hλ0,s, r). This rationale guarantees
the validity of our mapping approach, which is summarized
in the following result.

Lemma 1. Given the mapping and open edge defined above,
if there exists an infinite open edge cluster in L, then there
exists a giant component in G(Hλ0,sn , rn).

Proof. See Appendix 8.1.

Lemma 1 implies that if the lattice L is percolated then
the continuum percolation also occurs in graph G(Hλ0,sn , r);
and vice versa. Thus, the percolation conditions obtained
in L can be applied to continuum percolation, which will be
explained in detail next.

4.2 Percolation Condition in Lattice
In discrete percolation theory, the open or close state of

every edge (or vertex) is independent from others. The

3Two edges are adjacent if they are incident to the same
vertex in the lattice.



percolation probability is dependent on a certain critical
probability, defined by pc = sup{p : p∞(p) = 0}, where p
is the probability of any edge being open. It was proved
in [5, 6] that non-trivial upper and lower bounds for pc are
1
3
≤ pc ≤ 2

3
in square lattices, and more precisely, pc = 1

2
.

In our discrete lattice mapping, the state of an edge de-
pends on, however, how the Poisson points surrounding the
edge are connected, which implies that adjacent edges are
not independent. Therefore, we cannot directly use the the-
oretical bounds given in discrete percolation theory and we
need to find out alternative percolation conditions for our
mapping. The percolation condition on L is based on the
following fact.

Lemma 2. Given a lattice L containing the origin 0, let
σ(m) be the number of paths with length m (i.e., comprising
m edges) that start at 0, then σ(m) ≤ 4 · 3m−1. Further, let
ρ(m) be the number of circuits 4 in the dual lattice L′ with
length m and containing 0 in their interiors, then ρ(m) ≤
2 · (m− 2) · 3m−2.

Proof. See Appendix 8.2.

By using the fact above, we have

Lemma 3. For the given lattice L constructed above, let
p be the probability that an edge is open, if p > 14

15
, then

there exists an infinite open edge cluster in L, i.e., p∞ > 0;
if p < 1

9
, then there is no percolation in L, i.e., p∞ = 0.

Proof. See Appendix 8.3.

Lemma 3 provides us a useful tool to study the percolation
on the continuous plane. For example, if we can find an
upper bound of p such that p < 1

9
, we are able to derive the

condition for non-percolation on the continuum space.
In the following context, the concept of increasing (de-

creasing) event and two powerful inequalities will be fre-
quently used. We introduce them as follows.

Definition 8. For two geometric random graphs G and
G′, a partial ordering � is defined as G � G ′ if and only if
G′ can be induced from G by adding more (Poisson) points.
Then an event A is said to be increasing (decreasing) if
∀ G � G′ and 1A(G) ≤ 1A(G′) (1A(G) ≥ 1A(G′)), where
1A is the indicator function of event A.

Lemma 4. (Reimer’s inequality [6]) For two events A1

and A2, if A1 is increasing and A2 is decreasing, then
Pr(A1 ∩A2) ≤ Pr(A1)Pr(A2).

Lemma 5. (FKG’s inequality [5,6]) If two events A1 and
A2 are both increasing or decreasing, then
Pr(A1 ∩A2) ≥ Pr(A1)Pr(A2).

Recall that we have defined an edge a open in Definition
7 by using two events Ea and E′

a, where Ea occurs if there
exist an LR-crossing and two TB-crossings in the rectangle
Ba, and E′

a occurs if every point in Ba has no more than K
neighbors. Since the more points are in Ba, the more likely
Ea occurs while the less likely E′

a occurs, based on Definition
8, we know that Ea is increasing and E′

a is decreasing. Thus,
by Reimer’s inequality, we have an upper bound of p as

p = Pr(Ea ∩ E′
a) ≤ Pr(Ea)Pr(E

′
a). (11)

4A circuit in a lattice is a path that two ends are the same
vertex without repeated intermediate vertices.

Noticing that the two eventsEa and E′
a are not independent,

we have a lower bound of p as

p = Pr(Ea) + Pr(E′
a) − Pr(Ea ∪E′

a)

≥ Pr(Ea) + Pr(E′
a) − 1. (12)

In the next two subsections, we prove the two main theo-
rems by further investigating (11) and (12), respectively.

4.3 Condition for Continuum Percolation
In this subsection, we investigate the sufficient condition

for the percolation in the continuous domain and prove The-
orem 1. More specifically, our target is to find out the condi-
tion for Pr(Ea) +Pr(E′

a)− 1 > 14
15

because of Lemma 3. In
the following, we will study the lower bounds of Pr(Ea) and
Pr(E′

a) first, and define the proper order of the side length
d of the lattice next, then prove our first main theorem last.

The Lower Bound of Pr(Ea): Intuitively, the more
points are in a box, the more likely there is a component
in the box. Thus, LRa, TB

L
a , and TBRa are all increasing

events. By FKG’s inequality, Pr(Ea) is lower bounded by

Pr(Ea) = Pr(LRa ∩ TBLa ∩ TBRa )

≥ Pr(LRa)Pr(TB
L
a )Pr(TBRa ). (13)

Note that the points are distributed homogeneously with
random failures, we have Pr(TBLa ) = Pr(TBRa ) in (13). In
addition, for squares with the same size, an LR-crossing and
a TB-crossing occur with the same probability. By Lemma
11.73 and 11.75 in [6], let Pr(TBLa ) = Pr(TBRa ) = τ , we
have Pr(LRa) ≥ τ (1 −

√
1 − τ)6, which yields

Pr(Ea) ≥ τ 3(1 −
√

1 − τ)6

= 1 − 6
√

1 − τ + o(
√

1 − τ). (14)

To proceed, we need the following known result.

Lemma 6. (Lemma 10.5 [7]) For a geometric random graph
G(Hλ, rn) in 2-D space, if λ > λc, then there exist c > 0
and d1 > 0 such that 1−Pr(LRa) ≤ exp(−cd) for all d ≥ d1

This implies that the probability that a square box [0, d]2

has an LR-crossing approaches 1 when d is sufficiently large,
given that the graph is super-critical. Based on this result,
from (14) we have

Lemma 7. Assume λ0S(t) > λc, the probability that the
event Ea occurs is lower bounded by

Pr(Ea) ≥ 1 − 6

5
exp

„

−
√

5

5
λ0rndS(t)

«

. (15)

Proof. See Appendix 8.4.

The Lower Bound of Pr(E′
a): Next, we investigate the

lower bound of Pr(E′
a). Let µ0 denote the expected node

degree, it is known that each point has an approximately
Poisson degree distribution [7, 8, 22, 23] as n is sufficiently
large. Thus, the expected degree µ0 can be given by

µ0 = lim
n→∞

(n − 1)λ0πr
2
n

n
= λ0πr

2
n. (16)

Then we have the following observation.



Lemma 8. Let k = K−µ0√
µ0

> 0, where K is the degree

bound and µ0 is given by (16), then the probability that the
event E′

a occurs is lower bounded by

Pr(E′
a) ≥

„

1 − 1

1 + k2

«2λ0d
2

. (17)

Proof. See Appendix 8.5.

The Tight Bound of d: It is noticed that the lower
bounds of Pr(Ea) in (15) and Pr(E′

a) in (17) are functions
of the edge length d in the lattice L. In order to make our
results independent from the mapping scheme with specific
value of d, we need to define d properly by using basic net-
work parameters, such as n, λ0, and rn. However, defining
the value of d precisely or even confining d to a proper order
is a challenging problem. Here we have:

Proposition 1. Given the mapping between the graph
G(Hλ0,sn , rn) and lattice L described in Section 4.1, the edge
length d has a tight bound as d = Θ(

√
log n).

Proof (Sketch). We first look at the upper bound of
d. An extreme case is d = Θ(sn). In this case, the problem
of finding the probability of an open edge will be equivalent
to the problem of finding the probability that there exists
a giant component in the graph. Thus, sn is too loose to
bound d from above and d should be smaller than sn, i.e.,
d = o(sn).

Recall that we assume that the network is fully connected
initially at time t = 0 in our problem formulation (Def-
inition 5), then it is reasonable to assume that the degree
boundK should be greater than the expected degree µ0, i.e.,
K = Ω(µ0); otherwise, all points with more than µ0 neigh-
bors may be isolated “logically” already even without any
failures. Further, as we mentioned in Section 2.1, in order
to achieve the initial connectivity w.h.p., each point should
be connected to Θ(log n) neighbors, which implies that µ0

is also on the order of log n so that the network is connected
a.a.s.. Thus, K = Ω(µ0) goes to infinity as n → ∞, and

consequently, k ,
K−µ0√
µ0

= Ω(
√

log n). From (17), we have

lim
n→∞

Pr(E′
a) ≥ lim

n→∞

„

1 − 1

k2

«2λ0d
2

= exp

„

−2λ0d
2

k2

«

.

The above equation tells that in order to guarantee the
event E′

a to occur w.h.p., d needs to be less than k, i.e.,
d = o(k); otherwise, it is quite impossible to achieve p =
Pr(Ea∩E′

a) >
14
15

when n goes to large, even if Pr(Ea) = 1.

Therefore, we have
√

log n as a (tighter) asymptotic upper
bound for d, i.e., d = O(

√
log n).

Next we look at the lower bound of d. It is also easy to
know that d should be at least greater than rn; otherwise
event Ea cannot be guaranteed to occur w.h.p., according to
Lemma 6. Since µ0 = λ0πr

2 = Θ(log n) is required for the
initial connectivity w.h.p., we have

√
log n as an asymptotic

lower bound for d as well, i.e., d = Ω(
√

log n). Therefore,
d = Θ(

√
log n).

Remark 5. In [11], the critical value of the orthogonality
factor γ is proved to be γ = Θ( 1

λ
) as λ → ∞ in order

to achieve the percolation for large-scale wireless networks.
Recall that the degree bound is defined as K , 1 + 1/(γβ)
(Section 2.1) and the SINR threshold β is finite, thus K →
∞ as γ → ∞. This implies that the degree bound K should

increase as n increases, and more specifically, K should grow
faster than d2; otherwise, the continuum percolation cannot
be achieved as the network size goes to large.

Based on Proposition 1, we define d as follows.

Definition 9. Assume that K = (1 + εn)µ0, where εn >
0 is an arbitrary increasing function of n, d is defined by

d , cε

r

lnn

λ0
, (18)

where cε is a positive constant and is chosen such that d > rn

and exp(− 2λ0d
2

ε2nµ0
) > 14

15
.

Note that the above definition of d guarantees K = ω(d2)
and a.a.s. E′

a given µ0 = Θ(log n).

The Condition for Continuum Percolation: Now we
are ready to derive the sufficient condition given in (4).

Proof of Theorem 1. Based on the given conditions:
K = (1 + εn)µ0 and µ0 = Θ(log n), we obtain a simplified
lower bound of Pr(E′

a) by using (17) and (18),

Pr(E′
a) ≥

„

1 − 1

ε2nµ0

«2λ0d
2

→ exp

„

−2c2ε lnn

ε2n · µ0

«

, (19)

as d is sufficiently large. Note that according to Definition 9,
cε is chosen so that Pr(E′

a) >
14
15

. By substituting (15) and
(19) into (12), we have the sufficient condition for continuum
percolation given by

−6

5
exp

„

−
√

5

5
cεrn

√
λ0 lnnS(t)

«

+ exp

„

−2c2ε lnn

ε2n · µ0

«

>
14

15
.

(20)

Let φn = 1 − exp(− 2c2ε lnn

ε2n·µ0
), then we have from (20)

S(t) >

√
5(ln 18 − ln(1 − 15φn))

cεrn
√
λ0 lnn

, (21)

which is the condition given in (4). Finally, by applying
Lemma 1 and Lemma 3, when S(t) satisfies (4), the original
graph is in the super-critical phase.

4.4 Condition for Continuum Non-percolation
In this subsection, we prove Theorem 2 by analyzing the

condition for Pr(Ea)Pr(E
′
a) <

1
9

because of Lemma 3. We
first find the upper bounds for Pr(Ea) and Pr(E′

a), which
are expected to be functions of S(t), then we prove the suf-
ficient condition for non-percolation by using these upper
bounds, shown as follows.

The Upper Bound of Pr(Ea): Let SLRLa and SLRRa
denote the events that there is an LR-crossing in BLa and
BRa , respectively, where BLa and BRa are defined in Section
4.1. Then the occurrence of event LRa guarantees the oc-
currences of both events SLRLa and SLRRa , and thus

Pr(Ea) = Pr(LRa ∩ TBLa ∩ TBRa )

≤ Pr(SLRLa ∩ TBLa ∩ SLRRa ∩ TBRa )

= Pr(SLRLa ∩ TBLa )Pr(SLRRa ∩ TBRa ).(22)

The last equality in (22) is due to the fact that events
SLRLa ∩ TBLa and SLRRa ∩ TBRa occur in disjoint sets BLa
and BRa , i.e., they are independent events. We further as-
sume that the points used for the LR-crossing in BLa (and



BRa ) are different than those used for the TB-crossing in BLa
(and BRa ), then by BK inequality (Theorem 2.3 [5]), we have

Pr(Ea) ≤ (Pr(SLRLa )Pr(TBLa ))2 = Pr(SLRLa )4. (23)

To calculate Pr(SLRLa ), we study the occurrence of the

complementary event of SLRLa , SLRa , { no LR-crossing
exists in BLa }. Suppose that there is a band with width
rn crossing vertically through BLa , then the intersection of
the band and BLa forms a rectangular with length d and
width rn, denoted by Br. Let SLRc , { no surviving nodes
located in Br}, then SLRa surely occurs when SLRc oc-
curs, which is illustrated in Figure 3. Since SLRc is only
one of causes for the occurrence of SLRa, it is obvious that
Pr(SLRc) < Pr(SLRa). Therefore, we have

Pr(Ea) < (1 − Pr(SLRc))4. (24)

PSfrag replacements

d

d rn

B
L
a

Br

Figure 3: An illustration of the event that intercepts
an LR-crossing.

As aforementioned, the point process of surviving nodes is
a Poisson process with density function λ1(t) = λ0S(t), then
we have Pr(SLRc) = exp(−λ0rndS(t)). With the definition
of d given in (18), we have Pr(Ea) upper bounded by

Pr(Ea) < (1 − exp(−cεrn
√
λ0 lnnS(t)))4. (25)

Remark 6. In (25), for any given network size n, the
upper bound of Pr(Ea) increases exponentially as the sur-
vival function S(t) increases. Specifically, Pr(Ea) goes to
0 when S(t) → 0, which is in accordance with the fact that
the more failed nodes in a graph, the more difficult to have
a connected component in the graph.

The Upper Bound of Pr(E′
a): Recall that event E′

a

happens if and only if for the edge a associated with box
Ba, no point in Ba has more than K neighbors, so Pr(E′

a) =

Pr(
TN
i=1Di < K), where N is the number of points in Ba

and Di is the degree of node i. Notice that Di (1 < i < N)
are normally not independent. To obtain a reasonable upper
bound of Pr(E′

a), we consider the probability that all points
in Ba are in a disk of radius 2rn, denoted by P2rn . By using

the Poisson property, we have P2rn = e−4πr2n(4πr2n)
N/N !.

By the definition of d in (18), N is on the order of log n.
With µ0 = Θ(log n), we know that P2rn goes to 0 as n →
∞ (limn→∞ P2rn = limn→∞

(logn)log n

n(log n)!
= limn→∞

1
n
). This

implies that w.h.p. there exist two distinct points in Ba, say
u and v, such that ‖xu−xv‖ > 2rn. Thus, it is reasonable to
assume that in Ba there are at least two points apart from
each other at a distance of at least 2rn. Since these two
points cannot have overlapped neighbors, their node degrees
are independent. Then we have Pr(E′

a) bounded above by

Pr(E′
a) = Pr

 

N
\

i=1

Di < K

!

< Pr(Di < K)2. (26)

Further, Di is asymptotically Poisson distributed, we have

Pr(Di < K) =

K−1
X

k=0

e−µ0
µk0
k!

=
Γ(K,µ0)

(K − 1)!
. (27)

Then an upper bound of Pr(E′
a) can be obtained as

Pr(E′
a) <

„

Γ(K,µ0)

(K − 1)!

«2

. (28)

The Condition for Non-percolation: Now we are
ready to derive the sufficient condition given in (5).

Proof of Theorem 2. By Lemma 3, when the open edge
probability p is less than 1/9, the graph is not percolated on
the discrete plane. Multiplying (25) and (28) and applying
the condition above, we have

(1 − exp(−cεrn
√
λ0 lnnS(t)))4

„

Γ(K,µ0)

(K − 1)!

«2

<
1

9
. (29)

Let ψK = Γ(K,µ0)
(K−1)!

, with elementary derivations, we have

S(t) <
ln

√
3ψK − ln(

√
3ψK − 1)

cεrn
√
λ0 lnn

, (30)

which is the sufficient condition given in (5). Finally, by
applying Lemma 1, we know that when S(t) satisfies (5), the
original graph on the continuous plane is in the sub-critical
phase, which completes the proof.

4.5 Bounds of Critical Phase Transition Time
We have obtained the conditions under which a large-scale

wireless multi-hop network is almost connected (see Defini-
tion 2) and fully partitioned in Section 4.3 and 4.4, respec-
tively. In order to understand the critical phase transition
time, we study two types of survival functions: light-tailed
and heavy-tailed distributions.

The limits of the last connection time tc(n) and first par-
tition time tp(n) are presented in Corollary 1 for light-tailed
survival functions and Corollary 2 for heavy-tailed survival
functions, respectively. Here we prove Corollary 1 only and
Corollary 2 can be proved similarly.

Proof of Corollary 1. To find tc(n) under the expo-
nential S(t), substituting S(t) = e−αt into (4), we have

t <
1

α
ln
“

cεrn
√
λ0 lnn

”

− 1

α
ln

„√
5 ln

18

1 − 15φn

«

. (31)

With λ0πr
2
n = Θ(log n) given in Theorem 1, we can assume

λ0πr
2
n = c lnn for some constant c > 0 so that the network

is connected a.a.s. initially. Then we have

t <
1

α
ln (lnn) +

1

α

„

ln

„

cε

r

c

π

«

− ln

„√
5 ln

18

1 − 15φn

««

.

(32)
Let c1 = 1

α
(ln(cε

p

c
π
)−ln(

√
5 ln 18

1−15φn
)), we have the upper

limit of tc(n) given in (6) from (32).
To find the first partition time tp(n), (5) is rewritten by

t >
1

α
ln
“

cεrn
√
λ0 lnn

”

− 1

α
ln

„

ln

√
3ψK√

3ψK − 1

«

. (33)

With λ0πr
2
n = c lnn and c2 = 1

α
(ln(cε

p

c
π
)−ln(ln

√
3ψK√

3ψK−1
)),

we have the lower limit of tp(n) given in (7) from (33).



Proof of Corollary 3. It is easy to observe that tc(n)
is strictly less than tp(n) according to (6)-(9). We prove
tc(n) ≤ TC ≤ tp(n) by contradiction. Assume TC < tc(n),
then we can find a time point t′ such that TC < t′ < tc(n).
By the definition of TC given in (3), the network is dis-
connected a.a.s. at time t′ (sub-critical); while by the def-
inition of tc(n) given in (1), the network is almost con-
nected (super-critical). This reaches a contradiction, thus
tc(n) ≤ TC . Similarly, we can prove TC ≤ tp(n). Therefore,
tc(n) ≤ TC ≤ tp(n), which yields the result.

Remark 7. Although in this paper, we adopt the ex-
tended model (aforementioned in Section 2.1), where λ0 is
fixed and the deployment area B(sn) increases in n along
with increasing rn for λ0πr

2
n = Θ(log n), our results are ap-

plicable to the so called constant-range model as well [10].
In the constant-range model, rn is fixed (independent of n)
but λ0 increases in n and λ0πr

2
n = Θ(log n) still holds. It

is obvious that the deployment area B(sn) also increases in
n but is at most Θ( n

log n
). Recall that in Section 4.3, we

defined the edge length d to be of the same order of trans-
mission range rn. If we still use this “rule of thumb” in the
constant-range model, all derivations and proofs will hold,
and more importantly, our final results of tc(n) and tp(n)
will hold as well by considering the fact of λ0 = Θ(log n)
now. Another popular way to extend a finite network to an
infinite one is called the dense model (refer [3, 4, 9, 12] for
examples), where the deployment region is usually fixed to
a unit square or disk and the node density λ0 is equal to n.
Suppose λ0πr

2
n = Θ(log n) still holds, then with the same

“rule of thumb”, i.e., d = Θ(rn), our results are still valid in
the dense model. This generality of our results can also be
explained by Scaling theorem in that the extended model is
actually isomorphic to the dense model [5, 7, 8].

Remark 8. It is worthy of pointing out that our results
can be applied to network scenarios with node mobility.
Since all results are derived from the geometric random
graph model with uniform node distribution, it is natural
to conclude that our results are applicable when nodes are
mobile, as long as the node mobility does not violate the
steady-state uniform node distribution. Indeed, there have
been a number of mobility models that guarantee the uni-
form node distribution, such as Gauss-Markov [24] and Ran-
dom direction [25].

To summarize, we have addressed questions in the NPT
problem formulated in Section 2 by proving the critical con-
ditions in the network devolution due to random failures
and by providing the bounds on the critical phase transi-
tion time. We evaluate our theoretical findings in the next
section by simulations.

5. SIMULATION STUDY
In this section, we carry out several sets of simulations to

interpret our theoretical results.

5.1 Simulation Methodology
In the simulation, we distribute n nodes independently

and randomly with a uniform distribution to approximate
a Poisson point process. The initial node density λ0 is set
to 2.5 × 10−4 and the transmission radius rn is carefully
chosen to guarantee the full connectivity of initial topol-
ogy (specifically, λ0πr

2
n ≈ 5 log n). To implement random

failures, the lifetime of each node is randomly generated ac-
cording to the same distribution with parameters set below:
α = 0.001 for the light-tailed exponential survival function
S(t) = e−αt and (ρ, η) = (2, 500) for the heavy-tailed Pareto
S(t) = (t/η)−ρ. To emulate the devolution process, nodes
fail one by one in the increasing sequence of their lifetime.
Upon node failures, we use a depth-first search (DFS) algo-
rithm to record all components induced by surviving nodes
and calculate the giant component size S (i.e., the number
of surviving nodes in the largest component). The relative

giant component size is defined by SR , S/n′ where n′ is
the number of remaining surviving nodes, in order to char-
acterize the phase transition phenomenon.

5.2 Simulation Results
Figure 4 illustrates an example of the topological devo-

lution process of a graph of 1000 nodes, where solid dots
and circles represent surviving nodes and failed nodes, re-
spectively. The survival function is Pareto with parameters
set above. By using (8) and (9) and choosing cε = 2.5, we
have tc(n) = 733.8 and tp(n) = 2041. As expected, when
t < tc(n), the topology constructed by remaining nodes is
almost connected with a single giant component, as shown in
Figure 4(a). On the contrary, when t > tp(n), the network
is fully partitioned and has only several small components,
shown in Figure 4(c). Figure 4(b) shows the topology in the
period of phase transition, i.e., tc(n) < t < tp(n), where the
network is disconnected into parts but with one component
larger than others.

Figures 5 and 6 show clearly how the relative giant com-
ponent size (SR , S/n′) decreases when the network ex-
periences increasing random failures. The analytical results
of tc(n) and tp(n) are annotated on the figures, which are
calculated by using (6), (7), (8), and (9) with cε = 2.5.
We summarize our observations as follows. First, the pe-
riod of phase transition is bounded by the theoretical limits
of tc(n) and tp(n) in all simulation scenarios, which con-
firms the correctness of our analytical results. Second, as
expected, the larger the network size n is, the sharper the
phase transition is, which is true for both light-tailed and
heavy-tailed survival functions. Third, compared with the
actual value of the giant component size S (or the ratio
S/n), it is clear that the relative giant component size,
i.e., SR = S/n′, is a more appropriate metric to indicate
the phase transition phenomenon in the devolution process
due to random failures. Finally, a surprising observation is
that given the same n and average node lifetime, the net-
work with Pareto survival function decomposes substantially
faster than the network with exponential survival function.
To explain this phenomenon, it is noticed that the variance
of Pareto-distributed lifetime is much larger than that of
exponential-distributed lifetime. Actually, in the network
with Pareto survival function, the majority of nodes must
have short lifetimes to compensate only a few of very huge
lifetimes, in order to keep the same expectation with ex-
ponential survival function. Thus, more nodes fail earlier
in the network with Pareto survival functions than in the
network with exponential ones.

Next, we use numerical simulations to evaluate the tight-
ness of tc(n) and tp(n). In fact, from all figures, we can see
that tc(n) is a quite tight lower bound for the period of phase
transition; however, tp(n) seems to be loose. To understand
the tightness of tp(n), we examine the convergence of the



(a) t = 729.5 < tc(n) (b) tc(n) < t = 1204.4 < tp(n) (c) t = 2193.4 > tp(n)

Figure 4: Snapshots of the graph devolution process over time.
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Figure 5: Phase transition and critical time bounds with exponential survival functions (α = 0.001).
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Figure 6: Phase transition and critical time bounds with Pareto survival functions (ρ = 2.0, η = 500.0).
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Figure 7: Tightness of tc and tp as n → ∞ and ρ→ ∞.

ratio between tp(n) and tc(n) as n → ∞. When S(t) is light-

tailed, by (6) and (7), we have tp(n)/tc(n) = ln(lnn)/α+c2
ln(lnn)/α+c1

→
1 as n→ ∞, which is illustrated in Figure 7(a). When S(t)

is heavy-tailed, by (8) and (9), we have tp(n)/tc(n) equal

to c4/c3 ≈ (
√

5 ln 18

ln
√

3−ln(
√

3−1)
)1/ρ. Thus, when S(t) = (t/η)−ρ,

the tightness of tp(n) depends on the parameter ρ only and
tp approaches tc(n) from above as ρ increasing, as shown
in Figure 7(b). This observation is in accordance with the
fact that if ρ is very large, all nodes may become failed at
the same time since S(t) approaches to the Dirac delta func-
tion δ(t − η) as ρ → ∞. In this case, the period of phase
transition goes to 0, i.e., tp(n)/tc(n) → 1.

6. CONCLUDING REMARKS
In this paper, we studied the critical phase transition time

of large-scale wireless multi-hop networks in the presence
of random failures. By couping with a continuum percola-
tion process on the geometric random graph, we obtained
the conditions under which the network topology transits
from an almost connected phase to a fully partitioned phase.



The lower and upper bounds of the critical phase transi-
tion time are obtained as the last connection time tc(n) and
first partition time tp(n). We found that the limits of tc(n)

and tp(n) are of the same order of log(log n) and (log n)1/ρ,
respectively, for light-tailed (exponential) and heavy-tailed
(Pareto) survival functions. We finally confirmed the cor-
rectness of our theoretical analysis by simulations. An in-
teresting result is that the network with heavy-tailed sur-
vival function is no more resilient to random failures than
the network with light-tailed one, in terms of critical phase
transition time, if the expected node lifetimes are identical.

It worth pointing out that the model used in this paper is
rather idealized with identical circular transmission regions,
uniform node distribution, and identical survival functions
for all nodes. Nevertheless, we believe our results are still ap-
plicable in practical scenarios. For instance, when irregular
transmission ranges have a lower bound, then transmission
regions can be regarded as perfect disks with radius equal
to the lower bound. With this approach, our results should
provide a conservative bound on the critical phase transition
time of a real network devolution process. It is interesting
to evaluate our theoretical results in practice and extend our
analysis with more realistic models, which will be our future
work.
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8. APPENDIX

8.1 Proof of Lemma 1

Proof of Lemma 1. For any two adjacent edges (in the
same direction), a and b, in L, suppose they are associated
with rectangles Ba and Bb, respectively, then Ba and Bb
intersect in the same square Sab, i.e., Sab = Ba∩Bb. If a and
b are all open, then there exists at least one TB-crossing, say
Ps, in Sab based on Definition 7. Let Pa and Pb be the LR-
crossings in Ba and Bb, respectively, then both of them must
intersect with the same TB-crossing in Sab. This implies an



LR-crossing of the rectangle Ba ∪ Bb, formed by Pa, Pb,
and Ps. If two open adjacent edges are perpendicular, we
can use the similar rationale to prove that there exists a
connected component crossing the two rectangles associated
with the edges. In addition, based on Definition 7, the union
of the rectangles of all edges in L actually covers the whole
area of the graph in the continuous plane. Therefore, an
infinite open edge cluster in L implies a giant component in
G(Hλ0,sn , rn).

Figure 8 gives an illustration for the formation of the LR-
crossing described in the proof above.PSfrag replacements

Pa

Pb

PsBa Bb

a b

Sab

Figure 8: A long horizontal crossing formed by two
adjacent open edges.

8.2 Proof of Lemma 2
Proof of Lemma 2. In the lattice L, for any path be-

ginning at the origin 0, it has 4 directions to choose at 0.
After the first step, each new step in the path has at most 3
choices since it must avoid the previous position, and there-
fore σ(m) ≤ 4 · 3m−1. Next, we estimate ρ(m) in L′ as
follows. For any circuit having length m and containing 0
in its interior, it must pass through a certain vertex of the
form (kd + 1

2
d, 1

2
d) for k ≥ 0. An example of such a vertex

is given in Figure 1 as o′k for k = 1. Note that m must
be even and m ≥ 4, thus the circuit cannot pass through
(kd + 1

2
d, 1

2
d) when k ≥ m−2

2
; otherwise the length of the

circuit will be at least m+2. Thus, such a circuit contains a
path that has a length at most m−1 and starts from a vertex
at (kd + 1

2
d, 1

2
d) for 0 ≤ km−4

2
. The number of such paths

is at most m−2
2
σ(m−1), thus, ρ(m) ≤ 2 · (m−2) ·3m−2 .

8.3 Proof of Lemma 3
Proof of Lemma 3. Let Cm be a circuit of the lattice

L′ with length m containing the origin in its interior, then
Pr(Cm is closed) is equal to Pr(allm edges are closed). Based
on the open edge definition described in Section 4.1, for
edges a and b associated with their vicinity rectangles Ba
and Bb, respectively, if a and b are not adjacent, then there is
no overlap between Ba and Bb. This implies that the states
of non-adjacent edges are independent. Thus at least bm

2
c

edges have independent states among m edges of Cm. Let q
be the probability of any edge being closed, i.e., q = 1 − p,
then for any Cm, Pr(Cm is closed) is upper bounded by

qbm/2c. Thus the probability that there exists a closed cir-
cuit surrounding the origin in L′ as,

X

Cm,∀m
Pr(Cm is closed) ≤

∞
X

m=4

qb
m
2

cρ(m) =
4(9q)2

9(1 − 9q)2
.

(34)
Therefore, when q < 1

15
, i.e., p > 14

15
, the probability of no

closed circuit surrounding the origin in L′ is strictly greater
than 0, which implies p∞ > 0.

Next we prove p∞ = 0 if p < 1
9
, which is based on fact that

the largest open edge cluster is finite if and only if no infinite

open path (comprised of open edges) exists. Let Pm be a
path having a length m and beginning at the origin in L,
then with the similar logic, we can calculate the probability
that there exists an open path of length m as follows:

Pr(∃ open path Pm) ≤ pb
m
2

cσ(m) =
4

3
(9p)b

m
2

c. (35)

If 9p is strictly less than 1, i.e., p < 1
9
, then (35) converges

to 0 as m→ ∞, which implies no infinite open path existing
in L and thus p∞ = 0.

8.4 Proof of Lemma 7

Proof of Lemma 7. We derive the lower bound of Pr(Ea)
by first finding the probability that there is an LR-crossing
(or TB-crossing) in a square with side length d. To facili-
tate the derivation, we introduce the following denotations
and follow the similar proof logic of Lemma 10.5 in [7].

Let B(b, j) , [0, jb] × [0, b] be the rectangles for j = 1, 2.
Let SLRb and LRb denote the events that there is an LR-
crossing in B(b, 1) and B(b, 2), respectively. Suppose b > 0
with Pr(LRb) ≤ 1−δ/25 and Pr(SLRb) ≤ 1−δ/25 for some
δ < 1, it is shown in [7] that for every non-negative integer

m, 1−Pr(LR2mb) ≤ δ2
m

/25 and 1−Pr(SLR2mb) ≤ δ2
m

/25.

Let b =
√

5
5
rn, then the rectangle B(b, 2) is definitely

within the transmission range of any surviving point that
is located in B(b, 2). Thus, as long as there is at least one
surviving point in B(b, 2), the event LRb is guaranteed to
occur, which enables us to derive Pr(LRb) as

Pr(LRb) = 1 − exp

„

−2

5
λ0r

2
nS(t)

«

≤ 1 − δ

25
, (36)

where δ = exp(− 2
5
λ0r

2
nS(t)). Then if we choose d = 2mb,

i.e., 2m =
√

5d/r, we have Pr(SLRd) bounded below by

Pr(SLRd) ≥ 1 − 1

25
exp

„

−2
√

5

5
λ0rndS(t)

«

. (37)

By substituting (37) into (14), (15) follows.

8.5 Proof of Lemma 8

Proof of Lemma 8. Let random variableN be the num-
ber of points in Ba, we know that for all points 0 < i < N
events {Di < K} are decreasing events, where Di is point
i’s degree. By using FKG’s inequality, we have

Pr(E′
a) = E

h

E
h

1{T

N
i=1

Di<K}|N
ii

≥ E
h

Pr(Di < K)N
i

. (38)

Since Pr(Di < K) ≤ 1, Pr(Di < K)N is a convex function
of N . It is easy to see that the expected number of points
in Ba equals to 2λ0d

2. By using Jensen’s inequality, (38) is
rewritten by

Pr(E′
a) ≥ Pr(Di < K)E[N] = Pr(Di < K)2λ0d

2

. (39)

Additionally, by using Chebyshev-Cantelli inequality [26],
we have Pr(Di ≥ K) bounded by

Pr(Di ≥ K) = Pr(Di − µ0 ≥ k
√
µ0) ≤ 1

1 + k2
(40)

Combining (39) with (40), (17) follows.


