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Abstract—The knowledge of human mobility is essential to
routing design and service planning regarding both civilian
and military applications in mobile wireless networks. In this
paper, we study the inherent properties of human mobility upon
our collected GPS moving traces. We found that power laws
characterize the human mobility in both spatial and temporal
domains. In particular, because of the diurnal cycle patterns of
human daily activities in associated social territories with limited
size, there always exists a characteristic distance in the power
law distributions of trip displacement and distance between site
locations and a characteristic time in the power law distributions
of pause and site return time, respectively. Thus, the CCDF
of human movement metrics in spatial and temporal domains
always has a transition from power-law head to exponential tail
delimited by the associated characteristic distance and character-
istic time, respectively. Furthermore, we found that either human
random moving direction process without pause or the power law
distribution of trip displacement lead to a superdiffusive human
mobility pattern, while the power law distribution of pause time
causes a subdiffusive human movement pattern.

I. INTRODUCTION

As wireless devices are generally carried by humans, almost
all the desired civilian and military applications in mobile ad
hoc networks (MANETS) are tightly coupled with humans’
moving behaviors, which are governed by their daily activities
[11-[5]. The human daily activities are regulated by their
associated societal duties and working patterns in networks,
which are very dynamic and difficult to predict upon diver-
sified locations and times. By far, it is still not clear how to
specify the complicated human mobility by mobility modeling,
which, however, is essential to design and plan the demanding
MANET applications for humans.

Human mobility patterns are manifested by the correspond-
ing human moving capabilities. Because of the complexity of
human activities in networks, finding the essential mobility
metrics which can characterize the human mobility patterns
and quantify the human moving capability as well is a very
challenging issue. Furthermore, existing synthetic mobility
models are not suitable to mimic the human moving behaviors
in the societal context. Instead, the inherent properties of
human mobility can only be effectively generalized from real
human mobility traces [1], [3], [5], [6].

Recent empirical studies of human mobility traces in [7],
[8] respectively showed that human mobility patterns and
moving capability can be effectively manifested by his/her
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diffusive capability (order) r, which characterizes the rela-
tionship between the mean square displacement (M SD(t))
and the diffusive process time ¢, that is, MSD(t) x ¢". In
general, the human diffusive behaviors are heavily influenced
according to spatial effects such as trip length [6]-[8] or
temporal effects such as pause time [6], and return time [5] in
mobile wireless networks. Consequently, the study of human
diffusive behaviors from the collective spatial and temporal
effects is desirable. However, a complete dataset recording
human daily activities by moving traces is not available in the
research community. Therefore, in this paper, we are motivated
to study the inherent properties of human mobility in both
spatial and temporal domains and their direct impacts on
human diffusive movement patterns by collecting a new set
of GPS logged daily moving traces for three months.
Specifically, upon the collected traces, we generalize the
human mobility properties in spatial domains regarding travel
distance between site locations and trip displacement; and in
temporal domains according to site return time and pause time.
The results of all these metrics reveal a heavy dependence
on human time-varying societal duties in different territories.
First, we find that power law is an inherent factor characteriz-
ing the human mobility in both spatial and temporal domains.
In consequence, we show that power law distribution of trip
displacement leads to a superdiffusive (» > 1) human move-
ment pattern, while the power law distribution of pause time
results in a subdiffusive (r < 1) human movement pattern.
Interestingly, we also find that the complementary cumulative
distribution function (CCDF) of human movement metrics in
spatial and temporal domains always has a transition from
power-law head to exponential tail delimited by the associated
characteristic distance and characteristic time, respectively.
Overall our results provide a deep understanding of human
moving behaviors. In addition, the knowledge of power law
property and the order of characteristic distance in human
(solider) trip displacement can benefit the military application
with supported threat detecting sensors in a deployed combat
environment. And the human diffusive mobility patterns can
be applicable to investigate methods of mitigating the effects
of dynamic motion on soldier performance in the battle fields.
The rest of paper is organized as follows. Section II
introduces the preliminaries of node and human diffusive
movement process. In Section III, we analyze the collected
GPS traces dataset. In Section IV, we study the spatial effect
on on human diffusive behaviors, followed by the temporal
effects in Section V. Finally, Section VI concludes this paper.
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II. PRELIMINARIES AND DEFINITIONS

Recent study showed that the human diffusive behaviors
play an essential role in routing design and performance
evaluation in mobile wireless networks [6]. However, very
few studies have been done on assessment of human diffusive
movement patterns according to his/her diffusive capability.
On the other hand, the node (particle) and animal diffusive be-
haviors in physics and biology have been well studied in recent
decades [9]-[11]. In this section, we introduce preliminaries
and definitions associated with a node diffusive movement
process, which will help understand the corresponding human
diffusive movement patterns studied in this work.

A. Properties of Power Law Distributions

In this paper, we specify that a power law probability
density distribution (pdf) f(t) has the form f(t) ~ t~(1+%),
where b denotes the power law coefficient. Accordingly, the
Complementary Cumulative Distribution Function (CCDF) of
f(t) exhibits the linear relationship between log f(t) and logt
with the slope —b in the log-log coordinate. This linear decay
of a random variable in its CCDF distribution is often called
the signature of a power law distribution.

B. Metrics of A Node Movement Process

Definition 2.1: Let M(t) denote a node position (waypoint)
at time ¢. Then, S(t) is the displacement of the node movement
process by time t, i.e., the Euclidean distance between the
waypoints at time 0 and ¢, that is, S(t) = |M(t)— M(0)|. The
mean square displacement M SD(t) is defined as MSD(t) =
E{S(®)} = E{|M(t) - M(0)*}.

Definition 2.2: The diameter D(T) of a moving trace is
defined as the maximum distance between two waypoints
among all waypoint pairs collected during time 7', that is,

D(T) = sup LM =M ()1}

The diameter D(T') directly manifests the node diffusive
capability, and S(T') < D(T) for any mobility trace during
time 7. It is evident that the larger diameter of the moving
trace, the further a node moves away from its initial location.

(M

C. Node Diffusive Movement Patterns

A node diffusive movement pattern is specified by its
diffusive order r (capacity), [10], defined as follows.

Definition 2.3: The stochastic process of the moving trace
{M(t)} is diffusive at the order r € (0,2], if MSD(t) o t".

From Definition 2.3, it is evident that the straight line
movement without pause has the maximum diffusive order r,
that is, given a specific speed value v, MSD(t) = v?-1? o 2.
Accordingly, the maximum human diffusive order of a move-
ment process is Tmax = 2.

Definition 2.4: Given the value of diffusive order r, the
node (human) diffusive movement pattern could be either a
Normal diffusive (r = 1) or Anomalous diffusive (r # 1).
Furthermore, mobile nodes (humans) can have two anomalous
diffusive movement patterns: Superdiffusive (r > 1) and
Subdiffusive (0 < r < 1) [10] [10].

Definition 2.5: Superdiffusive is an anomalous diffusive
movement pattern in which M SD(t) o t", where r > 1. It is
characterized by faster-than-linear growth of the M SD(t).

Definition 2.6: Subdiffusive is an anomalous diffusive
movement pattern in which MSD(t) o t", where r < 1. It is
characterized by slower-than-linear growth of the MSD(t).

D. Normal Diffusive Movement Process

Now we see that diffusive movement patterns are catego-
rized by the diffusive order » of MSD(t) proportion to the
time ¢. From Definition 2.1, the value of M .SD(t) of a diffu-
sive process depends on the distribution of node displacement
S(t). For simplicity, the node displacement S(t) can be studied
by a one-dimensional continuous time random walk (CTRW)
model [10]. Specifically, in the CTRW model, X; denotes
the independent identically distributed (i.i.d) displacement of
a walker at the ** step, and N(t) denote the total number
of steps occurred in the time interval [0,t]. Also, let At
be the time increment between two successive steps, that
is At = t/N. Then Sn(t), the position of the walker by
time ¢, is represented by S(t) = Sn) = Zﬂ? Xn. That
is, the node displacement S(¢) is a function of step length
X; and the time increment At, i.e., the pause time, between
two successive steps. Hence, the distribution of S(t) heavily
depends on the properties of X; and At. In particular, the
different types (light-tailed or heavy-tailed) of distribution of
X; and At can lead to different types of diffusive mobility
patterns [10]. For instance, let both random variables of step
length X; and pause time At follow a light-tailed distribution,
so that X; and At have finite mean and variance. And P(z,t)
denotes the probability that a walker’s position is z at time .
Accordingly, let f(z,t) denote the pdf of P(z,t) in CTRW
model, then we have [10]

fle,t)dz =

S
Jim Prob{z < N0 < 2+ dz)
—00

ti/2
_ L e—xz/4ktdx,

Varkt

where k is called diffusion constant. From (2), MSD(t) can
be derived as

@

E{Ax?}
E{At}

Equation (3) indicates that M.SD(t) grows linearly with
time t, that is, the normal diffusive order r = 1. Given
Definition 2.4, it is evident that the node has a Normal diffusive
movement process. In fact, the result of (2) is obtained by
applying central limit theorem (CLT), when both step length
Az and pause time At have finite mean and variance, i.e.,
follow a lighted-tailed distribution. However, the CLT theorem
cannot be applied when either step length Az or pause time
At has infinite moments (first or second) [9].

Note that the above analysis is based on CTRW model,
howevet, it is still unknown whether the real human mobility
is complied with the above aforementioned conditions of step
length (trip displacement) and pause time. Otherwise, rather
than a normal diffusive movement pattern, humans may be

MSD(t) = E{z*(t)} = 2kt t', and k=

NE)
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characterized by anomalous diffusive (superdiffusive or subd-
iffusive) movement patterns. Therefore, to tackle this issue, we
study our collected human traces through GPS receivers for
investigating inherent properties of human mobility metrics.

III. EXPERIMENTAL HUMAN TRACE STUDY

People have observed that human mobility is driven by
his/her social behaviors [2], [4], which can be generalized from
the complete information of human successive daily travel
activities. Though, there are many available experimental hu-
man mobility datasets, almost all of them provide only partial
information of daily travel activities. For instance, existing
traces either focus on temporal metrics such as the direct
association time between mobile devices carried by humans
[31, [5], or spatial metrics such as the geographical information
of human movements [6]. However, the complete trace log
information of human daily travel activities in both spatial
and temporal domains is necessary for investigating spatial-
temporal limitations of human social behaviors, which indeed
govern human diffusive movement patterns.

In this empirical study, we collected student daily travel
traces over NCSU campus for three months. In detail, we
let a group of volunteer students carry GPS loggers during
each travel, either by walk or vehicles. Each volunteer records
his/her travel trace more than one week. Specifically, each
GPS logger takes measurements every 10 seconds, and records
the time-stamped dataset, including current time, latitude,
longitude, and speed. By this means, the trace dataset contains
both human spatial and temporal information necessary for
this study. In addition, previous empirical trace studies mainly
either focused on car traces [12] or walking traces [3], [6].
In contrast, our collected GPS traces are more diversified
including traces made by foot, bus, and car. Therefore, our
trace files not only provide more spatial and corresponding
temporal information, but also cover a broad range mobility
patterns with trip distance up to 20 kilometers. By this
means, we aim to find the common and inherent properties of
human mobility from diversified human traces. Because all the
volunteer subjects are graduate students, though our collected
traces particularly manifest human mobility in the proximity
of campus during weekdays, they are more diversified during
the weekends and holidays.

A. Trace Extraction

In this paper, we define a trip as the travel between the
source and destination. For the purpose of determining trip
destinations from each subjects raw dataset, we utilize the
similar trace extracting strategies introduced in [12]. Briefly,
we consider that trips are truly separated if there is either
a gap or pause time more than 3 minutes between two
consecutive timestamps of the trace dataset. Since the di-
rection during a trip can change frequently, we define the
line segment associated with each direction as a leg. Thus,
a trip is composed of multiple legs. Specifically, we use the
direction model introduced in [6] to differentiate legs in a
trip, where the relative angle between two successive legs is
larger than a direction threshold 6;,. An example of a trip

extracted by the direction model is shown in Fig. 1. In the
figure, the dotted line represents the GPS trace, marked by
the logger waypoints every 10 seconds. After running the
direction model, the trip is abstracted and decomposed into
three legs. Specifically, 6; and I; denotes the direction and the
length of the i*" leg, respectively. And the trip direction 6 is
measured by the starting position and ending position of the
trip. Correspondingly, L denotes the trip displacement.

Fig. 1.

Example of an extracted trip.

B. Trace Statistics

The statistics of the collected traces are shown in Fig. 2,
Table I, and Table 11, respectively. From Fig. 2, we find that
on average the students have only few trips and visiting sites
per day. For instance, most students take less than 4 trips
and visit less than 5 different locations each day. This implies
that students (mobile users) limit their activities to a few key
sites in their daily routine. Most of them are occasionally
mobile during a day and spend a considerable amount time
at certain places, such as home and lab office, which can also
be revisited multiple times during one day. Table I illustrates
the statistics of collected traces with respect to individual
students. Interestingly, we notice that the trips resulting from
different people share the common properties. Specifically, we
find that the average trip displacement is at the order of 1000
meters. The average travel time per trip is typically less than
30 minutes, while the average pause time is 10 times longer
than the average travel time of each user. Due to the limited
number of trips and short travel times, on average a long pause
time occurs between two consecutive trips.
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(a) Number of trips per day. (b) Number of sites per day.
Fig. 2. Experimental GPS traces statistics.

TABLE 1
STATISTICS OF INDIVIDUAL TRIPS OF COLLECTED GPS TRACES.

Student ID: 1 2 3 4 5
Avg trip displacement (m): 2333 | 2131 | 1456 | 1594 | 7920
Avg travel time (min) 242 | 20.1 8 8.8 | 33.87
Avg pause time (min) 291.5 | 285 423 194 | 368.5

Avg sites visited daily 5 5 3 4 4

Different sites visited weekly 15 14 8 11 12
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TABLE II

STATISTICS OF AGGREGATE TRIPS, WHERE L DENOTES TRIP DISPLACEMENT, AND D REPRESENTS TRIP DIAMETER.

Trip displacement L range (m) | [30,500) | [500,1000) [ [1000,2000) | [2000, 5000) [ 5000, 10000) | [10000, 20000)
Number of trips 68 24 47 10 16 21
Prob(L = D) 0.897 0.667 0.553 0.3 0.063 0.191
Avg # of direction changes 1 3 6 10 11 16

Furthermore, we aggregate all collected traces and inves-
tigate the overall human trip statistics, which are shown in
Table II. Though the trip displacements can reach up to 20
kilometers, we see that the majority of trip displacements are
within 2000 meters, which is the same order as the side length
of our campus. Especially, within the range of 500 meters,
we find that most (about 90%) trip diameters (D) are the
same as the trip displacements (L). This implies that mobile
users have an intended destination for a trip and prefer to
move approximately along a straight line if possible. However,
this observation cannot be directly supported when the trip
displacements are beyond 2000 meters, due to the frequent
direction changes. As we expected, the number of direction
variation increases with the length of trip displacement. There-
fore, the impact of geographical constraints on human mobility
traces is more significant for the long trip displacements.

Given the knowledge of the extracted traces, we investigate
the human diffusive movement patterns. Interestingly, recent
study in [7] showed that the human mobility may not satisfy
the conditions of trip displacement and pause time for applying
CLT theorem to determine human diffusive movement pattern,
as we discussed in Section II-D. Thus, it is not clear whether
the human mobility follows the normal diffusive pattern (r =
1) exclusively. If it is not, it is unknown yet why and how
human mobility complies with anomalous diffusive patterns
(r # 1). Note that trip displacement is a spatial factor, while
pause time is a temporal factor. Hence, to tackle this issue,
we study the human diffusive mobility pattern from spatial
and temporal domains, respectively.

IV. SPATIAL EFFECT ON HUMAN DIFFUSIVE BEHAVIORS

In this section, we investigate the spatial effect of mobility
metrics including direction, inter-site distance and trip dis-
placement on human diffusive behaviors.

A. Direction Effect

Here, we focus on the directional effect on human diffusive
mobility pattern through a random direction process without
considering pause time, i.e., excluding temporal effects. In
detail, let a node move at a constant speed v during time
interval T'. It randomly changes direction during the trip, and
moves at direction 6,, with time interval ¢,,. Assume that 6,
is i.i.d and uniformly distributed over a limited domain [a, b],
0<a<b<2mand Y, t, = T. This is the typical
mobility pattern defined in Random Direction (RD) model,
a variant of CTRW model. The corresponding movement
process is illustrated in Fig. 3, upon which we have our main
result as follows.

Theorem 1: An arbitrary random direction movement pro-
cess M(t) without pause time has a superdiffusive mobility

pattern, i.e., r € (1,2]. The minimum order rm;, occurs when
the direction R.V. 6 is uniformly over [0, 27].

Y, o, vi Ym
b t, it=T/8; tn

T =n At

Fig. 3. Random direction movement process during time 7.

Proof: Let M(0) = 0 be the initial position, then for a
large time T', the node position M(T) is represented as the
sum of m position vectors, that is, M (T') = 31| v-t,-e(0u).

From Definition 2.1, the M SD(T) is given by

MSD(T) = E{{M(T)*} =v* - T" ~T"

= B{IM(T)M(T)*|} = E{}_ Y v* tu -ty @)}
u=1k=1

‘Z“2t +Z Z vty -ty - E{e®} - B{e~ 1%},

u=1 k=1,u#k

4)

Let Gy = E{e'%}-E{e®*}, it is evident to see that Gy is over
[0,1]. Especially, when the range of random direction [a, b] to
be [0, 2x], i.e., 8, is over [0, 2x], then Gy = 0. In this case,
from (4), we can see the second item on RHS becomes zero,
which leads to the minimum order, r,,;, because this item is
a positive value for Gy # 0. Therefore, the minimum order
Tman, occurs when direction ¢ is uniformly over [0, 27] in the
random process. Upon (4), the diffusive order of an arbitrary
random process, whose range of the random direction is over
[a, b], has the following property

T"/2 (Zt 2+Z Z e ))
u=1 k=1,u#k
> (Z tu2)1/? = (L:;lt"_)l/z

m o2 m
— ml/Z(Zuzml U )1/2 2m1/2(Htu)1/m- (5)

u=1
Let % ={min t, | Yo tu =T, 1 <u<m}, then

m

i T T

T2 > m1/2 ty 1/m > ml/? ZyYmo_p1/2 2

> (ul;[l ) (ul;[1 E) €
5 1-7 2

= —7 2 -/ (6)

Recall that in Fig. 3, m represents the total number of
direction changes by time T, i.e., m < £ < T. Hence, with
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(6), for a large T, the lower bound of r is given by

r > 2—2logp(em~Y?)

> 2- 2logy(m'/?) =2 —logy m. )

Upon (7), the value of r of a random process decreases
monotonously as increasing m which represents the number
of direction changes during time interval 7'. In one extreme
case, when my,;, = 1, i.e., the node moves along a straight
line during [0, 7], there exists the maximum diffusive order
Tmaz = 2. On the contrary, when mp., = T, we have
rmin = 1. Therefore, the diffusive order r of random direction
movements without pause time is between [1,2].

]

Note that, given the collected trace statistics in Section III-B,
we observed that humans have a strong “memory” of direction
during the travel, as the destination is generally determined
right before the beginning of the trip. Hence, compared to the
typical node movement in a random direction process, humans
change moving direction less frequently during the trip, which
in turn, leads to a superdiffuisve movement pattern.

By far, we have studied the exclusively directional ef-
fect, which shows that the random direction change in node
(human) moving trajectories without pause time leads to a
superdiffusive mobility pattern. Next, we proceed to investi-
gate the property of inter-site distance and its resulting trip
displacement effect on human diffusive mobility.

B. Inter-Site Distance Effect

From Fig. 2 and Table I, we observed that humans will travel
between a limited number of sites per day. In addition, human
daily activities are generally constrained within few limited
societal territories. In fact, the intrinsic human mobility is
dominated by its sociological activities [2], [13]. Therefore, the
societal duties and working patterns significantly regulate the
daily human activities. Accordingly, in this study, Fig. 4 and
Fig. 5 respectively illustrate the aggregated site locations of all
volunteers and the corresponding CCDF of aggregated inter-
site distance from our collected GPS traces. It is clear to see
in Fig. 4 that the majority site locations students daily visited
are within the 2km-wide campus area, where the originate
coordinate (0,0) represents the location of parking deck in
front of our department. Specifically, we find that 75% of
inter-site distances are less than 2000 m, which is consistent
with the statistic results of trip displacements shown in Table
II. Though most inter-site distances are short, from Fig. 4,
we still can see many long distances between site locations
outside campus area. Note that the properties of inter-site
distances directly manifest the human daily activities, which
in turn, characterize the human diffusive behaviors. Hence, we
are interested in finding the distribution of human inter-site
distance.

Specifically, Fig. 5 illustrates the aggregated CCDF of inter-
site distances among all student volunteers in log-log scale.
Interestingly, from Fig. 5, we can see that the CCDF values
decay linearly over the domain [30, 2000]m, thus suggesting
a power law decay as described in Section II-A. When the
value of inter-site distance is larger than 2000 meter, the
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Fig. 4. Aggregated site locations upon GPS trace.
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Fig. 5. The CCDF of aggregated distance of site locations.

CCDF values decay abruptly faster, i.e., decay exponentially.
In fact, our observations in Fig. 5 are consistent with what
have been recently found in [5], where the authors showed
that there is a “power law — exponential” dichotomy in
the CCDF of inter-meeting time between two mobile nodes
(humans). Specifically, there always exists a characteristic
time, before which the CCDF has a power law decay, and
after which it drops exponentially. Similar to their denotation
of characteristic time in the CCDF of inter-meeting time,
we define the distance of 2000 meter as the characteristic
distance of the CCDF of inter-site distance shown in Fig. 5.
Note that the value of characteristic distance varies with the
size of societal territories where human daily travels. In this
empirical study, all the student volunteers’ daily movements
are associated with campus activities and live close to the
campus. Hence, there exists an “invisible” virtual boundary of
campus-associated territory, which covers the majority of trips
between site locations in the campus. This is why the value
of characteristic distance of CCDF of inter-site distance is at
the same order of the side length of our campus.

C. Trip Displacement Effect

Intuitively, the property of trip displacement is dominated
by the distances among different locations where humans
daily visit. In previous section, we found that the human
inter-site distance follows a power law distribution before the
characteristic distance. Here, we investigate the property of trip
displacement and its direct effect on human diffusive mobility
patterns. In particular, Fig. 6 shows the CCDF of aggregated
trip displacement of all volunteers in log-log scale. As we
expected, it is clear to see that the CCDF of trip displacement
follows a power law distribution over the range [30, 1000]m.
This further indicates that a characteristic distance, which is
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1000m in this case, exists in the CCDF of trip displacement.
This result agrees with observations of the previous studies
on trip length of human walk by foot [6]. In contrast to their
traces, our data traces are collected over daily activities by
foot, buses, and cars, and have a larger scale measurement of
trip length. Hence, we assert that the power law distribution of
trip displacement is a universal property of human mobility.
Hence, upon the power law property described in Section II-A,
within the range of characteristic distance denoted by D, the
pdf of trip displacement L is given by,
L)~ ey B0 ,1<D,, ®
where [ is the power law coefficient, and is close to 0.31 as
shown in Fig. 6. According to the theory of particle diffusive
process in physics [10], when 0 < 3 < 2 in (8) and D, is
considerable large, either the first or the second moment of
the trip displacement L can be infinite, which contradicts the
condition of the trip length with finite moments for applying
CLT theorem in Section II-D. Thus, rather than having a
normal diffusive pattern, the power law distribution of trip
displacement, which contains the non-negligible elements of
very large trip displacements, leads to a superdiffusive (r > 1)
movement pattern. Especially, the diffusive order r is the
function of the coefficient 3 of the trip displacement.
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Fig. 6. Aggregated trip displacement CCDF.

Remark 1: Power law characterizes the distance between
site locations associated with human daily activities, which
results in the power law distribution of human trip displace-
ment. Because the inter-site distances are constrained by
societal territories with limited size, there always exists the
characteristic distance of “power law — exponential” dichotomy
in the CCDF of inter-site distance and trip displacement.
Especially, the characteristic distance of inter-site distance is
at the same order as that of trip displacement. In summary,
the power law property of inter-site distance dominates that
of human trip displacement, which in turn, characterizes the
resulting human superdiffusive (r > 1) capability.

V. TEMPORAL EFFECT ON HUMAN DIFFUSIVE BEHAVIORS

In previous section, we demonstrate that power laws of
inter-site distance and resulting trip displacement lead to
superdiffusive human behaviors. Here, we investigate the
temporal effect on human diffusive mobility patterns according
to site return time and pause time in sequence.

A. Site Return Time Effect

According our collect GPS traces, people visit different site
locations in different frequencies and the return time varies
dramatically regarding the site locations. Intuitively, humans
would execute different types of tasks in different locations.
For instance, students take a class in campus while buying
foods in a grocery store. That is, upon different task temporal
regularities, human site return times vary with different site
locations. Moreover, recent studies [1], [13] showed that gov-
erned by location-varying social duties, humans are expected
to return certain locations, such as home and office, upon their
diurnal cycle patterns. Therefore, the human return time to a
specific site is an interesting issue that can be used to predict
the locations of mobile users.

In this empirical study, as students are likely to play a
similar role in campus, we interestingly find that there are
several common sites that students have visited. For instance,
we demonstrate two examples of common sites in campus area
in Fig. 7(a) by reducing the observing size of aggregated site
locations of Fig. 4. From Fig. 7(a), we see that several students
visit a same class room for taking classes at the same location.
More interestingly, we find that our research lab office is a
common site where all volunteers have visited. And typically,
each student visits the lab office at least once per day. The
existence of common site of mobile users implies that there
surely exists a possibility that mobile nodes can meet each
other. Accordingly, the return time to a common site dominates
the value of this probability, which in turn, characterizes the
inter-meeting time between two mobile users [3], [5].
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Fig. 7. Property of return time to a common site.

In this paper, we study the CCDF of aggregated return
time to the common site, i.e., the lab office, in Fig. 7(b) at
the log-log scale. Similar to the CCDF of trip displacement,
we observe that power law also dominates the return time of
human mobility. Similar to our observation of a characteristic
distance on the CCDF of trip displacement and inter-site
distance, we again observe a “power law — exponential”
characteristic time which exists in the CCDF of site return
time. Specifically, the characteristic time is in the order of
400 minutes. In addition, recent studies of human mobility
on campus from both WLAN traces [1] and user PDA traces
[14] have shown that human activities follow diurnal cycle
patterns. This implies that students would like to periodically
visit certain places such as lab office in campus. And the period
is generally less than a day. In this case study, the time interval
between two consecutive visits to lab office is typically at the
order of 400 minutes.
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The site return time is an important temporal metric, which
also heavily affects the property of pause time. For instance,
the average human pause time should be less than the average
site return time. Otherwise, humans may pause at a certain
site location too long to return other locations regarding the
site return time. In addition, we note that the trip displacement
S(t) approaches to 0 when mobile users return to their original
positions, i.e., M(t) — M(0) ~ 0, regardless of the distances
they moved away. Hence, given a specific site which a mobile
user would visit multiple times, the diffusive pattern should
be evaluated within the time scale of the corresponding return
time. In contrary to site return time, pause time is the essential
temporal metric directly characterizing the human diffusive
behaviors, which is discussed next.

B. Pause Time Effect

By combining results shown in Fig. 2 and Table I, it is
observed that all students (humans) have very limited trips per
day and the majority of travel times are short, i.e., no longer
than 30 minutes. This implies that long pause time frequently
occurs between two consecutive trips, which is common in
human mobility. Accordingly, Fig. 8 illustrates the respective
pause time CCDF of one single student and the aggregated
CCDF of all volunteers in log-log scale. It is clear that these
two CCDF values decay in a very similar way, which indicates
that the same type of humans in one network domain, e.g.,
students in a campus, share the same properties on the pause
time between two successive trips. In particular, we observe
that the CCDF values follow a straight line over a range
[10,360] minutes. Hence, the pause time in human mobility
also follows a power law distribution. Similar to site return
time, the characteristic time, denoted by T, also exists in the
CCDF of pause time, which is at the order of 360 minutes in
our collected trace dataset. Let 7}, denote the pause time, then
the pdf of pause time is represented as

1
pr(t)N —t—m a>07 t<TCa (9)

where o is the power law coefficient, and is close to 0.42
as shown in Fig. 8. According to particle diffusive theory in
physics [10], when 0 < « < 2 and T, is considerable large,
the power law distribution of pause time leads to a subdiffusive
(0 < r < 1) movement pattern. Especially, the diffusive order
r is the function of the coefficient « of the pause time.
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Fig. 8. The CCDF of pause time in collected GPS traces.

Remark 2: The power law distribution of site return time
and pause time is a universal property of human mobility.
Because humans visit site locations periodically, especially
following the diurnal cycle patterns, there always exists a
“power law — exponential” characteristic time in the CCDF
of site return time and pause time, respectively. Both charac-
teristic times are at the order of hours. Especially, the power
law distribution of pause time leads to a human subdiffusive
(0 < r < 1) movement pattern.

VI. CONCLUSION

In this work, we investigate the human diffusive behaviors
from an empirical study upon our collected GPS moving
traces. We find that a human’s diffusive mobility is driven by
his/her societal roles in different social territories. We found
that the power law inherently characterizes the human mo-
bility in both spatial and temporal domains. In particular, the
anomalous human diffusive behaviors (r # 1), which include
the superdiffusive behavior (r > 1) due to power law of trip
displacement and the subdiffusive behavior (r < 1) resulting
from power law of pause time, are often observed over diverse
mobility traces collected from pedestrian, buses, and cars.
The “power law — exponential” characteristic distance shown
in spatial metrics of human mobility is constrained by the
limited size of social territories. Accordingly, the existence of
characteristic time in temporal metrics of human mobility is
dominated by the temporal regularities of societal duties, such
as diurnal cycle working patterns, which is in general at the
order of hours. And the site return time dominates the time
scale for evaluating the human diffusive behaviors.
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