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Abstract—Cognitive Radio Networks (CRNs), as a phenome-
nal technique to improve spectrum efficiency for opportunistic
communications, become an integral component in the future
communication regime. In this paper, we study the end-to-
end latency in CRNs because many CRN applications, such as
military networks and emergency networks, are either time-
sensitive or dependent on delay performance. In particular,
we consider a general mobility framework that captures most
characteristics of the existing models and accounts for spatial
heterogeneity resulting from the scenario that some locations are
more likely to be visited by mobile nodes (these can be home in
the case of people, or garage in the case of vehicles). By assuming
that secondary users are mobile under this general framework,
we find that there exists a cutoff point on the mobility radius α,
which indicates how far a mobile node can reach in the spatial
domain, below which the latency has a heavy-tailed distribution
and above which the tail distribution is bounded by some Gamma
(light-tailed) distribution. A heavy tail of the latency implies a
significant probability that it takes long time to disseminate a
message from the source to the destination and thus a light-tailed
latency is crucial for time-critical applications. Moreover, as the
network grows large, we notice that the latency is asymptotically
scalable (linear) with the dissemination distance (e.g., the number
of hops or Euclidean distance). Another interesting observation
is that although the density of primary users adversely impacts
the expected latency, it makes no influence on the dichotomy of
the tail distribution of the latency in finite networks and the
linearity of latency in large networks. Our results encourage the
CRN deployment for real-time and large applications, when the
mobility radius of secondary users is large enough.

I. INTRODUCTION

As an integral component of emerging communication

infrastructure and a promising solution to address the chal-

lenge of spectrum under-utilization, Cognitive Radio Networks

(CRNs) have received considerable attentions [1]. In such

networks, there are two types of users: (i) primary users who

have license from the regulator and thus have priority to utilize

spectrum, and (ii) secondary users who opportunistically ac-

cess spectrum without interfering with the coexisting primary

users. Many efforts have been made recently to understand

the characteristics of CRNs and thus to enable the deployment

of such networks for realistic applications, including capacity

limits, spectrum sensing, spectrum mobility, and spectrum

sharing [1]–[4]. These works have presented a very good

understanding of the potential of cognitive communications

in optimizing spectrum utilization. However, the key question

to the deployment of CRNs is not whether the spectrum
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efficiency is improved, but whether the CRNs are able to

support applications. For example, spectrum can be overly

used, with a very high throughput, but the latency may become

extremely long, falling into the traditional problem of the

tradeoff between network throughput and latency [5]–[8]. To

this end, we aim to study a fundamental problem, i.e., what

the stochastic properties of end-to-end latency in CRNs are.

Despite its importance, the latency is an under-explored

problem and not well understood in wireless multihop net-

works. The pioneering work in [9] studied the packet latency

for the fully connected wireless ad-hoc networks and showed

that there exist bounds on the latency which are tight when the

number of nodes is large enough. Instead of full connectivity,

the reference [10] further showed that the latency scales

asymptotically at least linearly with the transmission distance

in wireless sensor networks when these networks are perco-

lated. These results have greatly advanced our understanding

of the nature of latency, and also laid a good foundation to

approach the problem. Unfortunately, these results may not

be applicable to CRNs because (i) asymptotic results were

obtained by assuming that wireless nodes are static; and (ii)

these results [9], [10] are only derived for large networks when

the number of nodes approaches to infinity; (iii) these results

are derived for homogeneous networks in which every node

has the same capacity in information propagation.

Particularly, node mobility plays a critical role on the

latency, which has been evidenced by earlier results. For in-

stance, the seminal work [5] showed that mobility can improve

the capacity in large wireless ad hoc networks at the cost of

the delay. This result is obtained by assuming that nodes move

according to an ergodic process that are equally likely to visit

any portion of the network area. That is, the nodes are spatially

homogeneous. With the similar assumptions, capacity-delay

tradeoffs have been extensively studied under various mobility

models, such as under the i.i.d model [6], the Brownian motion

[7], the reshuffling model [8] and variants of random walk

and random way-point models [11], [12]. Later on, spatial

inhomogeneity has been taken into account in [13] where the

nodes are restricted to move within the coverage of a home

point. These studies motivate an interesting question about

the latency under general mobility. Furthermore, it is evident

that the asymptotic results, though, provide good insights into

network performance, may not explain the latency properties

when the number of nodes in real applications is finite. As the

last point, CRNs feature heterogeneity in wireless nodes, since

there are two types of nodes, primary nodes and secondary
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nodes [3], which is left open for study on the impact of latency

distribution.

Putting all together, in this paper we study the latency

distribution in finite networks, and the scaling law for large

networks with infinite number of secondary nodes under

general mobility. We find that in finite CRNs, the latency of

information dissemination depends on the mobility radius α,

which indicates how far a mobile node can reach in spatial

domain. Also, there exists a cutoff point on α, below which

the latency has a heavy-tailed distribution; and above which

its tail distribution is bounded by some Gamma distribution.

In addition, as the network grows large, the latency asymptoti-

cally scales linearly with respect to the distance in terms of the

number of hops or the Euclidean distance between the source

and destination nodes if the network remains fully connected

or percolated. It is interesting, though not surprising, that the

density of primary nodes presents an adverse influence on

the expected latency, but showing no obvious effect on the

dichotomy of the latency tail in finite networks and linear

scaling law of the asymptotic latency.

The rest of this paper is organized as follows. We describe

the mobility and network models, and formulate the latency

problem in Section II. In Sections III and IV, we present the

results and proofs of our findings on dissemination latency in

detail. In Section V, we present simulation results and finally,

we conclude in Section VI.

II. SYSTEM MODELS AND PROBLEM FORMULATION

In this section, we first describe the network models and

then collect basic assumptions, notations and definitions of

the metric of interest that will be used throughout the paper.

A. Network Models

We consider a CRN consisting of n mobile secondary users

{v1, . . . , vn} in a torus surface Ωn = [0,
√

n
λ
]2 (λ is the spatial

density of secondary users). Denote V (t) = (v1(t), . . . , vn(t))
as the positions of secondary users at time t. A set of m
channels {ch1, . . . , chm} are assumed to be accessible by

secondary users. For any 1 ≤ k ≤ m, an overlay network

of primary users with spatial density λpk are transmitting

with channel chk. We assume that λpk = λp for any k for

simplicity. To model the dynamics of the primary traffic, we

adopt a synchronized slotted structure, which has been used in

[3] to study the connectivity of a large single-channel CRN.

Particularly, time is slotted into units and at any time slot,

primary users transmitting on any channel chk are assumed to

be uniformly and independently distributed in Ωn, and such

distribution is i.i.d across slots.

1) Interference Models: In CRNs, there are two types of

interference for information dissemination among secondary

users: secondary-secondary and primary-secondary interfer-

ence. The former interference can be characterized by the well-

known protocol model [14], which has been widely adopted in

homogeneous networks [5], [6], [9], [14]. Particularly, without

interference with primary users, a successful transmission from

a mobile secondary user vi to vj is achievable at time t

primary users

vi vj

RI RI

Fig. 1. Primary-secondary interference.

if ‖vi(t) − vj(t)‖ ≤ r and for any other simultaneously

transmitting node on the same channel vl, ‖vl(t) − vj(t)‖ ≥
(1 + ∆)r, where r is the transmission radius of secondary

users, and ∆ models the guard zone around vj in which

any simultaneously transmission on the same channel causes

collision at vj . In terms of the latter interference, let us denote

RI as the interference range of primary users. And as Fig. 1

shows, two secondary users vi and vj are permitted to use the

channel chk only when there are no primary users on chk in

the neighborhood, i.e., ‖vi(t) − u(t)‖ > RI for any primary

user u transmitting with chk, where u(t) is the position of u
at time t.

2) Mobility Models: We consider a general mobility model,

M(Φ, Ψ, α), which is characterized by three parameters Φ, Ψ,

and α over the region Ωn. First, spatial heterogeneity, which

accounts for the scenario that mobile nodes are more likely to

be found in some area (e.g., the neighborhood of their home

in the case of people, or the neighborhood of the garage in

the case of vehicles), is taken into account. Particularly, we

consider that a node spends most of its time in a small region,

and rarely visits the areas far away from it. We model this

behavior by assuming that each node vi has a home point

[13], located at vh
i . Nodes move “around” their home points

according to independent stationary and ergodic processes. We

assume that each home point vh
i is associated with a fixed

point vc
i , which is called the center point of vi. The center

points are regularly placed in Ωn. For example, {vc
1, . . . , v

c
n}

are placed regularly at positions ( 1
2
√

λ
+ i√

λ
, 1

2
√

λ
+ j√

λ
) with

0 ≤ i ≤ √
n − 1 and 0 ≤ j ≤ √

n − 1 (we generally assume

that n is a square of some integer for simplicity, see Fig.

2). We describe the distribution of the home point vh
i around

vc
i by a non-increasing probability density function Φi(x) =

Φ(x − vc
i ), which is assumed to be invariant in all directions

and used as the first parameter in the mobility model. The

second parameter, Ψi(x) = Ψ(x− vh
i ) is used to describe the

probability density of a node vi around vh
i , which is again

a non-increasing and direction-invariant function. We assume

that Ψi is non-zero in and only in a region characterized by a

constant α; that is, Ψi(x) = Ψ(x−vh
i ) > 0 when ‖x−vh

i ‖ < α
and Ψi(x) = Ψ(x−vh

i ) = 0, otherwise. We refer α as mobility

radius.

Remark 1: The idea of “home points” is not new [13]

and it has been used to describe the spatial inhomogeneity

incurred by the mobility of a particular wireless node. We

introduce an additional concept, “center points” to model

the heterogeneously spatial distribution of the home points,

which characterizes the spatial inhomogeneity incurred by
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Fig. 2. An illustration of the general mobility M(Φ, Ψ, α).

heterogeneous mobility of different wireless nodes. This two-

level mobility model accounts for a wide range of mobility

patterns. For example, if the probability density function Φ(x)
is a constant function independent of x (i.e., home points

are uniformly distributed over Ωn), M(Φ, Ψ, α) reduces to

the Uniform Anisotropic model in [13]. Furthermore, if the

probability density function Ψi(x) = Ψ(x− vh
i ) = δ(x− vh

i ),
where δ(x) is the Dirac impulse function, M(Φ, Ψ, α) reduces

to the static model in [14], where nodes are assumed to be

static and uniformly distributed; if Ψ(x) is also a constant

function independent of x and α, M(Φ, Ψ, α) reduces to the

homogeneous mobility model in [5]; and if Ψ(x) is a threshold

function whose value is zero when x ≥ α and a nonzero

constant when x < α, M(Φ, Ψ, α) reduces to the constrained

i.i.d model used in [10].

Mobility of Secondary Users: In this paper, we assume

that secondary users are mobile under the general mobility

M(Φ, Ψ, α). To facilitate the study of the dissemination

latency of secondary users, we consider three classes according

to the spatial inhomogeneity of home points:

• Extremely Inhomogeneous Home Points (EIHP) mobil-

ity M(ΦE , Ψ, α): Home points are fixed and regularly

placed over Ωn. Here ΦE(x) = δ(x).
• Partial Inhomogeneous Home Points (PIHP) mobility

M(ΦP , Ψ, α): As shown in Fig. 2, center points {vc
i }n

i=1

partition the Ωn into n subregions {Oi}n
i=1 as Voronoi

diagrams. In this class, the home point vh
i is randomly

distributed in Oi.

• Homogeneous Home Points (HHP) mobility

M(ΦH , Ψ, α): Home points {vh
i }n

i=1 are independently

and uniformly distributed over Ωn. Here ΦH(x) is a

constant density function independent of x.

B. Problem Formulation

We denote [Fm,n,M(Φ, Ψ, α), (λ, λp)] as a CRN Fm,n,

where n secondary users opportunistically access m channels

and are mobile under M(Φ, Ψ, α), and the spatial densities

of secondary users and primary users on any channel are λ
and λp respectively. We further denote L(t) as the set of

communication links among secondary users at time t and L(t)
is obviously dynamic due to the mobility of the secondary and

primary users.

In this paper, we focus on the dissemination latency, i.e.,

how fast information can be disseminated from the source

to the destination secondary user. Therefore, rebroadcasting

and “store-carry-and-forward” communication paradigm (also

named mobility-assisted routing) are considered. Specifically,

by omitting the propagation delay, when the source vs broad-

casts a message at time 0, all the secondary users connected

to vs in L(0) receive the message instantly. Denote li,j as a

communication link between secondary users vi and vj and

V(t) as the set of secondary users that have received the

message at time t.
Definition 1: The first hitting time between vi and vj is

defined as Th(vi, vj) , inf{t ≥ 0 : li,j ∈ L(t)}.

Definition 2: The dissemination latency Td from the source

vs and the destination vd is defined as:

Td , inf{t ≥ 0 : vd ∈ V(t)}.
Based on the definitions and system models, we can formu-

late the problem as

1) In a finite Fm,n, what the distribution of the dissemina-

tion latency Td is;

2) As the network grows large, say to infinity, whether the

dissemination latency Td is scalable or not.

In [Fm,n,M(Φ, Ψ, α), (λ, λp)], three metrics can be used

to characterize how far two nodes vi and vj are apart:

• d(t)(vi, vj): the distance between vi and vj at time t.
• dh(vi, vj) and dc(vi, vj): the distance between home

points and center points of vi and vj respectively.

III. THE DISTRIBUTION OF Td IN FINITE NETWORKS

In this section, we study how fast information is dissem-

inated among secondary users in finite CRNs under gen-

eral mobility M(Φ, Ψ, α). Particularly, we first study the

distribution of the dissemination latency Td under the three

subclasses of mobility models, i.e., EIHP M(ΦE , Ψ, α), PIHP

M(ΦP , Ψ, α), and HHP mobility M(ΦH , Ψ, α) defined in

Section II, respectively. Then we move on to identify the

fundamental properties of Td under the general mobility. To

proceed, we find the following definitions useful toward the

derivation of tail distribution of the latency Td.

Definition 3: If Z and Z ′ are random variables such that

P(Z > z) ≤ P(Z ′ > z) for all z, we say that Z is

stochastically dominated by Z ′ and write Z
D
< Z ′; and if

Z
D
< Z ′, there exists a random variable Ẑ ′, which has the

same distribution of Z ′ such that Z ≤ Ẑ ′ (Ẑ ′ is called a

coupling of Z ′ [15].)

Definition 4: If Z and Z ′ are random variables such that

P(Z > z) ≤ P(Z ′ > z) for large z, we say that the Z’s tail

is stochastically dominated by Z ′.
Remark 2: Coupling is a very important tool in probability

theory which is used throughout the paper. To use the coupling

method, stochastic domination is required (as shown in Def-

inition 3). However, in finite CRNs, we are interested in the

tail distribution of the dissemination latency Td, which implies

that only stochastic tail domination needs to be considered.
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Fig. 3. Calculation of the first hitting time under EIHP Mobility.

Therefore, in order to use coupling, we need the following

lemma, which bridges the gap between stochastic domination

and stochastic tail domination.

Lemma 1: Given non-negative i.i.d random variables

{Xi}∞i=1 and {Yi}∞i=1 where P(Xi > t) ≤ P(Yi > t)
for large t, i.e., the tails of the former are stochastically

dominated by the latter, there exist i.i.d random variables

{X̄i}∞i=1, which have the same tail distribution with {Xi}∞i=1

and are stochastically dominated by {Yi}∞i=1. Furthermore,

for any finite k,
∑k

i=1 Xi has the same tail distribution with
∑k

i=1 X̄i.

Proof: (Sketch.) Assume P(Xi > t) ≤ P(Yi > t) when

t > tc for some finite constant tc. We construct {X̄i}∞i=1 as

X̄i = 0 when Xi ≤ tc and X̄i = Xi otherwise. This proves the

first part. For the second part, we only need to show P(X̄1 +
X̄2 > t) = P(X1 + X2 > t) for large t:

P(X̄1 + X̄2 > t) = P(X̄1 < tc)P(X̄1 + X̄2 > t|X̄1 < tc) +

P(X̄1 > t − tc)P(X̄1 + X̄2 > t|X̄1 > t − tc)

+P(tc < X̄1 < t − tc)P(X̄1 + X̄2 > t|tc < X̄1 < t − tc).

Note that the third item on the right hand side is equal to

its counterpart of P(X1 + X2 > t) and the first two items

are on the higher order of the third item as t → ∞. Thus

P(X̄1 + X̄2 > t) → P(X1 + X2 > t) for large t and this

completes the proof.

A. Distribution of Td under EIHP Mobility M(ΦE , Ψ, α)

Prior study [10] has shown that propagation delay in

networks whose topologies change frequently (e.g., due to

mobility) is negligible, in comparison with the latency incurred

by the topology dynamics. Therefore, Td can be coupled as

the sum of a sequence of the first hitting time Th between

secondary users along a communication path from the source

to the destination node. Hence we study Th first. In EIHP

mobility, secondary users move around home points, which

are overlaid with center points, with the Euclidean distance

between neighboring home points being

√

1
λ

(see Fig. 2). The

following lemma studies the property of the first hitting time

Th(vi, vj) between vi and vj with neighboring home points.

Theorem 2: Given secondary users vi and vj in a finite

CRN [Fm,n,M(ΦE , Ψ, α), (λ, λp)] with dc(vi, vj) =
√

1
λ

,

we have i) P(Th(vi, vj) = ∞) = 1 if α <

√
1

λ
−r

2 ; ii)

otherwise, E(Th(vi, vj)) < ∞ and P(Th(vi, vj) > t) ≤ e−c1t

for sufficiently large t and some positive constant c1.

Proof: At time t if and only if d(t)(vi, vj) < r, nodes

vi and vj may communicate directly. Also, d(t)(vi, vj) >

dh(vi, vj) − 2α for all t. If α <

√
1

λ
−r

2 , d(t)(vi, vj) > r
for all t, which implies that vi and vj cannot communicate

with each other. This completes the proof of part i).

For α >

√
1

λ
−r

2 , let Et denote the event that there exists no

communication link between vi and vj at time t and Ēt as its

complement. As shown in Fig. 3, a necessary condition for Ēt

is that there exist no primary users on channel chk, for some

1 ≤ k ≤ m, within the circle centered at o with radius RI , and

a sufficient condition for Ēt is that vi lies in the shaded region

S1, vj in S2 and no primary users on chk in the bigger circle

centered at o for some k. Note that for any 1 ≤ k ≤ m, the

number of primary users on chk is λp
n
λ

and the probability

that no primary users on chk is located within a circle with

radius e is given by Pa(e) = (1 − λπe2

n
)

nλp

λ . Therefore,

0 <
(

1 − (1 − Pa(RI + r/2))m
)

Ψ̄(S1)Ψ̄(S2)

< 1 − P(Et) = P(Ēt) < 1 − (1 − Pa(RI))
m < 1 (1)

where
(

1− (1−Pa(RI + r/2))m
)

Ψ̄(S1)Ψ̄(S2) characterizes

the probability of the sufficient condition and 1 − (1 −
Pa(RI))

m characterizes the probability of the necessary con-

dition for Ēt, respectively, and Ψ̄(S) =
∫

S
ΨdS. To proceed,

we next find an index set I such that {Et}t∈I are independent

and let ε = P(Et) for convenience.

Denote η as a renewal interval for secondary users, i.e., for

any t > 0, {vi(t
′) : t′ ≤ t} and {vi(t

′′ + η) : t′′ ≥ t} are

independent. And by the system model defined in the Section

II, the renewal for primary users is 1 second. Define ρ =
max{η, 1} and ρ is the renewal for the CRN. That is, after ρ
seconds, primary and secondary users completely forget where

they were ρ seconds ago. Denote {ρi}∞i=1 as a sequence of

i.i.d random variables with the same distribution as ρ. Now

we consider the index set It = {0, t1, . . . , tN(t)} ⊂ (0, t],

where tk =
∑k

i=1 ρi and N(t) = |It| = max{k : tk ≤ t}.

Observe that

P(Th(vi, vj) > t) ≤ P(∩s∈It
Es) =

∏

s∈It

P(Es) (2)

where the last equality is by the independency of {Es}s∈It
and

by conditioning on N(t), we have

P(Th(vi, vj) > t) ≤ E(εN(t)) = E(e−βN(t)),
where β = − log ε > 0. In addition, for any τ > 0,

E(e−βN(t)) = E(e−βN(t)I{N(t)≤τt}) +

E(e−βN(t)I{N(t)≤τt}) ≤ P(N(t) ≤ τt) + e−βτN(t).

Note that the finite sum of exponentially bounded random

variables is still exponentially bounded [15], [16]. Thus, if

we can show that P(N(t) ≤ τt) is exponentially bounded,

we will finish the proof. In order to proceed, we assume that

the tails of renewals {ρi}∞i=1 are exponentially bounded. This

assumption is reasonable considering the network is finite,
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which has been well-explained in many mobility models [5],

[10], [11], [13], [16]. We next show that P(N(t) ≤ τt) is

exponentially bounded. By letting k = τt, P(N(t) ≤ τt) =
P(

∑τt

i=1 ρi > t) = P(
∑k

i=1 ρi > k
τ
). The last item is

obviously bounded by some exponential variable considering

{ρi}∞i=1 are exponentially bounded. This completes the proof.

We next present our main result on the tail distribution of

the dissemination latency Td under EIHP mobility.

Proposition 1: Given [Fm,n,M(ΦE , Ψ, α), (λ, λp)] with

finite users, if α >

√
1

λ
−r

2 , the tail distribution of the

dissemination latency Td is stochastically dominated by a

Gamma distribution, Γ(2
√

n, c2); otherwise, Td has a heavy-

tailed distribution and P(Td = ∞) > 0.

Proof: (Sketch.) As the end to end latency, Td is clearly

bounded by the transmission delay along any path from

the source vs to destination vd. Theorem 2 shows that, if

α >

√
1

λ
−r

2 , a link exists between two neighboring secondary

users with positive probability. Therefore, we can identify a

Manhattan path through which vs first transmits the message

vertically until the message reaches the secondary user whose

center point has the same horizontal coordinate with vc
d, and

then transmits the message horizontally to vd as shown in Fig.

4. Denote {Xk}∞k=1 as a sequence of random variables with

identical distributions as the first hitting time between neigh-

boring secondary users. Note that a Manhattan path consists of

at most 2
√

n communication links and thus Td ≤ ∑2
√

n

k=1 Xk.

The next challenge is that the first hitting time of neighbor-

ing links, i.e., Xi and Xi+1 are not independent. To tackle this

challenge, we assume that after receiving the message, each

secondary user will hold this message for a renewal time ρ
before it tries to relay the message. Let {ρi}∞i=1 be a sequence

of renewals and Yk = Xk +ρk. It is clear that Td ≤ ∑2
√

n

k=1 Yk.

Note that Yk is bounded by exponential(c2) (since both

Xk and ρk are both exponentially bounded) and {Yk}∞k=1

are clearly independent. Let {Ŷk}∞k=1 be a sequence of in-

dependent random variables distributed as exponential(c2),
we have

P(Td > t) ≤ P(

2
√

n
∑

k=1

Yk > t) ≤ P(

2
√

n
∑

k=1

Ŷk > t), (3)

where the last inequality is from Lemma 1 and coupling

(Definition 3). By the moment generating function technique,

we know that Y follows a Gamma distribution, Γ(2
√

n, c2).
This completes the proof for Td.

When α <

√
1

λ
−r

2 , Theorem 2 says that the first hitting time

between any two secondary users Th(vi, vj) = ∞. Therefore,

Td = ∞, which completes the proof.

B. Distribution of Td under PIHP Mobility M(ΦP , Ψ, α)

Note that the main difference between PIHP and EIHP

mobility is that home points in the former are randomly

located, and thus for neighboring secondary users vi and vj

with dc(vi, vj) =
√

1
λ

, dh(vi, vj) 6=
√

1
λ

in PIHP mobility.

But under PIHP mobility, dh(vi, vj) is still bounded and we

center points secondary users mobility

primary users Manhattan path

vs

vd

Fig. 4. A Manhattan path between vs and vd under EIHP mobility.

have P(dh(vi, vj) ≤
√

5
λ
) = 1. Thus, by similar proof to

Theorem 2, we are able to see that for any vi and vj with

dc(vi, vj) =
√

1
λ

, if α >

√
5

λ
−r

2 , the first hitting time

Th(vi, vj) is exponentially bounded; and if α <

√
5

λ
−r

2 ,

P(Th(vi, vj) = ∞) > 0. Therefore, through the similar proof

as that of Proposition 1, we have the following result:

Proposition 2: Given [Fm,n,M(ΦP , Ψ, α), (λ, λp)] with

finite users, if α >

√
5

λ
−r

2 , the tail distribution of Td is

stochastically dominated by a Gamma distribution Γ(2
√

n, c3)
for some positive constant c3; otherwise, Td is heavy tail

distributed and P(Td = ∞) > 0.

C. Distribution of Td under HHP Mobility M(ΦH , Ψ, α)

When HHP mobility is considered, home points are ho-

mogeneously distributed in the whole network Ωn. Therefore,

the distance between home points of secondary users vi and

vj is homogeneous and may be any value in the interval

(0,
√

n
2λ

) (see Fig. 5; note that Ωn is a torus surface without

border effect). We next show that, to overcome the randomness

of dh(vi, vj), secondary users need to move over the whole

network (large mobility capability α) to eliminate the heavy

tail of the first hitting time.

Lemma 3: Given a CRN [Fm,n,M(ΦH , Ψ, α), (λ, λp)]

with finite users, if α >

√
n
2λ

−r

2 , the first hitting time

Th(vi, vj) is exponentially bounded; otherwise, Th(vi, vj) has

a heavy tail and P(Th(vi, vj) = ∞) > 0.

Proof: As shown in Fig. 5, there may exist a communi-

cation link between vi and vj (i.e., P(Th(vi, vj) < ∞) = 1),

if and only if vh
j is located in the solid circle C centered at

vh
i . Thus the probability that vh

j is distributed outside C (i.e.,

P(Th(vi, vj) = ∞) > 0), will incur a heavy tail of Th(vi, vj)
(that is, E(Th(vi, vj)) = ∞). Therefore, to eliminate the heavy

tail, C must cover the whole network Ωn, which requires

2α + r >
√

n
2λ

⇒ α >

√
n
2λ

−r

2 . When α >

√
n
2λ

−r

2 , vi

and vj may communicate with each other with some positive

probability at any time. Hence, with the similar proof of

Theorem 2, we can show that Th(vi, vj) is exponentially

bounded. This completes the proof.

Under HHP mobility, any secondary user vi may receive the

message directly from the source vs, and any vi that carries the

message may in turn copy this message to all secondary users

it encounters along its trajectory. Hence, we cannot apply the

coupling method in calculating Td hop by hop along the end
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Fig. 5. An illustration of the first hitting time in HHP mobility.

to end path for HHP mobility. Instead, we use a stochastic

model to analyze Td and obtain the following result:

Proposition 3: Given [Fm,n,M(ΦH , Ψ, α),MH ] with fi-

nite users, if α <

√
n
2λ

−r

2 , Td has a heavy-tailed distribution

and P(Td = ∞) > 0; and if α >

√
n
2λ

−r

2 , the tail of Td is

stochastically dominated by a Gamma distribution.

Proof: When α <

√
n
2λ

−r

2 , there exists some positive

probability that all the home points {vh
j , j 6= s} are located

outside the circle centered at vh
s with radius 2α + r, which

implies P(Td = ∞) > 0 and thus a heavy tail.

When α >

√
n
2λ

−r

2 , Lemma 3 shows that the tail of

the first hitting time Th(vi, vj) is stochastically dominated

by exponential(c4) for some constant c4. If we can show

that when Th(vi, vj) is distributed as exponential(c4), the

tail of the resulting dissemination latency T ′
d is stochastically

dominated by a Gamma distribution, then by Lemma 1 and

coupling, which shows that P(Td > t) < P(T ′
d > t) for large

t, we complete the proof.

Assume Th(vi, vj) ∼ exponential(c4) for any vi and vj .

Denote by ζ the number of secondary users, which carry the

message sent by source vs before this message is successfully

delivered to the destination vd. The proof is based on modeling

ζ as an absorbing finite-state Markov chain. The Markov chain

consists of states k = 0, 1, 2, . . . , n − 1. The state k > 0
denotes ζ = k and the state 0 denotes the absorbing state that

vd successfully receives the message.

When secondary users hit each other, messages will be for-

warded to the ones without a copy of the message. Therefore,

when there are k secondary users carrying the message, the

message is sent to another secondary user at rate c4k(n−1−k)
with the transition from k to k + 1, and to destination vd at

rate c4k with transition from k to 0, as shown in Fig. 6. The

chain jumps from state k to k + 1 with probability n−1−k
n−k

and transits from k to 0 with probability 1
n−k

. The sojourn

time Sk in state k is exponentially distributed with intensity

c4k(n−k). Since S1, S2, . . . , Sn−1 are mutually independent.

Thus P(ζ = k) = 1
n−k

∏k−1
j=1

n−1−j

n−j
= 1

n−1 . Conditioning T ′
d

on ζ, we have T ′
d |(ζ = k) =

∑k

j=1 Sj , which is clearly expo-

nentially bounded and therefore, P(T ′
d > t) =

∑n−1
k=1 P(ζ =

k)P(T ′
d |(ζ = k) > t) = 1

n

∑n−1
k=1 P(T ′

d |(ζ = k) > t)
is exponentially bounded (note that the sum of exponential

variables is still exponentially distributed). That is, the tail

1
(n−2) (n−3)

2 n−1

0

2

(n−1)

. . .

c4

c4c4

c4c4c4

Fig. 6. Illustration of the Markov chain. Each state represents the number
of secondary users carrying the message.

of T ′
d is bounded by exponential(c5) = Gamma(1, c5) for

some positive constant c5. This completes the proof.

Based on Propositions 1, 2 and 3, we summerize the

fundamental property of the latency Td as follows:

Theorem 4: In a CRN [Fm,n,M(Φ, Ψ, α), (λ, λp)] with

finite users, there exists a cutoff point on the mobility range

α, above which the tail distribution of dissemination latency

Td is bounded by some Gamma distribution; below which Td

has a heavy-tailed distribution and P(Td = ∞) > 0.

Remark 3: A heavy tail of the dissemination latency Td

implies a significant probability that it takes long time to

disseminate a message from the source to the destination.

Thus a light-tailed dissemination latency Td is crucial for

time-critical applications in CRNs. Theorem 4 tells that to

achieve a light-tailed dissemination latency (note that Gamma

distribution is a type of light-tailed distribution), the mobility

radius of secondary users α need to be larger than some

cutoff point, which is specifically identified in Proposition 1

for EIHP, Proposition 2 for PIHP and Proposition 3 for HHP,

respectively. This result encourages the existing endeavor of

deploying CRN for practical applications, including time-

critical applications, such as emergency networks and military

networks. In addition, note that the proofs of Propositions 1,

2 and 3 are independent of the spatial density λp of primary

users. We need to clarify here that this “independency” is

related to the stochastic dichotomy. However, λp may have a

negative impact on the dissemination latency Td(see simulation

results in Fig. 8). Particularly, as shown in the proof of

Theorem 2, the expected first hitting time E(Th(vi, vj)) and

thus the expected dissemination latency E(Td) are obviously

increasing functions of the probability P(Et) that no commu-

nication link between vi and vj at time t, which increases as

λp increases (see Eq. (1)).

IV. THE SCALABILITY OF Td IN LARGE CRNS

We next study the dissemination latency Td in large mobile

CRNs. Our study on the distribution of Td in Section III

implies that E(Td) → ∞ as the network size grows large,

which indicates that the distribution of Td cannot be used to

measure how fast information is disseminated in large CRNs.

Therefore, in large CRNs, we investigate the sclability of Td

with respect to the distance D between the source vs and

destination vd. First, we present the following theorem, which

is helpful to our analysis:

Theorem 5 (Liggett’s subadditive ergodic theorem, [17]):

Let {Zh,q} be a collection of random variables indexed

by integers satisfying 0 ≤ h < q. Suppose {Zh,q} has the

following properties: (i) Z0,q ≤ Z0,h +Zh,q; (ii) For each q,
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E(|Z0,q|) < ∞ and E(Z0,q) ≥ cq for some constant c > −∞;

(iii) The distribution of {Zh,h+k:k≥1} does not depend on

h; (iv) For each k ≥ 1, {Zqk,(q+1)k : q ≥ 0} is a stationary

sequence; (v) If k ≥ 1, {Zqk,(q+1)k : q ≥ 0} are ergodic. Then

we have (a) ζ = limq→∞ E(Z0,q)/q = infq≥1E(Z0,q)/q;

(b) Z = limq→∞ Z0,q/q exists almost surely; (c) E(Z) = ζ;

and (d) Z = ζ almost surely.

A. Scalability of Td under EIHP and PIHP Mobility

Since the study of the first hitting time Th(vi, vj) between

neighboring secondary users vi and vj under EIHP or PIHP

models in Section III is independent of the network size, these

results still hold for large CRNs. That is, when the mobility

radius α >

√
1

λ
−r

2 for EIHP or α >

√
5

λ
−r

2 for PIHP mobility,

the first hitting time Th(vi, vj) is exponentially bounded.

Otherwise, Th(vi, vj) and thus Td have heavy tails independent

of the transmission distance D(i.e., Td is unscalable with D).

Therefore, we only need to study the scalability of Td with

exponentially bounded Th(vi, vj). In addition, when it comes

to the distance D between the source vs and destination vd,

it can be any p-norm metric function and we consider two

of the most popular metrics transmission hops and Euclidean

distance. As analyzed in Section III-A and III-B, hop by hop

communication is necessary for EIHP and PIHP mobility,

which indicates that transmission hops can describe “how

far” more accurately than the Euclidean distance in these two

models. Therefore, D here denotes the Manhattan distance

between vc
s and vc

d by which the maximum number of trans-

mission hops between vs and vd can be expressed as
√

λD.

We next present our main result.

Proposition 4: Given α >

√
1

λ
−r

2 for a large net-

work [Fm,n,M(ΦE , Ψ, α), (λ, λp)] (or α >

√
5

λ
−r

2 for

[Fm,n,M(ΦP , Ψ, α), (λ, λp)]), there exists some finite con-

stant κ such that P(limD→∞
Td

D = κ) = 1.
To initiate the proof of Proposition 4, we first define the

following notations. Denote d
(1)
c (vi, vj) as the Manhattan

distance between center points vc
i and vc

j for any vi and vj .
Let Nh be the set of secondary users defined as,

Nh , {vi : d
(1)
c (vs, vi) = h

r

1

λ
},

where

√

1
λ

is the Manhattan distance between center points

of neighboring secondary users (see Fig. 2). The information
dissemination direction from the source vs to destination vd is
denote by g(vs, vd), which is the straight line joining vc

s and
vc

d as shown in Fig. 7. We denote v(h) as the secondary user

whose distance to vs is h
√

1
λ

and which is in the information

dissemination direction, i.e.,

v(h) , {vi : vi ∈ Nh and g(vs, vd) ∩Oi 6= ∅},

where Oi is the cell associated with vc
i as shown in Fig.

7. We next define the collection of indexed variables by

Th,q as the dissemination latency from nodes v(h) to v(q)
(thus Td = T0,D

√
λ

). Therefore, Proposition 4 is equivalent to

showing P(limq→∞
T0,q

q
= κ

√
λ) = 1, which can be proved

by Liggett’s theorem.

Particularly, if we can show that the sequence {Th,q, h ≤ q}
satisfies the conditions (i)− (v) of Liggett’s theorem, we can

finish our proof. By definition, T0,q is the shortest time that

v(q) will receive the message from v(0), which is clearly

at most T0,h + Th,q. Condition (i) is thus verified. As the

latency cannot be negative, we have E(T0,q) > 0. To compute

an upper bound of E(T0,q), we consider a Manhattan path

between nodes v(0) and v(q) (see Fig.4) and thus have

E(T0,q) ≤ qE(Th(vi, vj)). Theorem 2 tells that the first hitting

time Th(vi, vj) is exponentially bounded and thus E(T0,q) <
∞. This attests condition (ii). Conditions (iii) and (iv) are

clearly satisfied, as Th,q is defined in a stationary way. The

following lemma is to prove that the sequence Th,q is ergodic,

i.e., {Th,q, h ≤ q} satisfies condition (v). Particularly, it shows

that Th,q is mixing (i.e., roughly speaking, asymptotically

independent), which is a stronger property than ergodicity.

Lemma 6: The sequence {Tq,q+1, q ≥ 0} is mixing.

Proof: We compute Tq,q+1 by the following construction:
Denote Nq,k as the set of secondary users whose distance to

v(q) is less than k
√

1
λ

, that is, Nq,k , {vi : d
(1)
c (v(q), vi) <

k
√

1
λ
} and T (k)

q,q+1 as the transmission delay from v(q) to v(q+

1) where nodes v ∈ Nq,k are used as relays. Observe that

lim
k→∞

P

“

T
(k)

q,q+1 < t
”

= P

“

Tq,q+1 < t
”

for all t. Thus {Tq,q+1} is mixing by

lim
k→∞

P

“

(Tq,q+1 < t) ∩ (Tq+2k,q+2k+1 < t
′)

”

= lim
k→∞

P

“

(T (k)
q,q+1 < t) ∩ (T (k)

q+2k,q+2k+1 < t
′)

”

= lim
k→∞

P

“

Tq,q+1 < t
”

P

“

T k
q+2k,q+2k+1 < t

′

”

∀t, t
′
.

The second equality follows that T (k)
q,q+1 and T k

q+2k,q+2k+1

are independent, as they depend on non-intersected node sets

Nq,k and Nq+2k,k .

Putting all together, We conclude that {Th,q, h ≤ q}
satisfies all the conditions of Liggett’s theorem and thus prove

Proposition 4. Since the proof for the scalability of Td under

PIHP mobility is similar, we omit the details. Next we study

the scalability of Td under HHP mobility.

B. Scalability of Td under HHP Mobility

Connectivity is a prerequisite for network applications to

ensure that information can be disseminated to the entire

network. Note that in the previous analysis of latency in large

CRNs under EIHP and PIHP mobility, a fundamental require-

ment is that the mobility radius α is larger than some critical
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values, which is actually used to ensure that the networks

are fully connected. That is, there exists a communication

path (may be dynamic over time) between any two secondary

users. By techniques used to derive the full connectivity in its

counterpart in homogeneous networks [14], we can identity

that 2α + r = Θ(
√

log n) 1 is required for a fully connected

CRN under HHP mobility, which is impractical to be satisfied

when the number of nodes n is large. Therefore, we consider

a percolated network [3], [10], in which there exists a giant

component consisting of Θ(n) nodes well scattered over the

whole network. In a percolated network, information can still

be be disseminated to the entire network through the giant

component. The results in continuum percolation [3], [10]

show that given the spatial densities (λ, λp), finite 2α + r
is enough for a percolated CRN under HHP mobility.

In terms of the latency scalability in a percolated CRN

under HHP mobility, a similar problem has been studies in its

counterpart in homogeneous networks [10]. In particular, Kong

and Yeh [10] show that in a percolated mobile homogeneous

network, where wireless nodes are mobile under constrained

i.i.d mobility, i.e, home points are independently and uniformly

distributed and any node vi is mobile within the circular

region A(vh
i , α) centered at its home point vh

i with radius

α according to an uniform stationary distribution, the latency

asymptotically scales linearly with the transmission distance

(Euclidean). To make the best use of the existing findings,

we compare our CRN model [Fm,n,M(ΦH , Ψ, α), (λ, λp)]
with the homogeneous network studied in [10] and iden-

tify two main differences. First, in our model, a node vi

is independently mobile within A(vh
i , α) according to an

arbitrary stationary distribution Ψ (not necessarily the uniform

distribution). Second, primary users are present in our CRNs,

which constrains the communications among secondary users.

However, we find that the proofs in [10] require neither

uniform distribution of vi around vh
i , nor non-interference

from other nodes (e.g., primary users). Indeed, the fundamental

requirement for proofs in [10] is that, given any two nodes

vi and vj with dh(vi, vj) = ‖vh
i − vh

j ‖ < 2α + r, the

expected first hitting time E(Th(vi, vj)) < ∞. Fortunately, our

earlier study shown in Theorem 2 can satisfy this condition.

Therefore, we are able to extend the results [10] to our network

model [Fm,n,M(ΦH , Ψ, α),MH ]. This leads to the linear

scaling law of information dissemination latency with respect

to transmission distance (Euclidean). Particularly, we have

Proposition 5: Given any two nodes vs and vd in the

giant component of a percolated CRN under HHP mobility

[Fm,n,M(ΦH , Ψ, α), (λ, λp)], there exists a finite and posi-

tive constant κ such that P(limD→∞
Td

D = κ) = 1.

Based on Proposition 4 and 5, we summarize the latency

scalability in large mobile CRNs as follows:

Theorem 7: Given a large connected (fully connected or

percolated) mobile CRN [Fm,n,M(Φ, Ψ, α), (λ, λp)], there

1Given any function f(n) and g(n), f(n) = O(g(n)) ↔

lim supn→∞

f(n)
g(n)

< ∞; f(n) = Θ(g(n)) ↔ f(n) = O(g(n)) and

g(n) = O(f(n)); n is the number of nodes.

exists a finite constant κ such that P(limD→∞
Td

D = κ) = 1.

Remark 4: Scalability has been one of the most fundamen-

tal problems that has discouraged the deployment of large

wireless networks [6], [14]. Theorem 7 reveals that in large

connected CRNs, the dissemination latency Td asymptotically

scales linearly with the initial distance between the source

and destination, i.e., the message sent by a source reaches its

destination at a fixed asymptotic speed. This result enables the

feasible deployment of CRNs for large applications. Moreover,

note that the proofs for the linear scalability of the latency

in Propositions 4 and 5 are invariant to the spatial density

of primary users λp, which indicates that the linearity of the

latency, but not the latency itself, is independent of primary

users. Particularly, as shown in the proof of Proposition 4, the

asymptotic value limD→∞
Td

D is proportional to the expected

first hitting time E(Th(vi, vj)), which implies that λp (see

Theorem 2) has an adverse impact on the dissemination

latency. This has been validated by simulations in Fig. 9. Fur-

thermore, a prerequisite for Proposition 5 is that the network is

percolated and the reference [3] shows that when the density

of primary users is larger than some critical value, the CRN

cannot percolate. Thus a subtle assumption for Proposition 5

is that the density λp is smaller than such critical value.

V. SIMULATION

In this section we provide simulation results to support our

theoretical analysis on distribution and scalability of latency

in finite and infinite CRNs, respectively. In these simulations,

time is partitioned into unit slots and in each time slot, primary

users are uniformly distributed at random and secondary users

are uniformly distributed around their home points (i.e., Ψ is

uniform). Furthermore, home points are uniformly distributed

around the center points under PIHP mobility (i.e., ΦP is

uniform). The transmission range r of secondary users and

the interference range RI of primary users are set as r = 0.1
kilometer (km) and RI = 0.3 (km), respectively. Secondary

users opportunistically access m = 2 channels.

We first study a finite CRN where n = 16 secondary users

are mobile within an 2× 2 (km2) area (i.e., λ = 4 per km2).

Fig. 8 illustrates the complementary distribution (CCDF) of

the latency P(Td > t) on a log-log scale for EIHP, PIHP

and HHP models with different values of the mobility radius

α and the spatial density λp of primary users. The probabil-

ity is calculated based on the average of 1000 independent

simulations. It is observed in Fig. 8 that as λp increases,

the curves move right-ward, which indicates the increasing

expected dissemination latency. However, regardless of the

value of λp, when α = 0.4 (km), which is larger than the

cutoff point under EIHP but smaller than those under PIHP

and HHP, the dissemination latency Td has a light tail under

EIHP but heavy tails under PIHP and HHP. As α increases to

0.6 (km), which is larger than the cutoff point in PIHP, but still

less than that in HHP, the heavy tail of Td in PIHP disappears,

but Td in HHP presents a heavy tail. These results are in good

agreement with our theoretical analysis in Propositions 1, 2

and 3, and arguments in Remark 3.
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Fig. 8. CCDF of dissemination latency Td under general mobility.
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We further perform a series of simulations to validate our

asymptotic results in large networks. Fig. 9(a) and 9(b) show

the latency scalability in large CRNs under EIHP and PIHP

models, respectively, where the spatial density of secondary

users is λ = 4 (per km2). As shown in 9(a) and 9(b), no

matter how large the mobility radius α is, the dissemination

latency Td scales linearly with the dissemination distance

D (Manhattan distance). Moreover, The latency scalability

in a large percolated CRN under HHP mobility, where the

spatial density of secondary users is set as λ = 200 (per

km2) to ensure percolation, is shown in Fig. 9(c), which

shows that in percolated CRNs, the dissemination latency Td

scales linearly with the dissemination distance D (Euclidean

distance) as D increases. In addition, as shown in Fig. 9,

the scalability decreases as the spatial density λp increases.

These observations provide a straightforward illustration of

Propositions 4 and 5 and arguments in Remark 4.

VI. CONCLUSIONS

We have studied in this paper the distribution of the in-

formation dissemination latency Td in finite CRNs and the

scalability of Td in large CRNs under general mobility. We

found that in finite networks, there exists a cutoff point on

the mobility radius α of secondary users, above which the tail

distribution of Td is bounded by some Gamma distribution

and below which Td has a heavy-tailed distribution. When

networks become large, the dissemination latency Td is (lin-

early) scalable with respect to the dissemination distance. Our

results demonstrate that when secondary users can move in

a large region, a Gamma distributed (light-tailed) latency in

finite networks, or a scalable latency in large networks, is

achievable, which encourages the deployment of CRNs for

real-time and large applications.
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