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Abstract—Node failures are unavoidable in wireless networks
and an initial failure may further trigger a sequence of related
failures, incurring many holes in the network, which can easily re-
sult in devastating impact on network performance. To understand
the size of these holes is very important to identify solutions to
offset their adversarial effects. In this paper, we focus on the size
of holes in Cognitive Radio Networks (CRNs) because of their
phenomenal benefits in improving spectrum efficiency through
opportunistic communications. Particularly, we first define two
metrics, namely the failure occurrence probability p and failure
connection function g(·), to characterize node failures and their
spreading properties, respectively. Then we prove that each hole is
exponentially bounded based on percolation theory. By mapping
failure spreading using a branching process, we further derive an
upper bound on the expected size of holes.

I. INTRODUCTION

Wireless communication has experienced an explosive

growth in the past few decades, which imposes a significant

demand for the already-crowded radio spectrum. However,

a recent report by the Federal Communications Commission

(FCC) indicated that over 90% of the licensed spectrum re-

mains idle at a given time and location [1]. This observation

immediately incurs considerable attentions to Cognitive Radio

Networks (CRNs), which shows great potential for improving

spectrum usage efficiency [2] by permitting secondary networks

to coexist with licensed primary networks. On one hand, many

efforts have been devoted to understanding the performance

limits of CRNs, including maximum capacity, minimum delay

and connectivity [3]–[6]. These works have presented a very

good understanding of the potential of CRNs for a variety of

applications in theory. On the other hand, the properties of

global topology, which plays an important role in designing

fundamental networking functionalities, such as point-to-point

routing and scheduling algorithms, has never been well studied.

The lack of knowledge about network topology greatly hinders

the practical deployment of CRNs, which motivates the study

on topological features of CRNs in this paper.

Topology of wireless networks changes frequently due to

different factors (e.g., node mobility, failures) and in this paper,

we focus on topological transmutation due to node failures.

Such unavoidable faults can be brought out by malfunctions

of electrical devices, energy depletion, natural disasters (fire,

river overflow, earthquake, etc) or adversarial attacks (a bomb

explosion for example). Communications may be disabled by

jamming, traffic congestion or energy depletion. In addition,

causal relations often exist among failures, i.e., some failures

happen as a result of other earlier failures. One example of such

correlated failures is traffic overloading and energy depletion

[7], that is, when a node fails to deliver packets, the incoming

and outgoing traffic is redistributed to the neighboring nodes.

Some neighbors may work under heavy traffic loads, resulting

in early energy depletion and node failures. Such correlation

among failures and cascading effects lead to holes (i.e., com-

ponents of failed nodes, see formal definition in Section II) in

the network, where information cannot be forwarded.

Understanding the properties of holes in the CRNs, or in

particular, investigating structure and size of holes, is of great

importance in the design of basic networking operations. For

example, a number of networking protocols exploit geometric

intuitions for simple and scalable data delivery, such as geo-

graphical greedy forwarding [8], [9]. These algorithms based on

local greedy advances may not work properly in the presence

of holes, where routing messages will be lost. Backup and

restoration methods, such as face routing on a planar subgraph,

can help packets out of holes, but also create high traffic on

hole boundaries and eventually undermine network lifetime

[8], [9]. In addition, a number of routing schemes address

explicitly the importance of topological properties and propose

routing with virtual coordinates that are adaptive to the intrinsic

geometric features [10]. However, constructing these virtual

coordinate systems requires the identification of topological

features, especially holes first in order to proceed routing.

In this paper, we aim to provide insightful understanding of

the structure and size of holes. We first study the process of how

an initial failure “explodes” to a hole and present theoretical

analysis to quantify the scope of holes. Using combinatorial

arguments, we prove that the distribution of hole size decays

exponentially and we further provide an upper bound on the

expected size of holes by mapping failure spreading to a

branching process. Although we only presented topological

features of CRNs, questions addressed in this paper are impor-

tant yet remain unanswered in general multihop networks (e.g.,

wireless sensor networks and mobile ad hoc networks). Letting

spatial density of primary users λp = 0, our analysis and results

can be extended to other wireless multi-hop networks.

The rest of this paper is organized as follows. In Section

II, we introduce network models and formulate the problem.

In Section III, we present our main results about hole size.

In Section IV, we use simulations to validate our analysis,

followed by the conclusions in Section V.
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Fig. 1. Primary-secondary interference.

II. NETWORK AND FAILURE MODELS

In this section, we describe network and failure models used

in this paper. We consider a large CRN consisting of n sec-

ondary users {v1, . . . , vn}, which are distributed independently

and uniformly in a region Ω = [0,
√

n
λ
]2 for some constant

λ. Let Hλ = {x1, . . . , xn} denote the random locations of

secondary users and Hλ is a Poisson Point process with density

λ as n → ∞ [11]. A set of m channels {ch1, . . . , chm}
are assumed to be accessible by secondary users. For any

1 ≤ k ≤ m, an overlay network of primary users with spatial

density λpk are transmitting with channel chk. We assume that

λpk = λp for any k for simplicity. To model the dynamics of

the primary traffic, we adopt a synchronized slotted structure,

which has been used in [3] to study the connectivity of a large

single-channel CRN. Particularly, time is slotted into units and

at any time slot, primary users transmitting on any channel chk

are assumed to be uniformly and independently distributed in

Ωn, and such distribution is i.i.d across slots.

A. Interference Models

In CRNs, there are two types of interference for information

dissemination among secondary users: secondary-secondary

and primary-secondary interference. The former interference

can be characterized by the well-known protocol model [12].

Particularly, without interference from primary users, a success-

ful transmission from a secondary user vi to vj is achievable

if ‖xi −xj‖ ≤ r and for any other simultaneously transmitting

node on the same channel vl, ‖xl−xj‖ ≥ (1+∆)r, where r is

the transmission radius of secondary users, and ∆ models the

guard zone around vj in which any simultaneous transmission

on the same channel causes collision at vj . For the latter

interference, denote RI as the interference range of primary

users. And as Fig. 1 shows, two secondary users vi and vj are

permitted to use channel chk only when there are no primary

users on chk in the neighborhood, i.e., ‖xi(t) − u(t)‖ > RI

for any primary user u transmitting with chk, where u(t) is the

position of u at time t.

B. Failure Model and “Explosion”

In wireless networks, nodes fail unavoidably due to adversary

attacks, natural hazards, resource depletion, etc. Node failures

are often not independent and causal relations exist among

these failures, i.e., some failures happen as a result of other
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Fig. 2. An example of holes.

earlier failures. Traffic overloading and energy depletion [7] is

an example as a result of failures spreading. Because of failure

correlation, each initial failure will “explode” and impact a

component of nodes in the neighborhood. An illustration of

such process is shown in Fig. 2. In this example, random

failures initially occur at nodes v1, v5, v8, v12, v14 and v15.

As a result of the failure on v1, node v2 fails subsequently and

spreads the failure further away to nodes v3 and v4. Similarly,

nodes v6, v7, v9, v9, v10, v11, v13, and v16 fail subsequently

due to random failures on v5, v8, and v12.

The above example shows that the formation of holes con-

sists of the occurrence of initial failures and explosion of these

failures. Thus we introduce the following models:

• Random failure model: each node is either surviving or

failed independently and a node may fail with probability

p (failure occurrence probability). This model describes

the initial occurrence of node failures.

• Failure explosion: We define failure connection function

g(·) to model the likelihood of failure propagation from

vi to vj . If |xi − xj | < r, failure spreads from vi to

vj with a probability g(|xi − xj |) that depends on their

distance but not their respective locations. If vj is beyond

the transmission radius of vi, failure cannot spread from

vi to vj directly.

In this paper, we assume that g(·) ≡ τ , which is called failure

connection probability and r = 1 by default, if there is no

specific explanation.

Remark 1: These two models are not new. Particularly, ran-

dom failure model has been used in [13] to study topology

transition of wireless networks because of independent node

failures (without considering failure spreading) and failure

connection function has been used in [14] to determine whether

an initial failure will spread to the entire network. However, as

discussed above, the occurrence of random failures and their

subsequent explosion are inseparable, and we are interested in

this paper how these two processes together result in holes in

the network.

III. HOW LARGE IS A HOLE?

We first focus on a particular hole, initiated by a failure

on a node, say v1, w.l.o.g, and denoted by Ov1
. Particularly,

we demonstrate how to obtain the results concerning size of

hole Ov1
. We investigate how many nodes will be infected by
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Fig. 3. An illustration of mapping from continuum graph to discrete lattice.

occurrence of failure on v1. We first study the distribution of

|Ov1
|.

A. The Distribution of |Ov1
|

Using percolation theory, Xu et al. [14] determine the

condition under which Ov1
may be percolated to the entire

network. However, when Ov1
is not percolated, how large

|Ov1
| is, remains unknown. To study distribution of |Ov1

|,
our approach takes following procedures. We first map failure

spreading process defined on continuous plane onto a discrete

lattice, whose edges are declared open if certain properties

are met (closed otherwise). In the discrete lattice, we then

investigate the size of components consisting of open edges

using combinatorial arguments. With a careful definition on the

open edge in the lattice, a relation between the size of holes

and size of components of open edges can be derived. Finally,

we obtain the distribution of hole size |Ov1
| in Theorem 1.

Theorem 1: Exponential decay of |Ov1
|. When hole Ov1

is

not percolated, there exists some ǫ > 0 such that

P(|Ov1
| ≥ N) ≤ e−Nǫfor all N sufficiently large. (1)

Proof: When studying topology of continuum graph, an

useful technique is the discretization of the graph on R
2 into

lattice on integer space Z
2, since topological properties of the

latter is easier to be analyzed [15]. One of the technical uses

of such a discretization lies in the availability of combinatorial

arguments for enumerating the sets in Z2. To proceed, we shall

require a variety of notations. A set A ⊂ Z
2 is said to be

symmetric if −x ∈ A for all x ∈ A. Vertices x, y ∈ A are said

to be A-adjacent (x ∼A y) if and only if y − x ∈ A. A subset

S ⊂ Z
2 is A-connected if it induces a subgraph with adjacency

relation ∼A. The following lemma, which says that the number

of A-connected subsets of Z
2 of size N containing the origin

grows at most exponentially, is helpful.

Lemma 2: (Peierls argument, see page 178 in [11]) Let A

be a finite symmetric subset of Z
2 with |A| elements. The

number of A-connected subsets of Z
2 containing the origin,

of cardinality N , is at most 2|A|N .

In this paper, we consider a discrete lattice L = dl × Z
2

with side length dl. The coordinates of the vertices of L are

(dl × i, dl × j) for (i, j) ∈ Z
2. Adjacency is defined by A =

{z ∈ L : ‖z‖1 = dl} where ‖ ·‖1 denotes 1-norm distance, i.e.,

an edge connects x, y ∈ L only when ‖x− y‖1 = dl (see solid

lines in Fig. 3 and 4). For any z ∈ L, we construct a box Bz of

size dl centered at dl × z (see the dash lines in the Fig. 3 and

4). As Fig. 3 shows (for figures in this paper, solid dots and

circles denote failed and surviving nodes respectively), failure

spreading, represented by random geometric graph G(Hλ, r, τ)
(i.e., graph consisting of failed nodes and edges connecting

them), induces a realization of the bond percolation on L by

setting an arbitrary bond zz′ ∈ L to be open if there exists an

edge uv ∈ G(Hλ, r, τ) such that u ∈ Bz and v ∈ Bz′ . That

is, given one or more failed nodes in Bz , at least one failed

node connects to some some nodes in Bz′ . And an example of

open bond zz′ is shown in Fig. 3. Let C(v1) denote the cluster

of open bonds and |C(v1)| denote its size. It is obviously true

that if |Ov1
| < ∞, then |C(v1)| < ∞, and vice versa. The

mapping between the cluster of failed nodes and the cluster of

open bonds allows us to find |C(v1)| and thus use it to study

|Ov1
|.

Particularly, when Ov1
is not percolated, C(v1) is not perco-

lated. Bond percolation on discrete lattice (see Theorem 6.75

in [15]) shows that if C(v1) is not percolated, then there exist

constants µ > 0, n0 > 0 such that

P(|C(v1)| ≥ N) ≤ e−µN , N ≥ n0. (2)

By Peirels argument (Lemma 2), there is a constant γ such

that, for all N , the number of open path of L of cardinality

N containing the origin is at most γN . If |C(v1)| < N and

|Ov1
| > KN + 1, then for at least one of these open paths,

the union of associated boxes Bz contains at least KN nodes

of Hλ (an example of such path and its associated boxes are

shown in Fig. 4 as the bold line and shaded area). Therefore,

we have

P [{|C(v1)| < N}{|Ov1
| > KN + 1}]

≤ γNP [Po(Nλd2
l ) ≥ KN ], (3)

where Po(·) denotes Poisson distribution. To continue, we need

the following lemma (see (1.12) in [11]).

Lemma 3: Let Po(λ) be a Poisson random variable with

density λ. If K > e2λ, then

P [Po(λ) ≥ K] ≤ e−( K
2

)log( K
λ

). (4)

Letting K ≥ e2d2
l λ and putting Eq. (4) into Eq. (3), we have

P [{|C(v1)| < N}{|Ov1
| > KN + 1}] ≤ γNe

−( KN
2

)log( K

d2

l
λ

)
.

(5)

If we take K sufficiently large, we see from Eqs (2) and (5)

that P(|Ov1
| > KN + 1) decays exponentially in N , so that

Eq (1) follows.

Theorem 1 shows that when a failure cannot spread to the

entire network, the number of nodes that may be infected by
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Fig. 4. An example of open path and the union of its associated boxes.

this failure is exponentially bounded. Exponential distribution

is not enough to show how large hole Ov1
is, since the expected

value E(|Ov1
|) of |Ov1

| is unidentified, i.e., the parameter ǫ in

Eq. (1) is unknown. We provide E(|Ov1
|) in the next theorem.

B. The Expected Value of |Ov1
|

In this subsection, we investigate the expected number of

nodes in hole Ov1
and prove the upper bound Eq. (6) given in

Theorem 4. Specifically, we model failure spreading in CRNs as

a branching process [16]. By studying the number of offspring

in this branching process, we obtain our result.

Theorem 4: When hole Ov1
is not percolated, its expected

size is upper bounded by

β = E(|Ov1
|) ≤

1.43πλ2τ2

1 − 1.43λτ
+ 1, (6)

where λ is spatial density of secondary users and τ is failure

connection probability.

Proof: Denote our network with a graph G(Hλ, 1, τ). Let

x1, x2, . . . be the points of the Poisson process Hλ and assume

that a failure initially occurs to x1 (thus x1 is initial member of

the 0-th generation of the branching process, as shown in Fig.

5). The children of x1 in this branching process are points

which can be infected by x1 directly. According to failure

spreading model in Section II, each point of Hλ which lies in

the ball B(x1, 1) = {y ∈ R
2 : |y − x1| ≤ 1} (see the big circle

in Fig. 5) may be a child of x1 with probability τ . If we take

another Poisson process X1 with density λ · τ , independent of

Hλ and let x1,1, . . . , x1,n1
be all the points of X1 which lie in

the ball B(x1, 1), the children of x1 in the branching process are

equivalent to these points x1,1, . . . , x1,n1
by thinning theorem

[17].

Let xk,1, xk,2, . . . , xk,nk
be the members of the k-th gener-

ation of the branching process. To obtain the children of xk,i,

we consider a Poisson point process Xk+1,i of density λ · τ on

R
2, where Xk+1,i is independent of all the processes described

as yet. The children of xk,i are those points of the process

Xk+1,i which fall in the region B(xk,i, 1)\B(xk−1,j , 1) (see

the shaded area in Fig. 5), where xk−1,j is the parent of xk,i.

The type of a child is defined as the distance between this

child and its parent. For example, the type of xk,i is defined

|xk−1,j − xk,i| ∈ (0, 1) (e.g., the length of the solid line in

Fig. 5). Clearly, the distribution of the number and types of

children of xk,i depend only on xk,i and its type. Indeed, the

distribution of the number of children of xk,i whose types lie

in (a, b), 0 ≤ a < b ≤ 1 depends only on the area of the

region (B(xk,i, 1)\B(xk−1,j, 1)) ∩ {y : |y − xk,i| ∈ (a, b)},

and this area depends on xk−1,j only through the distance

|xk−1,j − xk,i|, which is precisely the type of xk,i. Also, the

distribution of the number and types of children of an individual

xk,i does not depend on its generation k.

Given that xk,i is of type h, i.e., |xk,i − xk−1,j | =
h, let f(w|h) be the length of the curve given by

(B(xk,i, 1)\B(xk−1,j, 1)) ∩ {y : |y − xk,i| = w}. A precise

expression for f(w|h) follows from an elementary trigonomet-

ric calculation, which yields

f(w|h) =

{

2w cos−1 1−h2−w2

2hw
if 1 − h < w < 1

0 if 0 < w ≤ 1 − h.

Recalling our earlier discussion on the independence proper-

ties of the offspring distribution, we easily see that the expected

number of children whose types lie in (a, b) of an individual

whose type is h is given by
∫ b

a
λτf(w|h)dw. Moreover, given

that an individual is of type h, the expected total number of

grandchildren of this individual whose types lie in (a, b) is

given by
∫ 1

0

(

∫ b

a

λ2τ2f(w|t)dw
)

f(t|h)dt. (7)

In other words, if we let

f1(w|h) =

∫ 1

0

f(w|t)f(t|h)dt,

the integral in (7) reduces to

λ2τ2

∫ b

a

f1(w|h)dw.

Thus defining recursively,

fi(w|h) =

∫ 1

0

fi−1(w|t)f(t|h)dt,

we easily see that the expected number of members of the n-

th generation having types in (a, b) coming from a particular

individual of type h as an ancestor n generations previously is

given by

λiτ i

∫ b

a

fi(w|h)dw.

Hence the expected total number of individuals in the branch-

ing process if we start off with an individual of type h is

∞
∑

i=1

λiτ i

∫ 1

0

fi(w|h)dw. (8)

The node density λ is small enough to make Eq. (8) converge

by the assumption that failure is not percolated. To estimate Eq.

(8), we define

T (h) =

∫ 1

0

f(w|h)dw.
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Fig. 5. An illustration of the branching process for the failure spreading.

It is easy to see that

∫ 1

0

fi(w|h)dw = T i(h).

Thus Eq. (8) reduces to

∞
∑

i=1

λiτ iT i(h). (9)

By using Hilbert-Schmidt operator and standard numerical

methods of calculating eigenvalues (see page 87 of [17]), we

can show that T (h) < 1.43. Thus Eq. (8) reduces to

∞
∑

i=1

λiτ iT i(h) ≤

∞
∑

i=1

λiτ i1.43 =
1.43λτ

1 − 1.43λτ
. (10)

Come back to the 0-generation node x1. By thinning theorem

[17], the expected number of children of x1 is πλτ . Note that

the expected total number of individuals starting of any child

x1,j of x1 is upper bounded by Eq. (10), thus the expected

number of nodes in each hole is upper bounded by Eq. (6).

This completes the proof.

Theorem 4 indicates that the expected hole size grows as

failure connection probability τ increases, which corresponds

to our intuition that the hole is large when nodes are prone

to be infected by their neighbors. Eq. (6) further implies that

1 − 1.43λτ > 0 is necessary to guarantee that hole Ov1
is not

percolated to the whole network. Next, we validate our analysis

through simulations.

IV. SIMULATIONS

In this section, we have performed a series of simulations to

explain and demonstrate the occurrence of holes, and validate

our theoretical analysis. In the simulation, secondary users are

distributed independently and uniformly with density λ. Time

is slotted into units, and at each time slot, primary users on

any channel are distributed as a Poisson point process with

density λp. The transmission range r of secondary users and
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Fig. 6. Initial failures, occurred accroding to the random failure model in
Section II.
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Fig. 7. Small holes.
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Fig. 8. Large holes.
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Fig. 9. CCDF of hole size Ov1
under different failure connection probability

τ (see Section II) on a semi-log scale.

interference range RI of primary users are set as r = 50
(meters) and RI = 80 (meters) respectively.

We consider a CRN deployed within area [0, 1000]2 (me-

ters) with m = 4 channels, λ = 0.0008 (per meter2)

and λp = 0.00001 (per meter2). We first investigate the

occurrence of random failures (according to the random failure

model in Section II). Assume that each secondary node fails

independently with probability p = 0.1, failied nodes are

shown in Fig. 6, (where solid dots and circles represent failed

and surviving nodes respectively, a line connecting two failed

(surviving) nodes denotes a failure connection (communication

link), and the positions of primary users are not shown in the

figures for clarification). Each random failure then explodes

according to the failure explosion model. Two examples of

holes due to random failure spreading are shown in Fig. 7 and

Fig. 8, by setting the failure connection probability τ = 0.2
and 0.3 respectively. Note that the holes in Fig. 8 are much

larger than those in Fig. 7, which valides our result in Eq. (6)

that hole size increases as τ increases.

To study the size of holes Ov1
, we run the simulation

with λ = 0.0008 and λp = 0.00001 within [0, 1000]2 1000
times independently for variant failure connection probability

τ . The probability P(|Ov1
| = N) is calculated by the fre-

quency of the occurrence of holes with size N . Using this

method, the complementary distributions (CCDF) of Ov1
under

τ = 0.2, 0.25, 0.3 have been calculated and shown in Fig. 9

on a semi-log scale. As illustrated in Fig. 9, CCDFs under

different τ are approximately linearly under semi-log scale,

which validates our analysis in Theorem 1 that the size of holes

Ov1
decays exponentially. In addition, Fig. 9 further shows that

the CCDF of Ov1
decreases, which indicates the expected size

of holes E(|Ov1
|) decreases, as failure connection probability

τ decreases. This corresponds to our result about expected size

of holes in Theorem 4.

V. CONCLUSIONS

In this paper we have studied the topology of large CRNs in

the presence of node failures. When there exist causal relations,

a single failure may initiate a component of related failures,

and thus random failures may trigger a sequence of holes in

the network. In order to understand network topology in the

face of holes, two metrics, failure occurrence probability p and

failure connection function g(·) are defined to characterize the

occurrence of random failures and their spreading to neighbors,

based on which we prove that when a hole cannot spread to the

entire network, it is exponentially bounded. By mapping failure

spreading to a branching process, we derive an upper bound on

the expected size of holes. We finally confirm correctness of

our theoretical results by simulations. It worth pointing out that

although our results concerning hole size are derived for CRNs,

nevertheless, by setting spatial density of primary users λp = 0,

these results can also be applied practically in general wireless

networks.
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