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Abstract—Motivated by the massive and increasing number
of online messaging service users, the idea of utilizing short-
range device-to-device (D2D) communication has been adapted to
the access of instant messaging services on-the-go, introducing a
D2D-based messaging service (D2D-Msg) paradigm that promises
traffic offloading capability and higher data rate. The quality of
message dissemination in such a new paradigm, however, remains
largely unknown due to the open nature of the D2D environment.
To address this, we define a node survival probability that
captures the impact of random and targeted node failures due to
the open wireless environment. Further, to quantify the message
dissemination robustness, we define a secondary infection rate R

∗

that measures how fast message propagates initially, and leverage
a framework based on probability generating function to analyze
R
∗ under random and targeted failures. Numerical results show

that the D2D-Msg is more robust against random failure, the
targeted node failure favors communication graph with narrow
degree distribution, and R

∗ is proportional to the ratio between
the number of message-receiving users to all users.

I. INTRODUCTION

Online messaging services have successfully facilitated the

exchange of vast amount of multimedia information, with at

least one out of four people worldwide in 2014 are messaging

service users [1]. Among the 700 million active Facebook

Messenger users between April 2014 and June 2015, more

than 95 % are accessing the service while being mobile [2],

thus likely saturating the cellular data and WiFi networks

due to the massive data exchanged by the vast amount of

users. To offload traffic from the congested infrastructure net-

works, opportunistic device-to-device (D2D) communications

has emerged as a promising alternative to the access of online

messaging service over centralized network, leading to a so-

called D2D-based messaging service (D2D-Msg) paradigm.

For the vast messaging service users, this new paradigm offers

numerous benefits, such as longer battery life and higher data

rate due to shorter transmission range [3], as well as lower

mobile data subscription fee. These are practical benefits,

as exemplified by the “nearby” mode in FireChat app that

successfully facilitates message exchange between hundreds

of thousands of protesters in Hongkong and Taiwan [4].

Motivated by the vast amount of potential mobile users that

may depend their information sharing activities on D2D-Msg,

there exists a fundamental need to understand the quality of

information dissemination in such a new paradigm. Unfortu-

nately, message dissemination in D2D-Msg is hindered by the

open nature of the wireless communication medium, in which

interference and jamming attack may prevent legitimate users

from sending and receiving data properly [5]. Toward this,

there has been a long history of researches that investigate

the impact of node failure to wireless network’s performance.

For example, the impact of random failure towards the size

of connected component in large-scale networks was studied

[6], while the network can further be partitioned into small

components when the fraction of failed nodes exceeds a

certain threshold [7]. But, D2D-Msg is different: users may

accept and re-share messages from nearby D2D users, as

exemplified by FireChat’s “public” message feature. Thus,

message dissemination performance is governed by both the

dynamic underlying communication architecture as well as

users’ decision towards incoming message. Moreover, in addi-

tion to random origins, node failure can also be caused by an

adversary that launches jamming attacks targeting important

nodes with many neighbors, inducing a so-called targeted

failure. Although both of these failures clearly affect how

messages are disseminated, the impacts toward the message

dissemination over D2D-Msg have not been studied. Thus, we

ask, “What is the robustness of message dissemination under

random and targeted failures in D2D-Msg?” The answer to

this question is essential toward understanding the performance

of D2D-Msg that may determine the success of its application.

To answer the research question stated above, we start by

examining the D2D-Msg’s structure. First, motivated by the

message dissemination that is highly affected by the archi-

tecture of the underlying wireless communication network,

we define a communication graph to model how users are

interconnected through D2D communications. In contrast to

static contact networks [8], we introduce a neighbor exchange

model that swaps the endpoints of to communication edges

after every random interval [9] to account for D2D-Msg

users’ movement. Second, we also notice that the message

dissemination is governed by the users’ willingness to accept

and spread an incoming content to its neighbor. To model

such a decision process, we view a message containing the

multimedia content as an infectious disease and leverage the

susceptible, infectious, recovered (SIR)-based epidemics [9] to

capture users’ tendency to accept and spread newer messages

and discard old ones.

After examining the underlying communication network

architecture and the decision process at each user, we take

on the problem of analyzing the robustness of message dis-



semination in D2D-Msg. Note that D2D-Msg can be viewed

as a medium for exchanging multimedia contents, so that

it is highly desirable that the contents can reach as many

users as possible. To quantify the coverage of the content-

encapsulating message over time, we measure how fast it

propagates through the D2D-Msg by employing a secondary

infection rate R∗, which is defined as the average number of

nodes that are infected by infectious nodes in the early stage

of the message dissemination but are not patient zero [10].

This metric indicates a threshold, in which the messages can

reach all the D2D-Msg users if R∗ ≥ 1, while the message

dissemination stops early if R∗ < 1. Motivated by realistic

mobile networks [11] and naturally-occurring networks [12],

[13] that exhibit binomial and power law degree distributions,

we derive the generating function of the second-generation

infections and then take its mean to calculate R∗ for both

binomial and power law graphs, under random and topology-

induced failures.

The message dissemination performance of D2D-Msg is

then validated using numerical simulations, which show that

D2D-Msg is more robust against random failure, while tar-

geted node failure is demonstrated to favor D2D-Msg with

binomial communication graph that has narrow degree distri-

bution. Further, R∗ is shown to increase with respect to the

node recovery rate β and is inversely proportional to both node

infection rate α and neighbor exchange rate ρ. Finally, R∗ is

shown to be proportional to the ratio between the number of

message-receiving nodes divided by the total number of nodes.

The rest of this paper is organized as follows. Section II

introduces the D2D-Msg’s network model and the problem

of analyzing the robustness of D2D-Msg. The secondary

infection rate of D2D-Msg is analyzed in Section III, while

its performance is evaluated in Section IV. Finally, the paper

is concluded in Section IV.

II. NETWORK MODEL AND PROBLEM FORMULATION

In this section, we introduce the D2D-Msg’s network model,

and formulate the problem of analyzing the robustness of

message dissemination using a secondary infection rate metric.

A. Network Model

Because the message dissemination in D2D-Msg is affected

by both the dynamic underlying wireless network and the

decision process at each user, we first examine the former. Let

V be the set of n = |V| users in a D2D-Msg. In this paper,

the terms ‘user’ and ‘node’ are used interchangeably. We as-

sume that D2D communication using Bluetooth, WiFi Direct,

or near-field communication (NFC) technology is employed

to enable message exchange between nearby users, and the

transmission range r is limited due to battery power constraint.

Let Ec(t) = {(u, v) : u, v ∈ V, d(u,v)(t) ≤ r} be the set of

communication edges (or contacts) at time t ∈ (0,∞), e.g.,
node pair (u, v) ∈ Ec(t) are within the transmission distance

of each other (d(u,v)(t) ≤ r) and can communicate directly at

time t. Put together, Ec(t) and the collection of users V form a

tuple Gc(t) := (V, Ec(t)) that is referred as a communication

graph, which describes the message exchange opportunity be-

tween users that can be exploited for disseminating multimedia

contents as messages in a D2D-Msg. In this paper, we assume

that Gc(t) is connected [14] for all t ∈ (0,∞).
Since the D2D-Msg users are mobile, any pair of users may

come into and out of each others’ contact during the network

lifetime. Thus, contacts are transitory events and the endpoints

of a user’s contacts change in time. To capture such hetero-

geneity and dynamism, we employ a neighbor exchange (NE)

model [15] as a simple extension of the static contact-based

communication network model. Let ei = (u, v) ∈ Ec(t) be a

communication edge. In the NE model, an endpoint of ei is

exchanged with an endpoint of another randomly-selected edge

ej = (u′, v′) ∈ Ec(t), e.g., (u, v)+(u′, v′) → (u, v′)+(u′, v),
after every random interval that is exponentially-distributed

with rate ρ/2. Since ei can also be selected by another edge

ek 6= ej , then every edge is swapped with an effective rate

of ρ, which is proportional to the inverse of average node

contact time [16]. Note that in NE, the degree of each node

is fixed although their neighbors changes over time, such that

if the likelihood that an edge occurs between every pair of

nodes exceeds certain threshold [14], Gc(t) is almost surely

connected for all t ∈ (0,∞).
After defining the communication graph Gc(t) and how its

dynamics are captured using the NE model, we examine how

messages are disseminated through the D2D-Msg. Let m be

a message containing a multimedia content and Nc(u, t) =
{v : d(u,v)(t) ≤ r} be the set of all communication neighbors

of u. Let user u carries m and decides to spread it to the

communication neighbors, Nc(u, t). The immediate questions

are, “Will a neighboring node v ∈ Nc(u, t) decide to accept the
incoming message? Further, until when will node u carry and

spread m?” To answer these questions, let us view message m
as an infectious disease such that upon being infected, user v
will try to spread the infection to its communication neighbors.

Then, we can define three states for node v: (i) susceptible

(S), in which v has not been infected by m; (ii) infectious (I),

where v is infected and actively spreads m; and (iii) recovered

(R), in which v is healed and becomes immune to m. Note

that the R state is necessary in the message dissemination

process over D2D-Msg, since in practice users will not accept

previously-accepted contents. To model how users transition

between the SIR states, we follow the SIR-type epidemics

for infectious diseases [9] and assume that an infectious node

transmits m along each of its edge at a constant infection rate

of α, causing susceptible neighbors to enter the I state, while

infected users enter the R state with a constant recovery rate of

β. Combined with Gc(t) that describes the set of next nodes

to be infected, message dissemination over the D2D-Msg can

be viewed as an SIR-based disease dynamics over the time-

varying communication graph.

An illustration of how disease dynamics over the communi-

cation graph governs message dissemination in D2D-Msg is

depicted in Fig. 1. Let user v4 be in the I state at time t = 0
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Fig. 1. Illustration of message dissemination over D2D-Msg.

and tries transmit m along its edges to users v3, v5, and v7. As

a result, these former three nodes becomes infected at t = 1
and also try to transmit m to their neighboring users. Since m
is transmitted with rate α, users v2 and v6 becomes infected at

time t = 2, but user v1 remains at the same state. Additionally,

due to the recovery rate β, v5 decides to drop the message

and enters R state. Note that the connectivity changes at this

time due to the mobile users’ movement, which is captured

by the aforementioned NE model. At the next time, t = 3,
v1 and v9 enters the I state, while v3 and v7 enters the R

state. Eventually, depending on α, β, and the NE model, the

message may or may not reach all the D2D-Msg users.

B. Problem Formulation

In a D2D-Msg, the open nature of the D2D wireless com-

munication channels leads to numerous source of impairments.

For example, an adversary may launch a randomized jamming

attack [5] to prevent legitimate D2D-Msg users to exchange

messages with their neighbor, or the D2D-Msg users simply

cannot exchange messages because the noise floor is too high,

resulting to random node failure. On the other hand, the adver-

sary may concentrate the jamming attack to important nodes

with large number of neighbors [5], resulting to node failure

that is induced by the connectivity of the communication

graph, referred as a targeted node failure. Both the random and

targeted failures will disable D2D-Msg users’ ability to spread

m and hinder the message dissemination process. Intuitively,

the extent of damage caused by these two failure types to

the message dissemination will be different, such that we

define the following model to capture such discrepancy. Let

ku(t) = |Nc(u, t)| be the communication degree of node

u ∈ V. For a D2D-Msg node with communication degree of k,
let Φs(k) be a failure survival probability, i.e., the likelihood

that the node does not fail and can still exchange messages

over the D2D-Msg. Then, we have the following definition.

Definition 1: (Random and Targeted Failures) Random node

failure is defined as the case where Φs(k) = φ with φ ∈ [0, 1]
is a positive constant, while targeted node failure is the case

where Φs(k) = ck with 0 < c < 1.
Since Φs(k) depends on k, then we define a degree distri-

bution pk = Pr{ku(t) = k} to capture the structure of Gc(t)
[17] as well as the probability that an arbitrary node will fail.

After discussing how to model the random and targeted node

failures, let us proceed by examining the message dissemina-

tion process over the D2D-Msg. As a medium of exchanging

multimedia contents between its users, it is desirable that the

messages as the content vessels can reach as many users

as possible. This is in line with the users’ desire that the

content they shared becomes popular and wide spread among

D2D-Msg users. For example, FireChat’s public nearby mode

had been used during the Hongkong protest to spread logistical

information, such as the location of available water bottles, to

maintain the survival of the protesters [4]. As the number of

message recipient increases, more users can benefit from such

information. On the other hand, message epidemics is also

desirable from a commercial point-of-view, capturing adver-

tisers’ goal of delivering advertisement contents to all users

through viral marketing [18]. Motivated by such usefulness,

we want to study the robustness of message dissemination over

D2D-Msg by quantifying the message coverage with respect

to impairments due to random and targeted node failures.

To quantify the coverage of the message dissemination, we

measure how fast a message propagates over the D2D-Msg.

This is motivated by the fact that the SIR infection dynamics

consists of both a birth and a death processes characterized

by infection rate α and recovery rate β, respectively. If the

birth rate of newly-infected users, e.g., those who accept and

spread m, is faster than the death (recovery) rate, then message

m may reach all the users. The birth-death in the D2D-Msg,

however, operates on top of a dynamic communication network

that is impaired by random and targeted failures, such that

conventional analysis based on SIR-based epidemics [19]

cannot be employed. To simplify the analysis of the birth-

death process over the dynamic connectivity problem of the

D2D-Msg, we concentrate on the early stage of the message

infection and start with the following definition.

Definition 2: (Secondary Infection Rate [10]) Secondary

infection rate R∗ is defined as the number of message trans-

missions per unit time from an infected node u ∈ V, which

is chosen proportional to ku(t), by assuming that all of the

neighboring nodes are susceptible except one that infected u.
Let patient zero be the nodes that initially spreads message

m at t = 0, e.g., {v4} in Fig. 1. Then, the secondary

infection rate R∗ is proportional to the number of nodes that

are contaminated by the nodes infected directly by the patient

zero, and represents the effective message infection rate in

the D2D-Msg. The higher R∗, the more likely that all nodes

will become infected by m quickly. In terms of message

dissemination coverage, R∗ is known to indicate an epidemic

threshold, in which m may reach all the D2D-Msg users if

R∗ ≥ 1, while the infection dies out early and m only reaches

a finite fraction of users if R∗ < 1 [10]. In view of D2D-Msg

as an information exchange medium, we want R∗ ≥ 1 such

that messages can reach all users. However, the random and

targeted failures in the D2D-Msg may prevent such condition

to occur. Motivated by this, we ask “What is the impact of

random and targeted node failures to the secondary infection
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Fig. 2. CCDF of node degree in ncsu/mobilitymodels data set [11].

rate, R∗, of a D2D-Msg?” The answer may serve as a key to

determine the success of D2D-Msg’s deployment.

III. MESSAGE DISSEMINATION ROBUSTNESS OF

OPPORTUNISTIC SOCIAL NETWORK

In this section, we start by describing a method of calculat-

ing R∗ based on the generating function of the communication

degree distribution. Then, based on realistic network traces

[11] and naturally-occurring networks [12], [13], we analyze

R∗ for D2D-Msg with binomial and power law-distributed

communication degree under random, targeted, and no failures.

A. Secondary Infection Rate Analysis

To take on our main objective of studying the impact

of random and targeted node failures toward the secondary

infection rate R∗, recall that there are three main mechanics

behind the message dissemination process over D2D-Msg: (i)

a time-varying D2D communication, which is parameterized

using both NE rate ρ and degree distribution pk; (ii) the

SIR dynamics of message infection, which is captured by the

infection rate α and recovery rate β; and (iii) node failures due

to network impairments, which is parameterized by the node

survival probability Φs(k). We employ these four parameters

to calculate R∗ as follows. Let transmissibility τ be the

likelihood of an S node to be infected by an I node through

a communication edge and let g(x) =
∑n−1

k=0 pkxk be the

communication degree distribution’s generating function.

Theorem 1: The secondary infection rate of a D2D-Msg is

R∗ = τ

(

ρ

β
+

β + ρ

β

g̃′′(1)

g′(1)

)

, (1)

where τ = α
α+β+ρ

and g̃(x) =
∑n−1

k=0 Φs(k)pkxk .

Proof: Note that the passage of SIR-based infection

over dynamic contact networks has been studied in [10].

Different to such existing study, each D2D-Msg node con-

sidered in this paper fails with survival probability Φs(k).
Thus, to derive (1), we borrow the existing result in [10]

and incorporate Φs(k) into the formulation of R∗. To do

this, we employ the excess degree distribution qk = kpk

E[K] ,

which is the degree distribution of a node with degree k
selected with probability proportional to k but discounting

one of its edges, and multiply it with Φs(k). Let second

generation infected (SGI) be the nodes that are infected by

the message from patient zero. Then, the average number of

potential transmissions by the SGI [10, eq. (3.9)] is generated

by H̃1(x) = β
β−ρ(x−1) +

∑

k
Φs(k)qkxk−1β

β−ρ(x−1)(k−1) . The distribution

of actual transmission by the SGI is approximately generated

by H1(x) = H̃1(1− τ + τx) where τ = r
r+β+ρ

[9, Eq. (3.4)],

and the mean of the distribution is equal to R∗. Let us define

g̃(x) =
∑n

k=0 Φs(k)pkxk. Then, we can formulate

H̃ ′

1(1) =

[

βρ

(β − ρ(x − 1))2
+ β

∑

k

(

(k − 1)Φs(k)qkxk−2

×
β

β − ρ(x − 1)(k − 1)
+

Φs(k)qkxk−1(k − 1)βρ

(β − ρ(x − 1)(k − 1))2

)]

x=1

,

=
ρ

β
+

β + ρ

β

g̃′′(1)

g′(1)
, (2)

with the secondary infection rate is calculated as R∗ =
d
dx

H̃1(1 − τ + τx)|x=1 = τH̃ ′

1(1).

B. Secondary Infection Rate of Binomial Graph

From the derivation of the secondary infection rate in

Thm. 1, we notice that (1) is a function of the degree

distribution pk. In order to perform an accurate secondary

infection rate analysis we ask, “what is the degree distribution

of realistic communication graph?” To answer this, we employ

the ncsu/mobilitymodels traces [11], set the transmis-

sion range to r = 50m, and take the snapshot of Gc(t) at every
∆t = 1s time interval. The result for campus and theme park

environments in Figs. 2(a) and 2(b), respectively, indicate that

the communication degree distribution can well be modeled

using a binomial distribution pbin
k =

(

n−1
k

)

pk(1 − p)n−k−1,

which is verified by the low mean-squared error (MSE) values.

Note that although not shown here due to space limit, similar

observation holds for various other combinations of r and ∆t.
After showing that the degree distribution of the communi-

cation graph based on realistic D2D wireless network follows

a binomial distribution, we are ready to analyze the secondary

infection rate of a D2D-Msg. Let us denote R∗

nf , R∗

rf , and

R∗

tf as the secondary infection rates of D2D-Msg under no

failure (NF), random failure (RF), and targeted failure (TF)

models, respectively. Here, the NF model is included as a

baseline for RF and TF. To maintain fairness, the average node

survival probabilities of TF and RF models are set equal, e.g.,

φ =
∑n−1

k=0 pkck = g(c). We have the following corollary.

Corollary 1: The secondary infection rates of D2D-Msg

with binomial-distributed communication degree are given as

R∗

nf =
τρ

β
+

β + ρ

β
τλ, (3)

R∗

rf =
τρ

β
+

β + ρ

β
τλeλ(c−1), (4)

R∗

tf =
τρ

β
+

β + ρ

β
τλc2eλ(c−1). (5)

Proof: We assume that n is large, p is small, and ap-

proximate the degree into a Poisson distribution pk ≈ λke−λ

k!



with λ = np. For the case of no node failure, we have

g̃(x) = g(x) = eλ(x−1), such that g′(1) = λ and g̃′′(1) = λ2

can be used to obtain (3). For random failure, g̃(x) = φeλ(x−1)

and the normalization φ = g(c) can be used to get (4). Simi-

larly, (5) is obtained by employing g̃(x) =
∑

k
(cx)kλke−λ

k! =
eλ(cx−1) for the targeted failure model.

Because 0 < c < 1, we know that R∗

tf < R∗

rf < R∗

nf . Since

R∗ indicates how fast the message coverage increases, then the

NF case exhibits the best message dissemination performance,

followed by the RF case. The TF case in (5) shows the lowest

secondary infection rate, such that the threshold R∗ = 1 may

not be achieved in some cases, resulting in the message to

reach only a finite fraction of the D2D-Msg users.

Remark 1: Note that infection epidemic size has been shown

to be proportional to R∗ [9], such that the messages in TF and

NF will respectively reach the least and most number of users.

This indicates the results for D2D-Msg in (3)-(5) differs from

the existing study [8] that shows both targeted and random

immunizations, which are the counterparts of node failures in

D2D-Msg, yield the same epidemic size for static networks

with Poisson-distributed contact degree.

C. Secondary Infection Rate of Power Law Graph

In the previous subsection, we have derived the secondary

infection rate for binomial-distributed communication graph.

In real-life, however, many contact networks, such as user

friendships in social networking services [12] and autonomous

system (AS)-level connectivity [13], have been shown to

exhibit a power law degree distribution. Note that the binomial

distribution in Fig. 2 can be approximated into a Poisson dis-

tribution, which belongs to the family of exponentially-tailed

distributions. Moreover, the exponential-tailed and power law

distributions of inter-meeting time is shown to be tightly-

related, separated only by whether the network area is bounded

[20]. To this end, motivated by the wide prevalence of power

law graphs and its close relationship with binomial distri-

butions, we also examine the secondary infection rate for

D2D-Msg with power law-distributed communication graph

as follows. Let ppower
k = k−s/

∑n−1
k=0 k−s be a power law-

distributed communication degree with a power law exponent

s > 2. Again, we normalize φ = g(c) to maintain fairness.

Then, we have the following corollary.

Corollary 2: The secondary infection rates of D2D-Msg

with power law-distributed communication degree are

R∗

nf =
τρ

β
+ τ

β + ρ

β
×

∑

k(k2−s − k1−s)
∑

k k1−s
, (6)

R∗

rf =
τρ

β
+ τ

β + ρ

β
×

∑

k ckk−s

∑

k k−s
×

∑

k(k2−s − k1−s)
∑

k k1−s
,(7)

R∗

tf =
τρ

β
+ τ

β + ρ

β
×

∑

k ck(k2−s − k1−s)

c2
∑

k k1−s
. (8)

Proof: For no node failure, we have g̃(x) = g(x) =
∑

k xkk−s/
∑

k k−s, such that g′(1) =
∑

k k1−s/
∑

k k−s and

g̃′′(1) =
∑

k(k2−s−k1−s)/
∑

k k−s can be used to obtain (6).

For the case of random node failure, g̃(x) = φg(x) such that

g̃′′(1) = φ
∑

k(k2−s − k1−s)/
∑

k k−s and the normalization

φ = g(c) can be used to get (7). Similarly, (8) can be obtained

by employing g̃(x) =
∑

k ckxkk−s/
∑

k k−s = g(cx) and

g̃′′(1) = c2g′′(c) for the targeted failure model.

The corresponding secondary infection rates in (6)-(8) will

be analyzed numerically in the next section.

IV. NUMERICAL SIMULATIONS

Recall that our main objective is to analyze how robust

message dissemination over D2D-Msg is with respect to

random and targeted failures in the underlying communica-

tion layer. To do so, we consider binomial and power law

communication graphs and then compare their secondary in-

fection rate and epidemic size of message dissemination using

numerical simulations. To ensure fair comparison, the mean

degree of both communication graphs are set to be equal, e.g.

λ =
∑n−1

k=0 k1−s/
∑n−1

k=0 k−s. We write our own source codes

in python and C++ to get the results in Sections IV-A and

IV-B, respectively. Unless specified otherwise, the simulation

parameters are (α; β; c; s; ρ) = (0.2; 0.1; 0.8; 2.1; 0.05).

A. Secondary Infection Rate

To study the robustness of message dissemination over

D2D-Msg, we first examine the secondary infection rate with

respect to the SIR dynamics. According to (1), R∗ is a

linear function of the the transmission probability τ , which is

increasing against infection rate α. Higher α means a node will

spread m more often. Thus, R∗ should increase with respect to

α for both power law and binomial-distributed communication

graphs, which is verified in Fig. 3(a). On the other hand, we

can see that R∗ decreases with respect to the node recovery

rate β from Fig. 3(b). As β increases, the time interval in which

a node can infect other node(s) is smaller, thus reducing the

effective number of secondary-infected nodes.

Next, we examine the impact of survival probability coeffi-

cient c to R∗ in Fig. 3(c), in which R∗ is shown to increase

with respect to c. Higher c means the total number of failed

nodes is lower, such that more nodes can receive message

m during the secondary infection. Note that R∗

rf and R∗

tf

approaches R∗

nf as c ↑ 1.
The impact of edge swapping rate ρ to R∗, on the other

hand, is studied through Fig. 3(d). When the edge is swapped

using the NE model more often, it will effectively be connected

to more nodes during a fixed time interval, which implies that

the number of opportunities to infect another susceptible node

is also higher. Thus, R∗ will increase with respect to ρ.
Finally, by comparing the results from different Gc(t)

types in Fig. 3, we observe that the power law-distributed

communication graph generally exhibit higher R∗

nf than that

with binomial graph. This is because in the heavy-tailed power

law communication graph, the population of nodes with high

concurrent degree is higher than in binomial-distributed graph

and the message can spread faster once it arrives at these nodes.

The message dissemination heavily depends on these high-k
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Fig. 3. Secondary infection rate of D2D-Msg.
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Fig. 4. Epidemic size of D2D-Msg.

nodes such that the power law communication graph will have

an R∗ that is lower than binomial graph under targeted failure.

The opposite holds for random failure model.

B. Epidemic Size of Message Dissemination

Finally, to study the impact of RF, TF, and NF towards the

number of users reached by m, we examine the epidemic size

of message dissemination in Fig. 4. The figure shows that m
can reach all the connected nodes under NF, albeit power law

graph has higher R∗, such that the epidemic size grows faster.

The final epidemic sizes of both graphs under no failure model

are slightly different due to the configuration model [21] used

to generate the graphs, in which the binomial pk produces

slightly less connected components. Note that g(c) for both

graphs are different such that the corresponding number of

active nodes, Nφ = Ng(c), are distinct. The less the number

of active nodes, the more disconnected the network is. Hence,

the ratio between the final epidemic size to the number of

active users is proportional to both R∗ and the number of

active nodes, according to Fig. 3. For the binomial graph with

targeted failure, the final size is very low since R∗

tf = 1.156,
very close to 1, the epidemic threshold. For the power law

graph with TF, the epidemic size is zero since R∗

tf < 1.

V. CONCLUSIONS

We studied a D2D-based messaging service (D2D-Msg)

in which the dynamic underlying D2D network is captured

using network exchange model and the users’ decision to

accept and re-share incoming messages is characterized by

susceptible-infected-recovered (SIR) epidemics. To model the

impact of random and targeted node failures, we propose a

secondary infection metric R∗ and analyze it for D2D-Msg

with binomial and power law-distributed communication de-

gree. Numerical results show that (i) D2D-Msg is more robust

against random failure; (ii) targeted failure favors D2D-Msg

with binomial communication graph that has narrow degree

distribution; and (iii) R∗ increases with the ratio between

the number of message-receiving users to all users. In our

future works, we will examine realistic power law-distributed

communication graphs to investigate its analytical R∗, and

derive its relationship to the epidemic size over time.
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