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Abstract—Device-to-device (D2D)-based social networking
service (SNS) is an emerging information system that enables
users with social ties to exchange multimedia contents through
multihop short-range wireless links. In the D2D-based SNS, a
random initial node failure may lead to a cascade of failures,
which is a series of events in which users become isolated from
others over subsequent time instances. Different from previous
studies that analyze whether network-wide connectivity can be
preserved after a cascade of failures, our study sheds light on
the D2D-based SNS’s resilience from the perspective of end-
user connection experience. In this paper, we first introduce a
numerical method for calculating the mean fraction of nodes that
are not affected by the cascading failures and the amount of time
to reach the end of such sequence of failures. Then, we apply a
probabilistic approach to derive the lower and upper bounds of
a node resilience metric, which is the likelihood that an end-user
will not be isolated during an ongoing social networking session.
Our analysis and numerical simulations indicate that, compared
to exponentially-distributed session times, user session times
with Pareto (heavy-tailed) distribution results in poorer node
resilience, which quickly deteriorates when the mean session
time is high.

I. INTRODUCTION

The massively-increasing popularity of social networking
services (SNSs), such as Twitter and Facebook, and the recent
advancements in device-to-device (D2D) communications for
smartphones and tablets, made popular by the introduction
of Apple iOS’s Multipeer Connectivity Framework [1], have
opened the new paradigm of providing SNS through D2D
communications, referred here as D2D-based SNS. In October
2014 alone, about half million of smartphone users has been
exchanging social messages through Bluetooth peer-to-peer
and WiFi Direct using FireChat mobile app [2]. The sheer
attention garnered by such a new paradigm is mainly due to
its ability to alleviate traffic burden from the highly-congested
cellular networks and to facilitate content exchange free from
government censorship [2].

Despite the potentials, little has been known regarding the
D2D-based SNS’s resilience against numerous impairments.
In the literature, a classical problem in the line of network
resilience research is to study the network’s connectivity
under random failures [3], [4] and node misbehaviors [5],
[6]. To this end, many existing works consider the D2D
network only, neglecting the social interconnectivity between
users, and investigate the occurrences of node isolations under

random node and link failures. For example, the link resilience
of ad-hoc networks with respect to random node failures
has been analyzed as a fault tolerance measure [3]. The
problem of node isolation due to misbehaving nodes, on the
other hand, was studied in [5], from which the connectivity
of the entire network is calculated using the probability of
individual node’s isolation [6]. The examined D2D-based
SNS, however, is different than these conventional ad-hoc
networks in that it consists of two coexisting SNS and D2D
networks, as depicted in Fig. 1, which are interconnected
through interdependence relationship (i.e., the vertical links).
Although percolation theory has been employed to analyze
the spatial and temporal properties of such interdependent
networks [7], little has been known regarding the D2D-
based MSN’s ability to provide networking service from the
perspective of end-user.

Fig. 1. D2D-based SNS architecture: social and communication graphs.

This work is motivated by considering the intrinsic prop-
erties of end-users (or nodes) in D2D-based SNSs. In these
networks, failures that isolate a set of nodes from the rest
occur initially at time t = 0 due to various reasons, such as
severe co-channel interference or social malware attacks, and
result in a cascade of failures, i.e., a sequence of additional
nodes in isolation at time t ≥ 1. Meanwhile, end-users may
require a non-negative session time, i.e., the time until they
respectively finish social content exchange through the D2D-
based SNS. Thus, each end-user can be more interested in
whether he/she will be isolated, either due to the initial node
failure or the cascading failures, during his/her session time.
In other words, after an end-user started its SNS session, as
long as the user can enjoy a stable connection during his/her
session, the networking service provided by the D2D-based
SNS is said to be resilient to this node. Therefore, we are



interested to investigate: “What is the expected time before
a node is isolated? What is the resilience of the D2D-based
SNS in terms of end-users’ satisfaction toward their social
content exchange experience?”

To answer the questions above, we start our analysis by
treating the D2D-based SNS as an interdependent commu-
nication and social networks. Next, we introduce a mean
fraction of functional nodes s∞ that is proportional to the
number of functional nodes at the end of the cascade of
failures and a maximum isolation time TImax that provides
a temporal upper bound until a node becomes isolated, and
then apply percolation theory to calculate their values. Fur-
thermore, we define a node resilience metric Ψn that measures
the likelihood that an end-user can finish his/her ongoing
SNS session before being isolated, and propose a probabilistic
approach for calculating the upper and lower bounds of Ψn.
Numerical results show that the derived bounds are valid and
the D2D-based SNS with exponentially-distributed session
times is more resilient to random failures than that with pareto
(heavy-tailed)-distributed session times.

The rest of this paper is organized as follows. Section II in-
troduces the D2D-based SNS network model and the spatial-
temporal metrics of cascading failures. Section III proposes
an end user-based resilience metric and its bounds, which is
validated through computer simulations in Section IV. Finally,
Section V concludes this paper.

II. NETWORK MODEL AND CASCADING FAILURES

In this section, we outline the D2D-based SNS model, the
formation of the cascade of failures in such network, as well
as the spatial and temporal impacts of such cascading failures.

A. D2D-Based Social Networking Service

We consider a D2D-based SNS containing users that are
interconnected through short-range D2D wireless links such
as Bluetooth peer-to-peer, WiFi Direct, or NFC. Let V be the
set of users (or nodes), and Ec ⊆ V×V be a set of communi-
cation edges with e(u, v) ∈ Ec ⇔ ∀u, v ∈ V , ||Xu−Xv|| ≤ r,
where ||Xu − Xv|| is the Euclidean distance between nodes
u and v, while r is the wireless transmission distance. Then,
communication graph is defined as the tuple Gc := (V , Ec).
In this paper, we assume Gc is connected1

Additionally, there exists an SNS that operates over the
communication graph and enables people with common in-
terest to meet virtually and exchange multimedia contents
wirelessly. Let Es ⊆ V × V be a set of social edges between
users. An edge exists between users u ∈ V and v ∈ V , i.e.,
e(u, v) ∈ Es, if they both have social ties, which are similar
to followee/follower relations in Twitter and friendships in
Facebook. Then, social graph is defined as Gs := (V , Es).
We assume that Gs is connected1 as well.

The structure of a D2D-based SNS is depicted in Fig. 1,
in which users u1 and u2 are socially-connected (i.e.,
e(u1, u2) ∈ Es) and the former may want to send social
contents to the latter. To facilitate this exchange, multi-hop

1Graph G = (V , E) is connected if there is a u,v-path for ∀u, v ∈ V [8].

communication [9] is enabled such that the contents are sent
as packets that physically traverse through nodes (u1, u3, u2)
as the shortest path. As a result, social contents can be
delivered from one node to another when they (i) have social
relation, and (ii) are connected through D2D path(s).

B. Cascading Failures in D2D-based SNS

Users may experience many types of impairments that
lead to failure, which is defined as a user’s inability to
exchange social contents through the D2D-based SNS. For
example, users may be impaired by co-channel interference
from nearby Bluetooth and WiFi devices, or they can be
infected by malware that is disguised as legitimate social
content. These severe impairments, which can prevent the
users from exchanging contents, are modeled as follows. Let
N = |V| be the number of nodes in the D2D-based SNS and
let t ∈ N0 be a discrete time step, where N0 is the set of
non-negative integers. Let If ⊆ V be the set of nodes that

experience failure at an initial time t = 0 and let pf :=
|If |
N

be the initial fraction of failed nodes. We assume that a node
u ∈ V experiences failure initially (i.e., u ∈ If ) according to
a uniform distribution with probability pf ∈ (0, 1). If u fails,
then it becomes isolated, i.e., all communication and social
edges incident2 to u are removed from Gc and Gs, respectively.

Unlike in conventional ad-hoc and mesh-based wireless
networking [10], the impact of the initial failure in D2D-
based SNSs will be exacerbated by dependencies between the
communication and social graphs outlined as follows.

1) Social-to-communication dependence: Since social con-
tents are delivered through D2D links, then a node
will lose its social capability, i.e., have its social edges
removed, when it cannot find any communication edge
to its neighbor(s).

2) Communication-to-social dependence: The users partic-
ipate in the D2D communications by relaying transitory
packets in exchange for the ability to send/receive social
contents to/from their social neighbors. When a user
cannot find any of its social neighbors, e.g., does not
have any social edge, then it will disconnect itself from
the D2D communication network.

We present the following example to explain how these two-
way dependencies, also known as an interdependence relation
[7], [11], [12], and the initial node failure at t = 0 may lead
to a series of additional isolated nodes over subsequent time
steps t ≥ 1, which is referred as a cascade of failures.

In Fig. 2(a), we consider the D2D-based SNS structure
in Fig. 1 in which node u3 experiences failure initially and
its incident communication and social edges are removed. Let
Rc(t) ⊆ V and Rs(t) ⊆ V be the sets of residual nodes in
Gc and Gs, respectively, at time t ≥ 1. Denote Fc(t) ⊆ Rc(t)
and Fs(t) ⊆ Rs(t) as the sets of residual nodes that belongs
to the largest connected component of Gc and Gs, respectively.
The following events occur.

2The communication and social edges incident to u ∈ V are defined as
the sets {e(u, v) ∈ Ec, ∀v ∈ V} and {e(u, v) ∈ Es, ∀v ∈ V}, respectively.
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Fig. 2. Illustration of cascading failures in D2D-based SNS.

1) Firstly, the set of residual node is Rc(1) =
{u1, u2, u4, u5, u6} due to the initial failure of node
u3. Then, two connected components occur in Gc and
nodes {u1, u4}, which do not belong to the largest
connected component of Gc and cannot communicate
with the remaining majority of the users, have their
incident communication edges removed in Fig. 2(b). As
a result, the set of functional residual nodes becomes
Fc(1) = {u2, u5, u6}.

2) Secondly, due to the social-to-communication depen-
dence, nodes {u1, u4} also loses their social capability,
i.e., have their incident social edges removed, such that
Rs(1) = Fc(1) = {u2, u5, u6}. As a result, node
u2 becomes isolated from the largest component of
Gs in Fig. 2(c) and Fs(1) = {u5, u6}. Note that the
sequence of communication and social disconnections in
Figs. 2(b)-2(c) are both considered as one step of the
cascade of failure at time t = 1.

3) Thirdly, Rc(2) = Fs(1) = {u5, u6} because node u2

is also disconnected from Gc, which results in Fc(2) =
{u6}, i.e., a totally-disconnected Gc in Fig. 2(d).

4) Finally, we have Fs(2) = {u6}, i.e., Gs will also become
totally disconnected after two steps of cascading failures.

Note how an initial failure on only node u3 leads to a cascade
of failures that totally disconnect the D2D-based SNS. Such
a rampant cascading failures potentially hinders the quality-
of-service rendered by the D2D-based SNS to its users.

C. Spatial Coverage of Cascading Failures

To better understand how the quality of service is impacted
by an initial failure in D2D-based SNS, we study the coverage
of the cascade of failures as follows. More specifically, we
are interested in how many users that are not isolated at the

end of a cascade of failures. Denote s(t) := E[ |Fs(t)|
N ] and

s′(t) := E[ |Rc(t)|
N ] as the mean fractions of functional and

residual nodes in Gs at time t ∈ N0. We assume that Fs(0) =

If such that s(0) = (1− pf ). Let gc(c
′(t)) := E[ |Fc(t)|

|Rc(t)|
] and

let gs(s
′(t)) := E[ |Fs(t)|

|Rs(t)| ] be the mean fractions of the giant

connected component in Rc(t) and Rs(t), respectively, at the
subsequent time steps t ≥ 1.

Proposition 1: The mean fraction of functional nodes
at the end of the cascading failures is given as s∞ =
limt→∞ s′(t)gs(s

′(t)), where s′(t) satisfies [7, Section C]
{

s′(t) = (1 − pf )gc(c
′(t)),

c′(t) = (1 − pf )gs(s
′(t − 1)).

(1)

To proceed, let dc(u) := |{v : e(u, v) ∈ Ec}| and
ds(u) := |{v : e(u, v) ∈ Es}| be the communication
and social degrees of node u ∈ V , respectively. Denote
pc(k) := Pr{dc(u) = k} and ps(k) := Pr{ds(u) = k}
as the communication and social degree distributions of a
randomly-chosen node u, where k ∈ {0, 1, . . . , N−1}. Then,
we have the following proposition.

Proposition 2: Let p ∈ [0, 1]. The mean fractions of the
giant connected component are given as [7]

gc(p) = 1 − Gc,0(1 − p(1 − fc)), (2)

gs(p) = 1 − Gs,0(1 − p(1 − fs)), (3)

where Gc,0(x) :=
∑∞

k=0 pc(k)xk, Gc,1(x) := G′
c,0(x)/

G′
c,0(1), G′

c,0(k) := d
dxGc,0(x), and fc ∈ [0, 1] satisfies

fc = Gc,1(1 − (1 − ρ0)(1 − fc)). Similar variables are also
defined for Gs by replacing c with another symbol s.

From a different perspective, the mean fraction of func-
tional nodes s∞ is equal to the likelihood that a node will not
be isolated at the end of a series of cascading failures. Given
Propositions 1 and 2 as well as the degree distributions of Gc

and Gs, we can calculate s∞ by setting s′(t) = s′(t−1) = s′,
plugging (2)-(3) into (1), solving (1) numerically (e.g., using
bisection method [13]), and employ s∞ = s′gs(s

′).

D. Temporal Impact of Cascading Failures

From users’ point-of-view, quality of service can also be
determined by how long until the D2D-based SNS cannot
provide social content exchange functionality. This is particu-
larly important when the probability that a node will survive
the cascading failures, s∞, is fairly low so that the node will
eventually be isolated with high probability. To quantify such
a temporal quality of service, we define as follows.

Definition 1: Isolation time of node u ∈ V is the smallest
time step in which node u ∈ V becomes isolated from the
D2D-based SNS, which is defined as

TIu := inf{t ≥ 1 : u ∈ Fs(t − 1)}. (4)

We say that a node is affected if it has become isolated at
the the end of the cascading failures. We assume that TIu =
∞ if node u is not affected by the cascading failures. Note that
the closed-form analysis of TIu for all u ∈ V is hard. Thus,
we focus on the affected nodes and examine the temporal
upper bound of their disconnection time, instead.



Definition 2: Maximum isolation time is the largest time
steps until an affected node becomes isolated by the cascading
failures, defined as

TImax := sup
{

TIu : u ∈ lim
t→∞

Fs(t)
}

. (5)

In other words, the maximum isolation time TImax quan-
tifies the smallest time step until no more node (equiva-
lently, less than one user) becomes isolated by the cascad-
ing failures, and can be re-defined as TImax := inf{t ≥
1

∣

∣s(t) − s(t − 1) < 1
N , t ∈ N0 }. Based on this definition,

TImax can be computed by setting c′(1) = s(0) = 1 − pf ,
calculating s(t) = s′(t)gs(s

′(t)) from (1), and finding the
smallest t such that s(t) − s(t − 1) < 1

N is satisfied.

Next, we discuss how to relate the discrete time steps
to real time units (i.e., in seconds). Denote Tc ∈ (0,∞) as
the time until additional nodes are isolated from Gc, when
the cascading failures have not yet ended. For example, Tc

is equal to (hello_interval*allowed_hello_loss)
milliseconds if AODV routing [9] is employed. We assume
that users have immediate knowledge regarding their com-
munication negihbors, such that node isolation due to social-
to-communication dependence happens instantaneously. As a
result, one time step in TIu and TImax is equal to Tc.

III. RESILIENCE OF D2D-BASED SNS

In this section, we define a node resilience metric in D2D-
based SNS and study its lower and upper bounds.

A. Resilience From End-User Perspective

We examine how D2D-based SNS can support ongoing
social networking session under initial node failure. Let
STu ∈ (0,∞) be the session time of node u ∈ V , i.e., the
amount of time in which node u utilizes the SNS to exchange
social contents. The session time STu is normalized to the
length of one time step, Tc, and can either be exponentially-
or heavy-tailed (such as Pareto)-distributed [14]. The metric
STu is also known as the nodes’ lifetime [6]. We assume that
a node will not start an SNS session if it has detected any node
failure in the network. Moreover, we consider the worst-case
session time requirement by assuming that all the considered
sessions start at t = 0, i.e., right when initial node failure
occurs. Then, we are interested in: “What is the likelihood that
a D2D-based SNS sustains its users from potential isolation
during their session times?” The network-wide perspective of
this probability has been referred as the network resilience,
which is denoted by Ψ in [6]. Instead, we take an end-user
view of resilience and define it as follows.

Definition 3: Node resilience is the likelihood that a
randomly-chosen node u ∈ V does not become isolated during
its lifetime, defined as

Ψn := Pr{STu < TIu}. (6)

The node resilience Ψn quantifies the D2D-based SNS’s
ability to support ongoing social networking session, and pro-
vides an end-user perspective of quality-of-service measure.

B. Upper and Lower Bounds of Resilience

Next, we discuss how the the mean fraction of functional
nodes s∞ and the maximum isolation time TImax, obtained
by following the procedures outlined in Sections II-C and
II-D, can be utilized to calculate the lower and upper bounds
of the node resilience Ψn. First, we examine the case of
exponentially-distributed session times as follows.

Theorem 1: For exponentially-distributed node session
times with the probability density function (PDF) of
Pr{STu = x} = λe−λx and mean 1

λ > 0, the node resilience
is lower- and upper-bounded by

s∞+(1−pf−s∞)(1−e−λ) ≤ Ψn ≤ (pf+s∞)e−λTImax−pf .
(7)

Proof: Let Cf := limt→∞ Fs(t) \ If be the set of nodes
that becomes isolated at time t ≥ 1. Then, we have

Pr{STu > TIu} = Pr{STu > TIu|u ∈ If}Pr{u ∈ If}

+ Pr{STu > TIu|u ∈ Cf}Pr{u ∈ Cf}

+ Pr{STu > TIu|u /∈ Cf ∪ If}Pr{u /∈ Cf ∪ If}.(8)

When node u is not affected by the cascade of failures (i.e.,
u /∈ If ∪Cf ), then the session time STu is always lower than
isolation time TIu, which equals ∞ by definition, such that
the last summation term becomes zero. As a result, (8) can
be re-stated as

Pr{STu > TIu|u ∈ If}Pr{u ∈ If}

+ Pr{STu > TIu|u ∈ Cf}Pr{u ∈ Cf} (9)

≥ pf + (1 − pf − s∞)Pr{STu > TImax}, (10)

where (10) holds because TIu = 0 when node u belongs
to the set of initially-failed nodes (i.e., u ∈ If ) such that
Pr{STu > TIu|u ∈ If} = 1, and Pr{STu > TIu|u ∈
Cf} ≤ Pr{STu > TImax} because the node dropouts due
to cascading failures always happen before the maximum
isolation time TImax. By using Ψn = 1 − Pr(STu > TIu)
and plugging in the complementary cumulative distribution
function (CCDF) of exponentially-distributed STu, we obtain
the upper bound.

To derive the lower bound, we re-state the node resilience
as follows.

Ψn = Pr{STu < TIu}

= Pr{STu < TIu|u ∈ If}Pr{u ∈ If}

+Pr{STu < TIu|u ∈ Cf}Pr{u ∈ Cf} (11)

+Pr{STu < TIu|u /∈ Cf ∪ If}Pr{u /∈ Cf ∪ If}.

When u ∈ If , the isolation time is always equal to TImax =
0 by definition, such that the first summation term disappears
and the node resilience Ψn can be re-stated as

Pr{STu < TIu|u ∈ Cf}Pr{u ∈ Cf}

+ Pr{STu < TIu|u /∈ Cf ∪ If}Pr{u /∈ Cf ∪ If} (12)

≥ s∞ + (1 − s∞ − pf )Pr{STu < 1}, (13)

where (13) applies because Pr{STu < TIu|u ∈ Cf} ≤
Pr{STu < 1}, i.e., the node dropouts due to cascading
failures always happen at t ≥ 1.
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Fig. 3. Degree distribution of sigcomm2009 trace [15] at t = 1, 500 min.
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Next, by following the same steps and employing the ccdf
of the heavy-tailed Pareto distribution [14], we can obtain the
following corollary.

Corollary 1: For Pareto-distributed STu with PDF

Pr{STu = x} =
αxα

m

xα+1 , shape parameter α > 0, and scale
xm > 0, the node resilience is bounded by

s∞ + (1 − pf + s∞)(1 − xα
m) ≤

Ψn ≤ (pf + s∞)(xm/T Imax)α − pf . (14)

Remark 1: The results in Theorem 1 and Corollary 1 can
be easily extended to the more general cases by substituting
1 − Pr{STu < 1} and Pr{STu > TImax} with the CCDFs
of the session time STu under examination.

IV. NUMERICAL RESULTS

In this section, the analyses in Theorem 1 and Corollary 1
are validated through numerical simulations in python. First
of all, we determine the structure of Gc and Gs by employing
the Bluetooth sighting traces and Facebook friendship be-
tween 76 mobile phone users during the SIGCOMM 2009
conference [15]. We assume that a communication edge
occurs between two nodes if they come into contact with
each other at least once during the previous hour. From
the resulting degree distributions and the curve fittings in
Figs. 3(a) and 3(b), we observe that (i) the degrees are
Binomially-distributed, and (ii) the communication degree
〈k〉c is smaller than the social degree 〈k〉s.

Based on the trace analysis above, two Erdös-Rényi
graphs, which has Binomially-distributed degrees, are gen-
erated for Gc and Gs, respectively. To ensure that 〈k〉c < 〈k〉s
and the graphs Gc and Gs are respectively connected, we set
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Fig. 5. Node resilience Ψn for different session time distributions.

〈k〉c = 8, 〈k〉s = 10, and the number of nodes to N = 103.
For every plot, we generate 100 unique combinations of Gc

and Gs, in which 10 different initial set of failed nodes If are
drawn for every network realization. The maximum isolation
time TImax versus the fraction of initial non-isolated nodes
(1 − pf ) is depicted in Fig. 4. We observe the followings.
Firstly, TImax increases with respect to (1 − pf ) up to a
critical fraction [7] of pc = (1 − pc

f ) ≈ 0.25 and decreases
exponentially above this point. It is known that the mean
fraction of functional nodes is s∞ ≈ 0 below this critical
point [7], such that for a cascade of failures to happen near
pc, all the residual nodes Rc(0) needs to be removed, which
requires a large number of steps. Secondly, TImax increases
with respect to the number of nodes N , since the required
gap s(t) − s(t − 1) for calculating TImax is proportional to
1
N (see Section II-D for more details).

Next, we validate the bounds of the node resilience Ψn in
Theorem 1 and Corollary 1. We set the average session time
to E[STu] = 2 time steps and re-use the same parameters
as in the simulation of Fig. 4 to obtain the exact Ψn. For
exponentially-distributed session times, we set λ = 1/E[STu].
On the other hand, we fix α = 2 to ensure that the mean is
finite and assign xm = α−1

α E[STu] = 1 to get the desired
mean of E[STu] = 2 for Pareto-distributed session times.
Due to the Binomial-distributed communication and social
degree distributions, we employ the generating functions of
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Fig. 6. Node resilience for various mean session times E[STu]’s.

Gc,0(x) = e〈k〉c(x−1) and Gs,0(x) = e〈k〉s(x−1) for calculat-
ing (2) and (3). Then, the mean fraction of functional nodes
s∞ and the maximum isolation time TImax are calculated
using the methods outlined in Sections II-C and II-D, which
are then substituted into Theorem 1 and Corollary 1 to get the
lower and upper bounds of Ψn. From the plots in Figs. 5(a)
and 5(b), we observe that the bounds in (7) and (14) are valid
and becomes tighter as the fraction of initial non-isolated
nodes (1 − pf ) increases. Although the TImax in Fig. 4
exhibits a double-scaling, i.e., TImax increases when (1−pf)
is small and decreases against (1−pf ), otherwise, we observe
that the bounds of the node resilience Ψn in Theorem 1
and Corollary 1 are dominated by the mean fraction of
functional nodes at the end of the cascading failures s∞,
which is monotonically-increasing with respect to (1 − pf )
[7, Fig. 3(a)]. Thus, Ψn becomes an increasing function of
(1− pf ). Moreover, some users have very long session times
when STu follows Pareto (heavy-tailed) distribution such that
we observe the Ψn in Fig. 5(b) is lower than that when STu

is exponentially-distributed in Fig. 5(a).

Finally, we examine the impact of various mean session
time E[STu] to the resilience of the D2D-based SNS. We
employ exponentially-distributed session times in Fig. 6(a).
Since (1 − pf ) > s∞ > 0, the lower and upper bounds in

(7) is proportional to Ψn ∼ 1 − e−λ. Thus, λ = 1/E[STu]
becomes smaller and the node resilience Ψn will also become
smaller when E[STu] increases. The case of Pareto-distributed
session times, on the other hand, is examined in Fig. 5(b).
In this case, the bounds in Corollary 1 is proportional to
1 − xα

m. Since we fix α to 2 throughout the simulations and
set xm = α−1

α E[STu], then, the session time Ψn is inversely-
proportional to the mean session time E[STu]. Note that,
with respect to the mean session time, 1− xα

m|xm= α−1

α
E[STu]

decreases slower than 1 − e−λ|λ=1/E[STu], such that the

resilience of D2D-based SNS with Pareto-distributed STu in
Fig. 6(b) is lower than that with exponential STu in Fig. 6(a)
for large mean session time E[STu].

V. CONCLUSION

In this paper, we analyzed the resilience of D2D-based
SNS against cascade of failures induced by random initial
node failures, from an end-user perspective. We outlined
methods for calculating the mean fraction of surviving nodes
and the maximum isolation time, which quantify the number
of nodes not affected by the cascade of failures and the time
until the end of such sequence of failures, respectively. By
using these metrics, we derive the lower and upper bounds
of resilience for exponentially- and Pareto (heavy-tailed)-
distributed social networking session times. The numerical
and analytical results indicate that D2D-based SNS with
Pareto-distributed session times has lower resilience and thus
provide poor quality-of-service, compared to that with expo-
nential session times.
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