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Abstract—Along with the explosive growth of mobile social
network (MSN) users and the advent of device-to-device (D2D)
communications, D2D-based MSN (D2D-MSN) has become a
promising alternative for exchanging multimedia contents on-the-
go. Although the complete structure of a D2D-MSN plays a key
role in understanding its performance, such knowledge is not
readily available due to the difficulty of collecting connectivity
information from the vast amount of users. To model the
structure, we define a D2D-MSN network that jointly captures
the social connectivity over the MSN and the opportunistic D2D
contacts among users. A random walk with self loop (RWSL)
scheme that quickly converges to its stationary distribution is
proposed to collect a subset of D2D-MSN nodes. An estimator
is then introduced to obtain an unbiased estimate of the D2D-
MSN graph’s joint degree distribution, pij , from the set of visited
nodes, leading to an unbiased RWSL scheme. The resulting
estimate of pij can be used as a statistic for creating synthetic
graph and generating functions for analyzing robustness of D2D-
MSN. Numerical results show that the proposed unbiased RWSL
converges faster to its stationary distribution, achieves higher
joint degree distribution accuracy, and visits less number of
nodes, compared to existing graph exploration schemes.

I. INTRODUCTION

The rapid development of mobile communication technolo-
gies has resulted in an explosive growth of mobile internet
users. Among the internet services accessed on-the-go, online
social networking services (SNSs) like Facebook, Twitter, and
Google+ have become one of the most popular, accessed by
as many as one out of four people worldwide [1], changing
how information spreads from a “word-of-mouth” paradigm
into a “word-of-text, -audio, and -video” fashion. This, in
combination with successful miniaturization of mobile devices
have motivated vast amount of users to access SNSs through
their smartphones and/or tablets, leading to a mobile social
network (MSN) paradigm. Recently, the concept of device-to-
device (D2D) networking [2], [3] that exploits opportunistic
short-range contact through Bluetooth, WiFi Direct, and near-
field communication (NFC) in order to offload traffic from
backbone networks has emerged as a promising alternative to
MSN accessed over centralized networks [4], introducing a
new paradigm called D2D-based MSN (D2D-MSN). For the
vast mobile SNS users, whose number is projected to grow to
3.1 billion in 2018 [5], this new paradigm offers benefit such
as prolonged battery life due to reduced transmission power
and higher data rate due to shorter communication range [2].
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Motivated by the vast number of potential mobile users
that may depend their information sharing activities on D2D-
MSN, there exists a fundamental need to understand the quality
of information dissemination in such a new paradigm. In
terms of information dissemination, gossip spreading and viral
marketing [6] are among the most studied applications, whose
performance can readily be evaluated when the complete struc-
ture of the social network under examination is available at
hand. The complete structure of a D2D-MSN, however, is not
known a priori since the number of users can be very large in
practice such that collecting the local connectivity information
from all the users is impractical. In the field of complex
network, methods for estimating the properties of a single
network using graph crawling and sampling have been widely
proposed. In [7], graph traversals based on breadth-first search
for sampling Internet topologies has been proposed, while
graph explorations based on random walk and Metropolis-
Hastings algorithms have been applied to Facebook social
graph [8]. But, the structure of a D2D-MSN is different; It
consists of an MSN network as well as a D2D network that to-
gether determine the information dissemination dynamics, such
that the existing estimation schemes for single networks cannot
be applied directly. To this end, two fundamental questions
remain unanswered: “How to model the structure of a D2D-
MSN that comprises two coexisting MSN and D2D networks?
How to estimate the structure of the two, possibly correlated
MSN and D2D networks?” The answers are critical toward
understanding the information dissemination performance of a
D2D-MSN that may determine the success of its application.

As mentioned above, our objective is to model and es-
timate the structure of a D2D-MSN. Since the source and
destination of social contents in a D2D-MSN are described
by the inter-user relationship on the MSN while the actual
path taken by such contents is governed by the D2D net-
work, we introduce a D2D-MSN graph G(t) that combines
the inter-user connectivity over both the MSN (social) and
D2D (communication) networks. In G(t), the marginal degree
distributions of the social and communication graphs are well
known to represent the respective graphs’ structures [9] and
further describe information dissemination dynamics in each
graph [10], but cannot capture how the social graph Gs(t) is
coupled to the communication graph Gm(t). Thus, to capture
the relationship between Gs(t) and Gm(t), we consider a joint
degree distribution pij that represents the probability a user
has i and j neighbors in the social and communication graphs,
respectively, and use this metric to characterize the structure
of G(t). As a result, estimating the structure of G(t) becomes
equivalent to the problem of estimating pij .



To take on the problem of estimating pij , we first collect
a subset of nodes in G(t) by walking over the communication
graph. To regulate the progression of such walk over time,
we assign a transition probability from each visited node to
its immediate neighbors, such that the time until the walk
converges to its stationary distribution given local information
only is minimized. This leads to a random walk with self-
loop (RWSL) scheme. Using the history of nodes visited by
the RWSL scheme, the joint degree distribution, pij , is then
estimated as the sample mean of the visited nodes’ degree
distribution. Using first-order approximation, we show that the
resulting estimate, p′ij , is inherently biased, i.e. there exists

a gap between the expected estimate, E(p′ij), and the target
distribution, pij . To eliminate such bias, we adapt the Hansen-
Hurwitz estimator [11] and propose a bias correction scheme.
The combination between the bias correction and the RWSL

scheme, which is referred as unbiased RWSL (Unb-RWSL),
provide a methodology for obtaining an unbiased estimate of
pij from a D2D-MSN whose structure is a-priori unknown.

The performance of the Unb-RWSL is then validated
through numerical simulations. Numerical results show that the
proposed RWSL scheme is shown to converge faster to both
its stationary distribution and its actual covariance than two
well-known graph exploration algorithms: Metropolis-Hastings
(MH) and random walk (RW) [8]. Furthermore, the proposed
Unb-RWSL scheme is shown to achieve higher joint degree
distribution accuracy than the MH scheme. Finally, given the
same number of iterations, the proposed Unb-RWSL visits less
number distinct nodes than the RW scheme, thus requiring less
amount of memory to store the visited nodes’ information.

In this paper, Section II introduces the D2D-MSN graph
model and the problem of estimating its joint degree distri-
bution, pij . An Unb-RWSL scheme that achieves fast and
unbiased estimation of pij is proposed in Section III and
evaluated in Section IV. Finally, Section V concludes the paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

In this section, we first introduce a D2D-MSN graph model,
and proceed by stating the main problem of finding an unbiased
estimate of the D2D-MSN’s joint degree distribution.

A. D2D-Based Mobile Social Network Graph Model

Since a D2D-MSN consists of coexisting social (MSN)
and communication (D2D) networks, let us examine the MSN
counterpart first. Let V denotes the set of n = |V| users in
a D2D-MSN. In this paper, the terms ‘user’ and ‘node’ will
be used interchangeably. Each user in V has an account in
a “virtual” world called mobile social network (MSN). Let
E = V ×V denotes the set of all possible edges between users
and t ∈ N0 be a discrete time slot. Let Es(t) ⊂ E be the
set of all undirected edges between users in the MSN at time
t. Then, users u and v may exchange social contents if they
have an edge in the MSN, e.g., (u, v) ∈ Es(t). Examples of
such social edge are friendship relationship between users in
Facebook and social circles in Google+. Let social neighbors
Ns(u) of u be the set of users in V that has a social edge with
u as its endpoint, e.g., Ns(u) := {v ∈ V : (u, v) ∈ Es(t)}.
When a user generates a content in the MSN, i.e., a micropost
[4], it will forward such content to its social neighbors. Thus,

Es(t) characterizes all the possible source-destination pairs for
social contents in an MSN. Put together, Es(t) and V form the
tuple Gs(t) = (V , Es(t)), which is referred as a social graph.

In the D2D-MSN, users access the MSN on-the-go through
their respective personal devices, such as smartphone and
tablet. Through the MSN, the users interact with each other
by exchanging social contents, which is physically sent as
wireless packets called messages. We assume that D2D wire-
less communication, such as Bluetooth and NFC, is used to
exchange messages between users and the transmission range
is finite due to limited battery power and health concerns. Let
Em(t) ⊂ E be the set of bi-directional edges between nearby
users that can exchange messages at time slot t ∈ N0, called
communication edges. We assume that multihop communica-
tion is enabled, i.e., two users u ∈ V and v ∈ V can exchange
messages if an end-to-end path represented by a sequence of
communication edges {(u, v1), (v1, v2), . . . , (vk−1, v)} exists
in time slot t. Here, v1, . . . , vk−1 ∈ V may not be the social
neighbors of both u and v, but still participate in relaying
messages between u and v. As a result, the set of communi-
cation edges Em(t) characterizes the possible path(s) taken by
messages exchanged by any two arbitrary users in an MSN.
Combined with V , Em(t) forms the tuple Gm(t) = (V , Em(t)),
which is referred as a communication graph. Since the number
of new friend increases slower than the user movement rate,
we assume that the communication graph changes faster than
the social graph, e.g., | d

dt
Em(t)| > | d

dt
Es(t)|.

To better understand how Gs(t) and Gm(t) together form
a D2D-MSN, let us examine the following illustration. Ex-
amples of social and communication graphs are respec-
tively depicted in Figs. 1(a) and 1(b). In Fig. 1(a), users
2 and 7 may exchange social contents, but the shortest
path traversed by such contents in the communication graph,
{(2, 5), (5, 7)}, have the length of two. On the other hand, the
shortest paths {(2, 5), (5, 7), (7, 8)}, {(2, 5), (5, 9), (9, 8)} and
{(2, 5), (5, 6), (6, 8)} traversed by the social contents exchange
between users 2 and 8 have the length of three. Note that user
9 is a relay node. From the social graph perspective, we also
assume that social contents received by a user may be re-shared
to its social neighbor, i.e., a social content from 2 received by
user 7 may be re-shared to user 8. Thus, 7 is potentially an
important user, because (i) it lies in the shortest communi-
cation path of at least two pairs of social content exchange
activities, and (ii) it can help re-share social contents from 2
to 8. This illustration shows that put together, the social and
communication graphs provide more information regarding a
user’s importance toward social content dissemination process,
which is useful, e.g., for selecting seed node(s) for content
spreading in mobile advertisements [4] and for generating the
user activity graphs [12] of a D2D-MSN. Motivated by this
usefulness, we combine Gs(t) and Gm(t) and denote a D2D-
MSN graph at time t ∈ N0 as

G(t) = (V , Es(t), Em(t)). (1)

A G(t) obtained from combining the communication and social
graphs in Figs. 1(a) and 1(b) is depicted in Fig. 1(c).

B. Problem Formulation

Commercial SNS providers such as Twitter, Google+, and
Facebook do not openly provide the complete information
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(c) D2D-MSN graph.

Fig. 1. An example of a D2D-MSN.

regarding the inter-user relationship (i.e., Es(t)) due to privacy
issues. Moreover, in the D2D network considered here, there is
no centralized authority that collects the complete information
regarding the user-to-user contacts, which is characterized by
Em(t). The number of users, n, of a D2D-MSN may also be
very large such that keeping track of all the users’ social and
D2D contacts may not be possible even under the existence
of a centralized authority. Thus, the full knowledge regarding
the D2D-MSN graph G(t) is not readily available. Knowing
the structure of G(t), however, is important since it will allow
us to analyze and improve the performance of the examined
D2D-MSN [4], [12]. Motivated by this, we are interested in
estimating the structure of the D2D-MSN graph G(t).

Regarding our interest above, we first determine a metric
that can capture the structure of the D2D-MSN graph. In the
complex network literature, degree distribution, which denotes
the number of neighbors connected to a node, is a centrality
metric that has been widely used to characterize the structure
of a graph [9] and to generate functions for describing message
epidemic over graphs [10], from which several properties, such
as percolation phase transition for stand-alone and coupled
networks under attacks [13], have been analyzed. Moreover, by
taking the degree distribution as its input, configuration model
(CM) method can be employed to generate a graph whose
degree converges to the input distribution, assuming erasure
scheme is applied to eliminate the multiple edges and self-
loops potentially created by pure CM scheme [9]. Motivated
by its vast usefulness, then we are interested in estimating the
node degree distribution of the D2D-MSN graph G(t).

With such objective at hand, we further ask, “How to
quantify whether the estimated degree distribution is a good
representative to that of G(t)?” To answer this, let us re-
visit the D2D-MSN graph G(t). We assume that an algo-
rithm for estimating the degree distribution of G(t) starts at
time t ∈ N0 and completes before t + 1, while the D2D-
MSN graph is stationary during [t, t + 1). Because G(t)
consists of both the social and communication graphs, then
it will be jointly represented by two degree distributions: one
for Gs(t) and one for Gm(t). Let joint degree distribution
pij := Pr {ds(u) = i, dm(u) = j}, ∀i, j ∈ {0, 1, . . . , n − 1}
be the probability that a randomly-selected user u ∈ V has
i and j neighbors in Gs(t) and Gm(t), respectively. The joint
degree distribution is known to fully characterize a two-variate
random variable, precisely what the degrees of G(t) are. Let
there be a process that generates an estimated joint degree
distribution of p̂ij . Also, let pij be the actual joint degree
distribution of G(t), referred as a target distribution. Then,
we have the following definition.

Definition 1: p̂ij is an unbiased estimate of pij if E(p̂ij) =
pij , for all i, j, where E(·) is an ensemble mean operator.

This implies that, in average, a graph generated, e.g., by the
CM method, using p̂ij will not differ from that using the
original D2D-MSN graph G(t), as long as p̂ij is unbiased to
pij . For this reason, the objective of obtaining the structure of
G(t) can be re-stated as “to obtain an estimated joint degree
distribution p̂ij that is unbiased to the target distribution pij .”

III. FAST AND UNBIASED ESTIMATION OF JOINT DEGREE

DISTRIBUTION

In this section, we discuss a methodology for achieving a
fast, unbiased estimation of the target distribution by proposing
a random walk with self-loop (RWSL) scheme for obtaining
a subset of the nodes in G(t) in the smallest amount of
time, using which an intermediate estimate of joint degree
distribution, p′ij is calculated. Since the employed RWSL

scheme induces a bias to p′ij , we then outline a bias correction
scheme to to obtain an unbiased p̂ij .

A. Random Walk Over D2D-MSN

Before the target distribution can be estimated, a relatively
small but representative subset of nodes, denoted as V ′ ⊂ V ,
must first be obtained from the set of nodes V in G(t). The
main reason of doing so is because pij will be estimated
using the sample mean of the obtained subset. Since the
complete structure of G(t) is not known a priori, we employ
a graph walking algorithm to obtain the subset V ′. A walker
is a program that performs walking over a graph, which can
be considered as a file running in a node’s memory. Then,
“moving” a walker consists of stopping the program at the
current node, transmitting it as a message over the D2D
network, and executing it at the next node. Let a walker starts
by initially selecting a node u ∈ V at random. We assume that
node u knows its immediate neighbors Ns(u) and Nm(u) in
the social and mobile graphs, respectively. At every iteration,
the walker (a) records |Nm(u)| and |Ns(u)|; (b) assigns a
transition probability P (u, v) to all v ∈ Nm(u)∪u; (c) selects
one node among {v ∈ Nm(u) ∪ u} according to P (u, v);
(d) moves to the selected node; and then (e) re-assigns the
selected node as u. The process is iterated until sufficient
number of nodes have been visited by the walker. The visited
nodes themselves are then used as the set V ′.

In the graph walking algorithm above, we assume that
the walker may select the next node only among the com-
munication neighbors, Nm(u), and node u itself. The first
reason behind this is because there exists relay nodes that has
communication neighbors but are not connected socially. A
walk over the social graph will never visit these kind of nodes.
On the other hand, by selecting the next nodes among the
communication neighbors and u itself, such relay nodes will
be taken into account into the estimation of pij . The second
reason is because the communication graph’s rate-of-change is
faster than that of the social graph. Thus, performing a walk
over Gm(t) every time the communication graph changes will
sufficiently capture any change in both Gm(t) and Gs(t). Note
that both of the aforementioned objectives can be achieved if
the walk is performed over the communication graph.

B. Random Walk With Self-Loop Over D2D-MSN

Having defined the walk over Gm(t) as above, a subsequent
question is, “How should the next node be selected by the



walk?” Because such walk is performed only over the com-
munication graph, let us define Vm(t) ⊆ V as the set of nodes
that has at least one edge in Em(t). Recall that P (u, v) is the
probability that v ∈ Vm(t) is selected as the next node when
the walker is currently located at u ∈ Vm(t). Then, the walk
over the communication graph forms a Markov chain with a
|Vm(t)|×|Vm(t)| transition probability matrix P, with P (u, v)
as its (u, v)-th element. Because P governs the movement of
the walker by determining which node to visit next, we are
interested in assigning its elements, P (u, v).

In assigning the elements of P, it is desirable that the corre-
sponding Markov chain converges to its stationary distribution
π, a 1 × |Vm(t)| vector that satisfies π = πP. The main
reason behind this is because once convergence occurs, then
the probability Psel(u) that a node u is selected by the walk
is approximately equal to its stationary probability πu, the u-
th element of π. As will be discussed in the next subsection,
Psel(u), which is useful for eliminating the bias in the joint
degree distribution’s estimation, can then be calculated using
πu whose closed-form solution is readily available, as long as
P converges to its stationary distribution, π. To guarantee such
convergence, it is known that the transition matrix P should
be reversible, irreducible, and aperiodic [14]. We will assume
that these properties hold for now and verify that the walk
proposed here satisfies them later on. By such assumption,
the Markov chain corresponding to P will always converge
to its stationary distribution, albeit after a possibly very large
number of iterations (i.e., with slow convergence). We then
ask ourselves, “Is it possible to build a Markov chain with fast
convergence to its stationary distribution?” To answer this, let
us borrow the notion of mixing time, defined as [14]

τmixing(ǫ) := inf(k : max
u∈Vs(t)

|(P (u, ·))k − π(·)| ≤ ǫ). (2)

The mixing time represents the number of iterations required
until the Markov chain P converges to its stationary distribu-
tion π, given that a small gap ǫ > 0 is allowed. Then, achieving
a Markov chain with fast convergence to its stationary distribu-
tion is equal to minimizing the mixing time. Let λi be the i-th
largest eigenvalue of P. The mixing time of a Markov chain
with transition matrix P is bounded by [14, Thms. 12.3-12.4]

(

1

γ
− 1

)

log

(

1

2ǫ

)

≤ τmixing(ǫ) ≤
1

γ
log

(

1

ǫπmin

)

, (3)

where γ := infi≥2 1 − |λi| and πmin := minu πu. From the
upper and lower bounds in (3), the mixing time scales as γ−1,
indicating that it grows inversely-proportional to γ such that
the minimal mixing time can be achieved by maximizing γ.
The problem of maximizing γ subject to a symmetric P has
been studied in [15], but is not applicable to our case since the
complete knowledge regarding Gm(t), which characterizes all
of the possible next nodes selected by the walk and is needed to
assign the whole elements of P at once, is not readily available.
In order to maximize γ for the D2D-MSN considered in this
paper, we propose the following scheme, instead.

Notice that maximizing γ is equivalent to minimizing the
second largest eigenvalue modulus (SLEM) λ∗ = maxi≥2 |λi|.
For any stochastic matrix P, in which each of the row sums
to unity, i.e., P1 = 1, the smallest possible SLEM of λ∗ = 0
is achieved when the Markov chain corresponds to a random
walk over a complete graph in which self-loop is allowed. The

transition matrix of such walk is given as P
∗ = 1

|Vm(t)|11
T .

In this paper, however, the communication graph to be walked
is not a complete graph. As a result, when located at node
u, a walker may only choose either to move to one of the
communication neighbors Nm(u) or to stay at u, such that

P (u, v)

{

≥ 0 if v ∈ Nm(u) or v = u,

= 0 otherwise,
(4)

holds. Since P (u, v) is a conditional probability given a current
node u,

∑

v P (u, v) = 1 such that matrix P is stochastic.
Another imposing constraint is that the complete knowledge
regarding Em(t) is not known a priori such that when a walker
is located at node u, it can only assign the transition probabili-
ties to its neighboring communication nodes by utilizing local
information at u. Notice that the u-th row of P represents
the set of possible next nodes and their selection probabilities.
Motivated by the limitation, we propose to maximize γ by
minimizing |P − P

∗| through row-by-row assignment of P

such that the constraints (4) and P1 = 1 are satisfied. This
allows P to be as similar as possible to P

∗, thus minimizing
its SLEM and its mixing time. The problem of assigning the
u-th row of P when the walker is at node u then becomes

arg min
P (u,v)

∑

v

(P (u, v)−P ∗(u, v))2 s.t.
∑

v

P (u, v) = 1. (5)

Because the solution of (5) applies only for one currently
visited node u, the walker solves (5) every time it visits a new
node. Let L(f, g) := f(u, v) − αg(u, v) be the Lagrangian
of (5), where f(u, v) :=

∑

v(P (u, v) − P ∗(u, v))2 and
g(u, v) :=

∑

v P (u, v) − 1, while α denotes a Lagrange
multiplier. By substituting g(u, v) = 0 into ▽L(f, g) = 0,
the closed-form solution of (5) can be obtained as

P (u, v) =

{

1
dm(u)+1 if v ∈ Nm(u) ∪ {u},

0 otherwise,
(6)

which we refer as random walk with self-loop (RWSL). Because
all nodes in Vm(t) are connected by undirected edges, the
communication graph is connected such that RWSL is both
irreducible and aperiodic [14]. Further, by solving π = πP

with the elements of P given in (6), we have

πu = (dm(u) + 1)/(2|Em(t)| + |Vm(t)|). (7)

Using (7), the reversibility condition πuP (u, v) = πvP (v, u)
[14] also holds for all u, v ∈ Vm(t). Since P is reversible,
irreducible, and aperiodic, it will always converge to its
stationary distribution [14], justifying our assumption.

C. Unbiased Random Walk With Self-Loop over D2D-MSN

After outlining the RWSL scheme, we ask, “How to es-
timate the joint degree distribution from the visited nodes?”
Let Vij := {u ∈ V : |Ns(u)| = i, |Nm(u)| = j} be the set
of nodes in G(t) that have i and j neighbors in the social
and communication graphs, respectively. Let 1A(u) ∈ {0, 1}
indicates that u belongs to set A. Then, the joint degree
distribution of V in the original graph and V ′ visited by the
walk are calculated through their sample means as

pij =
aij

bij

=
|V|−1

∑

u∈V 1Vij
(u)

|V|−1
∑

u∈V 1
, (8)

p′ij =
a′

ij

b′ij
=

|V|−1
∑

u∈V 1Vij∩V′(u)

|V|−1
∑

u∈V 1V′(u)
. (9)



By assuming that the Markov chain corresponding to P already
converges to its stationary distribution π, the probability that
u is selected by RWSL is given as Psel(u) := E(1V′(u)) ≈ πu

such that E(a′
ij) = |V|−1

∑

u∈V πu1Vij
(u) and E(b′ij) =

|V|−1
∑

u∈V πu can be calculated from (9), where πu is de-
fined in (7). Further, using first-order approximation, E(p′ij) ≈

E(a′
ij)/E(b′ij) and

E(a′

ij)

E(b′
ij

) 6= aij

bij
= pij can be obtained, such

that we can conclude that the degree distribution p′ij directly

obtained from the sample mean of V ′ is biased with respect
to the target distribution, pij , of the D2D-MSN graph G(t).

Since p′ij estimated from the nodes collected by the walker

is biased, can such bias be corrected? Notice that E(a′
ij) and

E(b′ij) differs from aij and bij , respectively, by a factor πu

within their respective summations. Thus, the bias can be
corrected if the degree distribution pij is estimated using

p̂ij =
âij

b̂ij

=

∑

u∈V′
ij

1
πu

∑

u∈V′

1
πu

, (10)

where V ′
ij := Vij ∩V ′ is the set of nodes in V ′ that have i and

j edges in Es(t) and Em(t), respectively. We can verify that

E(âij) = |V|−1
∑

u∈V 1Vij
(u) and E(b̂ij) = |V|−1

∑

u∈V 1,
showing that p̂ij is an unbiased estimate of the target distribu-
tion pij . We refer the unbiased estimator in (10) that calculates
p̂ij using the set of nodes V ′ visited by RWSL as an unbiased
RWSL (Unb-RWSL) scheme.

Remark 1: Unlike the unbiased estimator for single graphs
in [8], (10) provides an unbiased estimate of the joint dis-
tribution that fully characterizes the degree correlation in the
coexisting social and communication graphs. We also note that
Gs(t) can also be viewed as an “appending” information to
Gm(t). Thus, the Unb-RWSL scheme can be generalized to
other cases in which the social degree distribution is replaced
by the distribution of device version, user gender, and so on.

IV. NUMERICAL RESULTS

In this section, the proposed scheme’s performance is
evaluated through numerical simulations in Python. First, we
determine the structure of the social and communication graphs
in realistic D2D-MSN by employing traces collected from 76
mobile phones during Sigcomm 2009 conference [16]. Note
that similar results will hold for more general cases of D2D-
MSns, but are not included here due to limited space. In this
paper, time granularity is set to 60 seconds and we assume
that a social edge occurs between two nodes if they exchange
at least one message during the last hour. The resulting degree
distributions in Figs. 3(a) and 3(b) indicate that (i) both social
and communication degrees exhibit exponential tail, and (ii)
the former has a smaller average degree than the latter.

Next, the performance of Unb-RWSL is evaluated in Fig. 2.
Motivated by the results of Fig. 3, two Erdös-Rényi (ER)
graph, which results in a Binomial degree distribution with
exponential tail, with n = 2× 104 nodes and edge occurrence
probabilities of pER

s = 0.001 and pER
m = 0.002 are employed

for the social and communication graphs, respectively. The
communication and social degrees of every node are set
arbitrarily to produce an uncorrelated joint degree distribution,
denoted as a random case. We employ 2×104 iterations with
the results from the initial 104 iterations discarded to ensure
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Fig. 3. Complementary CDF of the D2D-MSN graph in [16].

the walk already reaches equilibrium. The performance of the
proposed scheme is compared to three existing algorithms:
pure random walk (RW), Metropolis Hastings (MH) [8], and
unbiased BFS (Unb-BFS) [7] schemes. The Kullback-Leibler
divergence (KLD) [8] of the marginal communication degree
distribution pj :=

∑

i pij compared to its estimate p̂j in
Fig. 2(a) indicates that Unb-RWSL performs similar to pure
RW employing (10), denoted as Unb-RW, and outperforms
MH with a gap that increases with respect to the number of
iterations. Further, a comparison between RWSL to Unb-RWSL
shows that the estimator in (10) is able to correct the bias
introduced by RWSL. Fig. 2(a) also shows that Unb-BFS
achieve worse KLD performance than the MH and Unb-RWSL
schemes, since it is not optimized to achieve fast convergence.

On the other hand, unlike the communication degree’s KLD
in Fig. 2(a), the social degree’s KLD for all the examined
schemes are shown to be equal in Fig. 2(b). To understand this,
note that all the walks are performed over the communication
graph. Because in the random case the social and communi-
cation graphs are uncorrelated, a walk over the communication
graph can be viewed as a random node selection in the social
graph. Consequently, Unb-RWSL and Unb-RW will both have
uniform stationary distribution and similar walk structures as
MH, such that all the three exhibits the same social degree
KLD performance. Note that Unb-BFS [7] can only estimate
the marginal degree distribution, such that its joint distribution-
based statistics, e.g. KLD, root mean-squared error (RMSE),
and covariance, cannot be compared to the proposed scheme.

To evaluate the joint degree distribution estimation perfor-
mance, the RMSE between the estimated p̂ij to the target pij

is plotted in Fig. 2(c). Similar observation as in Fig. 2(a) holds:
Unb-RWSL performs similar to Unb-RW and outperforms
MH in terms of RMSE value. This result suggests that the
proposed Unb-RWSL is able to well-capture the coupling
between Gs(t) and Gm(t). To further evaluate the ability of
the Unb-RWSL in capturing the relationship between Gs(t) and
Gm(t) in the joint degree distribution, let us examine Fig. 2(d),
in which the covariance of the Unb-RWSL converges to that
of G(t) faster than both MH and Unb-RW. The covariance
fully describes the level of correlation between the social and
communication degrees, verifying that the Unb-RWSL well
captures the relationship between both graphs.

Since both Unb-RWSL and Unb-RW schemes achieve
almost the same KLD and RMSE performance, then what is
the advantage of employing the former? The number of distinct
visited nodes versus iterations in Fig. 2(e) shows that the
Unb-RWSL visits less number of distinct nodes than Unb-RW
and Unb-BFS. Because the walker needs to log all the visited
nodes as well as their social and communication degrees, then
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Fig. 2. Joint degree distribution estimation performance of the proposed unbiased RWSL for random case.
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Fig. 4. RMSE and mixing time performance of the proposed scheme.

the proposed Unb-RWSL requires smaller amount of memory
than the Unb-RW scheme, given the same number of iterations.

Next, the impact of correlation between the social and
communication degrees is evaluated in Fig. 4. Here, Gs(t) and
Gm(t) are set to be fully-correlated, i.e., the node with the i-th
largest communication degree also has the i-th highest social
degree for all i ≤ n, denoted as high-high case. Although
not shown here, the KLDs of both the communication and
social degrees for the high-high case are similar to that of
the KLD of the communication degree in the random case
in Fig. 2(a), because both graphs have identical structures and
are highly-correlated. Thus, a walk over the communication
graph will produce similar dynamics, indicated by the same
KLD performance, over the social graph. Consequently, as
depicted in Fig. 4(a), the gap between the RMSE performances
of the Unb-RWSL and MH schemes, that are jointly affected by
the estimation accuracy of both the social and communication
degrees, will be increased, compared to that of the random
case in Fig. 2(c). This indicates that Unb-RWSL has larger
RMSE gap to MH scheme when the degree correlation between
the social and communication graphs is high.

Finally, the mixing time of the proposed RWSL scheme for
ER graph with n = 200 nodes over 500 network realizations
is evaluated in Fig. 4(b). As the edge occurrence probability
pER

m increases, the average communication degree will also
increase, such that the transition matrix P of the RWSL

scheme approaches P
∗ of the complete graph and the mixing

time will be decreased. The figure also indicates that RWSL
scheme achieves the lowest mixing time, similar to RW. This
is unsurprising, since RWSL is similar to pure RW, except the
former allows self-loop, i.e., the walk may choose to stay at
the current node. On the other hand, MH produces an unbiased
walk with uniform stationary distribution that, unfortunately,
comes with the trade-off of much larger mixing time.

V. CONCLUSION

We considered the problem of modeling and estimating
the structure of D2D-MSNs. We defined a D2D-MSN graph

that captures the social and physical relationships between
users, and further employed a joint degree distribution pij

to collectively characterize the structure of both graphs. An
unbiased random walk with self-loop scheme on the D2D
counterpart of the D2D-MSN, which achieves fast convergence
to its stationary distribution as well as unbiased estimation of
pij , is proposed. Numerical results showed that the proposed
scheme achieves higher pij estimation accuracy than existing
schemes. The estimated pij can then be used to generate
a D2D-MSN graph that is applicable to the evaluation of
information spreading performance, which can help determine
the success of D2D-MSNs’ deployment. In the future, we plan
to incorporate both the MSN’s and the D2D’s topologies to
improve the performance of the proposed scheme.
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