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Abstract—As the explosion of Internet traffic is quickly leading
to overloaded cellular network, device-to-device (D2D)-based con-
tent sharing is proposed as a method to offload mobile data traffic.
The performance of D2D-based content sharing is dramatically
affected by the success rate of content fetching from nearby
devices and quality of content transmission, which is determined
by the geographic distribution of mobile devices, the number of
devices having contents in their caches, and the condition of D2D
links. Hence, a key problem is how to cache various contents in the
limited storage of mobile devices for improving the success rate of
content fetching. In this paper, we aim to design a caching policy
by considering the joint impact of locality of real-world mobile
data traffic and device contact pattern to improve the success rate
of content fetching. To do this, we first study the characteristics
of network traffic and device contact pattern by analyzing traces
from realistic networks. Then, we design a locality-based caching
policy and derive the content caching probability and hit ratio
through mathematical analysis. Through numerical evaluation
and trace-driven simulations, we not only quantify how content
popularity, content active lifetime, content size, content bit rate,
device storage, transmission rate, and closeness centrality affect
the content hit ratio, but also provide comparison on hit ratio and
storage cost in different caching policy, which is a strong evidence
that the joint impacts from characteristics of content and device
are the necessary consideration when to design a caching policy.

I. INTRODUCTION

The rapidly increasing number of personal mobile devices,
e.g., smartphones and tablets, and various mobile applications
over the last few years have resulted in an exponential growth
of data traffic in cellular networks. Cisco reported that cellular
networks may need to support a 1000 fold increase in capacity
by 2020 [1]. In particular, video stream continues to be the
major application generator for mobile data traffic growth and
will account for 75% of global mobile data traffic by 2021 [2].
Particularly, online video-sharing services (such as YouTube,
Yahoo! Video), which have gained an audience of billions
of users including educators and scholars. Such tremendous
increase in mobile data traffic is predicted to overload cellular
and WiFi networks.

In order to mitigate the load on cellular networks, D2D-based
content sharing has been proposed as a method to offload traffic.
The performance of D2D-based content sharing is dramatically
affected by the success rate of content fetching from nearby
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clients and reliably QoE-oriented content transmission, which
is determined by geographic distribution of mobile devices, the
number of devices having contents in storage, the category
of content cached in devices, and devices sharing index. In
practice, the advantage of D2D-based content sharing may be
limited when a significant number of mobile devices in a large
network area must be served with a finite caching storage on
the move. Hence, design a efficient caching policy is important
for content fetching. Generally, on one hand, the geographical
distribution of devices, the number and the category of cached
content determine that what kind of content can be fetched.
On the other hand, varying device contact pattern and social
properties determine that which device can successfully share
content to its close-by devices. Therefore, the realistic network
traffic, users requests pattern, and device contact pattern jointly
determine the implement and performance of D2D-based con-
tent sharing, which motivates us to think a key problem in
D2D-based content sharing that is how to make decision on
caching various kinds of contents in different mobile devices
for achieving optimal success rate of contents fetching in D2D-
based content sharing network.

Existing works on D2D communication-based content shar-
ing are mainly concerned with interference avoidance and
energy efficiency [3] and sharing strategies [4]. Only a minority
of the existing studies investigate and design caching policy
in D2D communication-enabled mobile devices for improving
content sharing performance. For example, Jingjie et al. [5]
studied the problem of maximizing cellular traffic offloading
via D2D communication, by selectively caching popular con-
tent locally, and by exploring maximal matching for sender-
receiver pairs. Bastug et al. [6] and Kang et al. [7] studied on
caching scenarios that exploiting the file popularity, correlations
among users-files patterns, and social structure of the network,
to minimize the average caching failure rate. These works,
however, do not consider the joint impacts of properties of
realistic network traffic, user requests pattern, device contact
pattern, and wireless transmission on making caching decision
in different mobile device and QoS of D2D communication.
There still lacks a comprehensive understanding of content
caching policy in D2D-based content sharing network.

In this paper, we specifically focus on the D2D-based video-
sharing scenario. In this scenario, we focus on designing a
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Fig. 1. View focus as a function of the video views.
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Fig. 2. View entropy as a function of the video views.

locality-based caching decision policy by considering the joint
impact of spatial and temporal locality of content popularity,
content active lifetime, content size, content bit rate, device
transmission rate and sharing index on the content hit ratio.
We firstly characterize network traffic and mobile devices
opportunistic contact pattern through analyzing realistic traces
of YouTube Video [8, 9], and Bluetooth encounters [10].
Then we define network model, traffic pattern and design
the locality-based caching policy. Finally, we derive content
caching probability and hit ratio through mathematical analysis.
Numerical results not only quantify the performance of content
fetching, but also provide critical points to be used to making
optimal decisions on contents caching.

The rest of this paper is organized as follows. In Section
II and III, we examine the characteristics of network traffic
and devices encounter, respectively. Section IV defines system
model and caching policy. In Section V, mathematical analysis
about content caching probability and hit ratio are performed.
Finally, section VI concludes this paper.

II. NETWORK TRAFFIC TRACE ANALYSIS

In this section, we analyze the spatial and temporal locality
of network traffic and characteristics of user request patterns
via two groups of YouTube traffic traces [8, 9] to achieve a
comprehensive study.

A. Spatial and Temporal Locality of Content Popularity

One of the design criteria for content caching policy is
the content popularity, which is represented by the number of
client views. Obtaining and analyzing the popularity of a video
enables caching policy designers to decide which contents to
cache, which affects the number of copies of a content in a
network, thus influencing the hit ratio. Motivated by this, we
analyze spatial locality of content popularity by employing one
trace from Zink’s dataset: youtube.parsed.dat [8].

Let 1 ≤ r ≤ R be a region in the network. Denote vtor
as the number of content o’s view in region r at time t, and
V to =

∑R
i=1 v

t
oi as the total number of content o’s view at

time t. To examine the spatial locality of content popularity,
we define the view focus as F to := max

r
(
vtor
V to

), and the view

entropy as Ht
o := −

∑R
i=1 F

t
o log2 F

t
o , where the sum function

is running only over regions for which vtor 6= 0.
Fig. 1 (a) shows the cumulative distribution function (CDF)

of the view focus of videos in our dataset. We observe that
about 90% of YouTube videos that enjoy at least 80% of their
views in a single region. This is a strong evidence that videos
tend to be popular in a locally confined area, rather than in a
globally wide region. Furthermore, as videos get more views,
they tend to be watched in a more disparate set of regions, as
shown in Fig. 1 (b), where the average view focus decreases
as the number of views grows. Moreover, Fig. 2 (a) shows the
CDF of the view entropy of videos in our dataset. As shown
in the distribution, there are about 94% of YouTube videos
with view entropy lower than 1 bit and about 2% of videos
with view entropy larger than 1.4 bits. On the contrary, view
entropy grows as the number of views grows, as shown in Fig.
2 (b). We observe that a large percents of videos’ views are
geographically concentrated with high view focus value. Since
the view entropy is high, videos with larger number of views
need to be accessible from all over the network.

In addition, we extract the rank of YouTube videos according
to the number of views in different regions, as shown in
Fig. 3(a). Surprisingly, we find that although a large fraction
of videos have high view focus and low view entropy, the
distribution of popularity in a certain region (e.g, Ohio or
Michigan) is a reasonably good fit for a Zipf distribution, as
observed in other studies [11]. Thus it is reasonable to assume
Zipf content popularity in different region r with various Zipf’s
law exponents γr in this paper.

After analyzing the spatial locality of video popularity, we
begin to study the temporal evolution of video views. In this
part, we are interested in studying whether videos exhibit a
steady and uniform level of popularity across their lifetime or,
instead, their popularity changes over time by analyzing one
trace from Cheng’s dataset [9]. We define that if the ratio of
the increasing number of views directed to a video o at time t in
region r is less than ε from the previous time (t−1), the video’s
active lifetime is given as lo := inf{t ∈ R :

vtor
vt−1
or
− 1 ≤ ε}.

Let ε = 1%. The active lifetime gives us a way to estimate the
temporal locality.

Fig. 3(b) shows the CDF of active lifetime for approximately
161 thousand videos in log-log scale, which has a reasonably
good fit for exponential distribution with parameters λL =
0.1135. We observe that there are approximately 80% contents
which has active lifetime equal to or less than 180 weeks after
they are uploaded, which implies that most videos are requested
and viewed frequently during their early period, and then fewer
and fewer clients will request them after the video’s active
lifetime. This characteristic can be applied in caching design,
which can help mobile device to make decisions on caching.
B. User Request Pattern

As caching storage of mobile devices is limited and each
mobile device can only cache contents for a limited period of
time, content sharing through D2D communications become
possible only if nearby devices have these contents which are



(a) YouTube videos are ranked ac-
cording to the number of views in
different regions.
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Fig. 3. Spatial and temporal locality of content popularity.

requested by users around the same time. Hence, contents
caching duration and user request pattern significantly affect
the hit ratio, which can be applied in caching design to achieve
optimal hit ratio. By employing one trace from Zink’s dataset,
we extract the inter-arrival time of users’ consecutive requests
and the time intervals between two consecutive requests di-
rected to the same content. From Fig. 4, we observe that there
are approximately 90% consecutive requests with inter-arrival
time smaller than 700 seconds (approximately 12 minutes) and
approximately 90% consecutive requests directed to the same
content with time intervals smaller than 3 hours. It indicates
that users tend to request videos multiple time within a short
period, which shows a great motivation of designing a efficient
caching policy for content sharing.

Fig. 4. The time intervals between a client’s two consecutive request and the
time intervals of two consecutive requests directed to the same content

III. DEVICES CONTACT PATTERN ANALYSIS

In this section, we analyze the characteristics of the devices
contact pattern in terms of Bluetooth encounters between two
devices by using one trace from A. Caputo’s dataset [10]. In
the following, we study the contact duration, transmission time
and rate, and network centrality.

A. Contact Duration Vs. Transmission Time

We define that a user u can successfully transmit the content
o to its neighbour v only if their opportunistic communication
is established and their contact duration is long enough for the
video transmission. Fig. 5 (a) shows the complementary CDF
of contact duration tC comparing with the transmission time.
From Fig. 5 (a), we observe that a large percentage of video’s
transmissions take a short time. There are approximately 50%
of videos taking less than 40 seconds and 90% of transmissions
taking less than 100 seconds. The complementary CDF of con-
tact duration has a heavier tail than that of video transmission
time. Specifically, there are 99.6% of contacts between mobile
devices lasting longer than 40 seconds and approximately 50%
of contacts lasting longer than 1000 seconds. Hence, we find
that there is a relatively high probability that a large parts of

(a) Contact duration Vs. Transmis-
sion time

(b) Transmission rate Vs. Bit rate

Fig. 5. Complementary CDF of contact duration and transmission rate.

videos can be successfully transmited through D2D communi-
cations. In this paper, we assume that the distribution of contact
time tC and transmission time τ both fit well for exponential
distribution with parameters λC and λT respectively, which has
been used by other existing studies, such as [12] and shown to
be a good approximation.
B. Transmission Rate Vs. Content Bit Rate

In addition, we define that QoE-satisfied content transmission
can be achieved when the transmission rate is large enough for
the content bit rate. Fig. 5 (b) shows approximately 90% of
videos’ bit rate are smaller than 200 Kbps and 10% of them are
larger than 320 Kbps, which indicates that a large percentage
of videos’ bit rate are within range [200 Kbps, 300 Kbps].
Moreover, approximately 90% of the transmission rate between
two devices rT are within range [500 Kbps, 1000 Kbps]. We
can find that there is relatively high probability that content
delivery between two D2D communication-enabled devices can
satisfy the QoE.
C. Closeness Centrality

We apply centrality, which is a social network analysis
metrics to measure the social connectivity of devices in the
network. That has potential influence in the probability of
content sharing between devices. In graph theory and network
analysis, centrality is a quantification of the relative impor-
tance of a vertex within a graph. For node u, we define
Cu = 1

F

∑F
v=1D(u, v) as the closeness centrality, which

measures the average contact duration between node u and its
Facebook friend v, which means the node has larger probability
of opportunistically contact with other devices and the node
has more higher capability for content sharing. F is the total
number of contacts with its total friends and D(u, v) is the
contact duration between node u and its friend v.

Fig. 6 shows the mobile devices ranked according to the
closeness centrality. From this figure, we can see that there is
a reasonably good fit for a Zipf distribution with parameter σ,
then we define pu = u−σ∑n

j=1 j
−σ (1 ≤ u ≤ n) as sharing index

for device u. n is the total number of mobile devices in the
network.

Fig. 6. Mobile devices are ranked according to decrease order of closeness
centrality.



IV. CACHING POLICY IN D2D-BASED CONTENT SHARING
NETWORK

In this section, motivated by the trace analysis in previous
sections, we present the D2D-based content sharing network as
well as the traffic and content transmission model. Then, we
define a locality-based caching policy an derive the hit ratio
through mathematical analysis. Finally, numerical simulation
is performed to quantify the performance of content fetching.
A. Network Model

We suppose numbers of n mobile user equipments (UEs)
are distributed in the network modeled as independent ho-
mogeneous poisson point process ΦU with density λU [13].
Each mobile UE can communicate with its neighbouring UE
through Bluetooth directly. In this network, a mobile UE can
either download content from network servers or fetch content
from its neighbouring UEs through D2D communications. The
probability that number of m UEs exist within a transmission
range d from a reference device is given as fn(m, d) =
(πd2λU )m

m! e−πd
2λU .

B. Traffic and Content Transmission Model

We denote the set of contents by O, where O := |O| is
the total number of contents. Let R be the set of regions in
the network, where R := |R| is the number of regions in the
network. Motivated by the results in Fig. 3 (a), we assume
that the content popularity in a certain region r ∈ R to be
distributed according to the Zipf distribution, given as

pro =
o−γr∑O
c=1 c

−γr
, 1 ≤ o ≤ O, (1)

where γr is the Zipf’s law exponent in region r. Thus,
content o is requested across whole network with probability
Po =

∑R
r=1 1

r
op
r
o, where let 1ro be a (0/1) variable that indicate

whether a user requests content o in region r. To proceed, we
denote the inter-arrival time of two consecutive requests from a
user by random variable T . We assume that the content request
process is modeled as a renewal process, in where N(t) denotes
the number of requests from a user up to time t.

In this paper, we focus on the content fetching from users’
neighbours through D2D communications over a single hop.
Motivated by the results in Fig. 5 (b), we assume the trans-
mission rate rT to be distributed according to exponential
distribution with parameter λT . Let zo be the size of content o,
and bo is the bit rate. Then we define that the transmission time
of content o as τo := zo/rT , which is determined by content
size and transmission rate rT . We suppose that when a user u
has a content o in its cache, content transmission from node
u to node v is successful only if the contact time between u
and v is larger than τo and transmission rate is higher than bo.
Hence, the success rate of a content transmission q is defined
as qo := Pr(tC ≥ τo, rT ≥ bo), which takes account into real
condition of wireless transmission and QoE.
C. Locality-based Caching Policy

Considering the joint effect of spatial and temporal locality
of network traffic and devices contact pattern, i.e., spatial

locality of popularity, content active lifetime, content bit rate,
inter-arrival time of requests, device contact duration and
transmission rate, we define the locality-based caching policy
for improving performance of content sharing and aiming to
contribute to guideline for making optimal decision on caching.

Definition 1 (Locality-based Caching Policy). Let 1tor be the
(0/1)-indicator function that determine whether devices cache
content o at time t in region r for a random period of time CT .
For all 1 ≤ o ≤ O and 1 ≤ r ≤ R, let 1tor := f(1ro, lo, τo, bo),
given as

1tor :=

{
1 if 1ro = 1, lo > t, tC ≥ τo, rT ≥ bo
0 if 1ro = 0

. (2)

When content o is requested, devices will decide whether to
copy this content by checking content active lifetime lo, and
evaluating the success rate of a content transmission qo, which
is determined by whether device’s contact duration tC is longer
than content transmission time τo, and its transmission rate rT
is larger than content bit rate bo. Hence, if the content o is
with higher popularity, longer active lifetime and device is with
higher success rate of content transmission qo, the content will
be cached with larger probability. Conversely, the content has
little chance of being cached. When the cache is full, the user
will discards the least recently viewed content first to make a
space for the new content.

V. CONTENT FETCHING PERFORMANCE

In this section, we analyze how likely users can find content
o in neighbouring mobile devices’ caches when they request a
content o at time t, which is determined by the probability
pf (t) that a user can successfully fetch content o from its
neighbours (defined as hit ratio). The hit ratio is affected by the
probability pc(t) that nodes having content o in cache within
communication coverage d, and users’ sharing index pu. Firstly,
we study the content caching probability pc(t).
A. Content Caching Probability

Suppose that the content request process of a user is a
renewal process, we have the following lemma.

Lemma 1. When inter-arrival time T of a user’s content
requests follows general distribution with expectation µ, the
expected number of times that a content o is requested by a
user within time [t − ∆t, t] is asymptotically equal to Po∆t

µ
for a fixed ∆t as t goes to infinity, where Po is the request
probability of content o.

Proof: Denote by No(t) the number of times that content
o is requested by a user by time t. Let No(t) =

∑N(t)
i=1 1io,

where let 1io be a (0/1) variable that indicate whether the i-th
content request is directed to content o, and Pr(1io = 1) = Po.
According to Blackwell’s theorem on renewal process, as t→
∞, for any fixed ∆t, E[No(t)]− E[No(t−∆t)]→ Po∆t

µ .
In the following, we analyze the content caching probability

under the defined caching policy. Based on the above lemma,
we derive an upper bound on the probability pc that a user has
a content o in storage.



Theorem 1. Suppose that users’ content requests are modeled
as renewal process and the locality-based caching policy is
applied in each device. Within time interval [t − CT, t], the
probability pc(t) that a user has a content o in storage at
time t is asymptotically upper bounded by PoE[CT ]

λLλCλTµτobot
(1 −

pd(t)), where CT is a random content caching time, pd(t) is
the probability that user will delete content o from its cache.

Proof: A node has content o in its cache at time t only
if it requested content o within time interval [t − CT, t], i.e.,
the number of requests directed to o within time interval CT
is equal to or lager than 1. Moreover, as defined in locality-
based caching policy, the probability of caching content o is
also proportional to the active lifetime and success rate of a
content transmission. Hence, the probability pc that a user store
a content o at time t is given as Pr(No(t) − No(t − CT ) ≥
1, lo > t, tC > τo, rT > bo). According to the Markov’s
inequality, Pr(No(t) − No(t − CT ) ≥ 1) is asymptotically
upper bounded by E[No(t)] − E[No(t − CT )] as t → ∞.
Based on Lemma 1, E[No(t)]−E[No(t−∆t)] is asymptotically
equal to Po∆t

µ . Considering random variable CT , E[E[No(t)]−
E[No(t − CT )]|CT ] is asymptotically equal to PoE[CT ]/µ
as t → ∞. Motivated by analysis results in Fig. 3 (b) and
5, we suppose the active lifetime has exponential distribution
with parameter λL, the contact duration and transmission rate
both have exponential distribution with parameters λC and λT
respectively. According to the Markov’s inequality, Pr(lo > t)
is asymptotically upper bounded by 1

tλL
, Pr(tC > τo) is

asymptotically upper bounded by 1
τoλC

, and Pr(rT > bo) is
asymptotically upper bounded by 1

boλT
. Moreover, we assume

that nodes have limited storage capacity K measured in unit
of number of contents and content request pattern follows
Poisson process with rate 1/µ. Thus, the probability that a
device requests a content with in time interval CT is given
by 1 − e−

E[CT ]
µ . When devices’ cache is full, it will discard

the least recently requested items first to make a space the new
content. At time t, when a user’s cache has K or less than K
contents, there is no contents be discarded. On the other hand,
a user will delete content o from its cache within time interval
[t−CT, t] only if up to time t user has at least (K+1) requests,
within in time interval CT there is at least one request, and
its K recent requests are not directed to content o while the
(K+1)-th recent request is directed to content o. Subsequently,
the probability pd(t) that user will delete content o from its
cache within time interval [t− CT, t] is given as

pd(t) =

∞∑
i=K+1

i∑
j=1

[Po(1− Po)KPr(N(t) = i)

Pr(N(t)−N(t− CT ) = j)]

≈
Po(1− Po)KE[CT ]

µ
(1− e−

t
µ

K∑
i=0

( tµ )i

i!
).

(3)

Subsequently, pc(t) is asymptotically upper bounded by
PoE[CT ]

λLλCλTµτobot
(1− pd(t)). This completes our proof.

B. Hit Ratio

Suppose that a user u requests a content o at time t, the user
can successfully fetch the content from its neighbours only if
at least one neighbour has the content in its cache and stay
in connection for content transmission. Hence, we have the
following theorem.

Theorem 2. The probability pf (t) that a user successfully fetch
a content o from its neighbours at time t is asymptotically equal
to πd2λUpuPoE[CT ](1−pd(t))

µe(λLt+λCτo+λT bo)
, where pu is the sharing index.

Proof: Results in Theorem 1 shows that a user has a
content o in its cache with probability pc at time t. Accordingly,
the number of neighbours Xc that have a content o is given
as Xc =

∑n
u=1 1

u
o , where let 1uo be a (0/1) variable that

indicates whether a node u has content o in its cache, and
Pr(1uo = 1) = pc. Thus, Xc = npc. Hence, nodes having
content o are also distributed as a independent homogeneous
poisson point process ΦC with density λC = pcλU . Besides,
let user sharing index pu be the probability that devices stay in
communication. Subsequently, the probability that a user can
successfully fetch a content o from its neighbours is given as

pf (t) = pu(1− e−πd
2λUpc(t)) ≈ πd2λUpupc(t)

=
πd2λUpuPoE[CT ](1− pd(t))

µe(λLt+λCτo+λT bo)
.

(4)

Remark 1. From the analysis above, we observe that the
probability pf (t) of fetching content o various with time
passes and is indeed impacted by content popularity, content
active lifetime, contact duration, transmission rate, expected
caching time, user request rate, user sharing index, and the
density of users. This further indicates that to achieve optimal
content sharing performance, each device should take account
of joint impacts of these parameters in making right decision
on caching contents.

C. Numerical and Trace-driven Evaluation

In addition to mathematical analysis, we use numerical
simulation to evaluate the content fetching performance under
the locality-based caching policy applied in D2D-based content
sharing network. Let 1− pc − pf as the probability that a user
download a content o from servers. Motivated by the results
in the trace analysis, we assume that the content popularity
in a specific region r is according to Zipf distribution with
Zipf’s law exponent γr = 1, and the user sharing index is
according to Zipf distribution with Zipf’s law exponent σ = 1.
Then, we have pro ≈ 1/o lnO, and pu ≈ 1/u lnn. We set
parameters: n = 100, u various from 5 to 35, O = 10000,
o various from 5 to 100, R = 5, CT = 24 (hours), µ = 3
(hours), d = 10 m, lm = 166 (week), β = 15, λU = 0.5,
λC = 0.0042, λT = 0.0012, λL = 0.1135.

Fig. 7 gives a first glance of content fetching performance,
which shows that content fetching from neighbouring mobile
devices through D2D communication can indeed offload traf-
fic from network servers significantly, especially for popular
contents in strong sharing devices: 50% servers’ traffic can be



offloaded through D2D communication and fetched from own
cache. From Fig. 7 (a) and (b), we observe that when contents
are more popular and device has a larger sharing index, we
can obtain higher fetching probability and offload traffic from
servers dramatically. Besides, because of majority of contents’
growth trend factor is less than 1 and popularity decreases
with time passes, caching and fetching probability decrease,
which leads to the increase of traffic load in network servers,
as shown in Fig. 7 (c). In addition, we evaluate the proposed
caching policy by using real-world traces, i.e., YouTube Video
[8, 9] and Bluetooth contact pattern [10]. In this trace-driven
simulation, we define the successful fetching from neighbours
only if the transmit rate is higher than the requested content
bit rate and the contact duration is longer enough to complete
transmission. In Fig. 8, we compare the hit ratio and storage
cost of locality-based caching policy with the popularity-based
caching policy. We observe that the hit ratio of these two policy
are almost same, although the hit ratio in locality-based caching
policy is a little lower than the popularity-based caching policy.
However, the storage cost in the locality-based caching policy
is significantly smaller than the other one.

(a) Content popularity (b) User sharing index (c) Time passes

Fig. 7. Client caching probability, neighbouring fetching probability and
servers downloading probability.

(a) Hit Ratio (b) Storage Cost

Fig. 8. Trace-driven simulation results.

Remark 2. From the above numerical and trace-driven sim-
ulation results, we can find that content can be successfully
fetched from close-by devices through D2D communication,
which can indeed reduce network and server load. Besides, the
trace-driven simulation results is a strong evidence that con-
sidering the joint impacts of content popularity, content active
lifetime, caching duration, user request rate, contact duration,
transmission rate, and the density of users in the network is
necessary and effective when making caching decision. It is
also a guideline for designing caching policy.

VI. CONCLUSION

In this paper, we study how mobile devices make right
decision on caching various contents for achieving optimal
content fetching performance in D2D-based content sharing
network. To validate the impact of real-world traffic and devices

opportunistic communication on content fetching performance,
we first extract the spatial and temporal characteristics of
network traffic, and devices contact pattern through analyzing
real-world traces. Motivated by these results in traces analysis,
we design the locality-based caching policy. Through mathe-
matical analysis, we derive the upper bound of content caching
probability and hit ratio. Numerical and trace-driven simulation
results not only evaluate the content caching probability, con-
tent fetching and traffic offloading performance, but also offer
a strong evidence and guideline for each mobile device making
optimal decision on content caching.
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