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Abstract—In an era of networks in which any individual is
connected with one another, such as Internet of Things (IoT)
and Online Social Networks (OSNs), the networks are evolving
into complex systems, carrying a huge volume of information
that may provoke even more. An interesting, yet challenging
question is how such information dissemination evolves, that is, to
continue or to stop. Specifically, we aim to find out the aftermath
of epidemic spreading via individuals and conflicting information
dissemination. From a holistic, networking view, it is impossible
to take every aspect into accounts for complex networks toward
these questions. Therefore, we establish a Susceptible-Infectious-
Cured (SIC) propagation model to examine two simple network
topologies, clique and star, in terms of extinction time and half-
life time of information under controllable, epidemic dynamics.
For a network of size n, both theoretical and numerical results
suggest that extinction time and half-life time are O( logn

n
)

for clique networks, and O(logn) for star networks. More
interestingly, given an initial network state I0, the extinction time
is constant (O(1)) for cliques, and O(log I0) for stars; while the
half-life time is O(log 1

I0
) for both clique and star networks,

respectively. In addition, we developed a method to estimate the
conditional infection count distribution, which indicates the scope
of information dissemination.

I. INTRODUCTION

After the Boston bombing incident on April 15th, 2013,
Reddit users started an online suspect hunt, which led to the
wrong person [1], but the rumor information spread rapidly
on Twitter, causing huge problems to the wrongly accused.
On April 18th, the police released information about the
correct suspect in public media, then the rumor soon died
out on Reddit and Twitter [2]. A clear observation is that the
injection of positive or negative information seeds and individ-
ual spreading over social and communication networks have
led to unexpected outcomes. Accordingly, an interesting, yet
challenging question is how such information dissemination
evolves, that is, to continue or to stop. In other words, we
have little understanding on the aftermath of epidemic spread-
ing via individuals and conflicting information dissemination.
Specifically, we may want to know how much time it takes
the negative information to disappear. Such phenomenon can
also be seen in the competition of rivalry products, especially
when the advantage of one product is dominant. For instance,
MySpace was quite popular in 2006, when Facebook just
started to open registration to the public. However, due to the
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dominant advantage of the latter, the injection of the infor-
mation (open registration) later overturned the OSN market.
Traffic to MySpace shrunk quickly with a diminishing user
group, while Facebook eventually took over the market and
became the most popular OSN.

In both cases, the injected “positive” information incurred
the extinction of an on-going/potential epidemic of the “neg-
ative” information. Note that “positive” here does not neces-
sarily mean good, but implying that the information is with a
dominant credibility or advantage over the “negative” one. This
is an interesting phenomenon of epidemic information dissem-
ination because its broad impact on whether the information
continues to propagate or not, that is, to live or to die.

The epidemic spreading effect by individuals is not a brand
new problem. It was initially developed by epidemiologists to
study the spreading behavior of contagions, and emerged as a
powerful tool to study information propagation over networks
in the context of communication networks, power grids, and
biological networks, considering the resemblance between con-
tagions spread and information propagation among individuals.
Pastor-Satorras and Vespignani analyzed the lifetime of com-
puter virus on Internet and found the absence of the epidemic
threshold on scale-free networks [3]. In the field of power grids
security [4], epidemics were used to model cascading failures,
e.g., a counter-intuitive finding is that the lowest loads under
attack are more harmful than that with higher loads [5]. In
studies of biological networks, epidemics are used to predict
and prevent the outbreak of transmissible diseases. Kao et. al.
identified the risk of foot-and-mouth disease in 2001 when the
catastrophic epidemic occurred [6], with data traces of network
of livestock movements in Great Britain. The critical dynamics
of a single epidemic in a network include the epidemic
threshold [7], [8], the dependency on network topology [9] and
epidemic detection [10]. Among them, Ganesh et. al. derived
bounds for the expected extinction time of a Susceptible-
Infected-Susceptible (SIS) epidemic in terms of the network
size [9], discovered a dichotomy of behaviors with respect to
the relation between the effective infection rate and spectral
radius of the network, and examined the bound for networks
with different topologies, including star, hypercube, complete
graph etc. Regarding the same SIS model, Krishnasamy et. al.
studied the same bound for bounded susceptibility [11] setting.

Though the epidemic propagation of conflicting informa-
tion remains an unsolved problem, there have been studies
in the problem of competing epidemics, which also involves
multiple epidemics. Originated in rivalry products advertising,
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different propagation models have been developed to describe
this problem. Based on whether the network is viewed as a
homogeneous population, or a complex ensemble of correlated
individuals, different levels of abstractions are adopted. The
former is commonly referred to as population dynamics, in
which the assumption of well-mixing population applies, while
the latter as network dynamics [12], in which the large state
space impedes theoretic analysis. Despite the propagation
models and levels of abstraction, research questions revolve
around the time-invariant (steady) state of the network. For
instance, whether the stronger epidemic prevails, if there is a
co-existence condition in terms of infection rates, and measures
to intentionally suppress one of the two. Among those, N.
Pathak et. al. found the invariant distribution of the size of
the infected set of a network under multiple epidemics, with
a generalized linear threshold model [13]. Prakash et. al. [14]
proved that the epidemic with stronger propagation proper-
ties will eliminate the weaker one in steady state under the
SI1I2S model (population dynamics) with complete mutual
immunity, by analyzing the stability of the system differential
equations. Based on the same model, Beutel et. al. [15] found
the co-existence condition for similar SI1I2S model with
partial mutual immunity. Lin et. al. [16] considered from both
population and network dynamics perspectives, and utilized
Mean-Field Approximation (MFA) to enable asymptomatic
and numerical analysis for the latter. Newman [17] found
the coexistence threshold for two competing epidemics on
networks with known degree distributions, under Susceptible-
Infected-Recovered (SIR) model. In addition to the aforemen-
tioned non-interfering propagation models, interactive models
that allow interference during the propagation process, are
also developed to study influence maximization [18] strategy,
quarantine policy [19] and other counter-measures against
viral epidemics. Among those propagation models, both linear
threshold model and SIS model allow the belief of an individ-
ual to switch back and forth, which is not suitable to study this
problem. The reason behind this is perceptions of individuals
will change permanently by the more compelling information.
The SIR model does not capture the epidemic propagation
property of the antidote information in this problem. Interactive
models assume interference frequently applied to entities in the
system, which is difficult to achieve considering the scale of
current OSNs. Therefore, we are motivated to develop a new
information propagation model in the study of consequences
of conflicting information propagation.

On the avenue of OSNs, for almost every post, there
is always conflicting, either positive or neagive information.
Even breaking news from authoritative agencies may contain
misleading information so that corrections have to be released
later to control the misleading information from spreading,
let alone all kinds of rumor and anti-rumor posts. Ridiculous
as it may sound, a rumor #AppleWave#, that iPhones can
be charged in a microwave oven after updating to iOS8,
emerged on Twitter [20] when iOS8 was introduced, and
claimed several victim phones. Later, posts of burnt iPhones
went viral and eventually eliminated the rumor. Now recall the
prior example of the Reddit suspect hunt. Though the number
of individuals involved may differ, similarities reside in the
pattern of propagation: First, a piece of negative information
spreads in the network, prone to cause an epidemic, which
resembles the behavior of an infectious virus. Then another

piece of conflicting positive information with higher credibility
is injected, functioning as replicative antidotes. Since the two
pieces are conflicting, even contradictory on the same subject,
they share the same group of potential recipients (individuals in
the network), and the same propagation media (communication
links). As a preliminary research, we follow the conventional
rough assumption that one contact from the virus/antidote is
powerful enough to change the state of an individual, i.e. the
perception of that individual. To better describe the process
of an individual adopting an idea, a more delicate multi-state
model, like [16], is needed for further in-depth study.

The open question is how the conflicting information
propagates, specifically, how much time it takes the negative
information (or, virus) to disappear and how the perceptions
(state) of individuals change during this process, both about
transient states of the network. To answer these questions, we
propose a new Susceptible-Infected-Cured (SIC) propagation
model to study the epidemic behaviors of conflicting informa-
tion propagation. For the first question, with both theoretical
and numerical analysis, we found that the distinction time of
the negative information remains constant in a clique network,
while for a star network it is O(log I0) with respect to the
initial infection count I0. The half-life time is O( 1

I0
) and

O(log 1
I0

) for clique and star networks respectively. With
respect to the size of the network n, distinction time and
half-life time in a clique network are both O( logn

n ), and both
O(n) for that of a star network. For the second question, we
provide a method to acquire the conditional infection count
distribution.

The rest of the paper is organized as follows. First we
introduce the SIC propagation model in Section II. Then we
describe the new metrics for the investigation of transient
properties of information propagation under the SIC model,
followed by the derivation of the upper bounds for simple
networks in Section III. Then we estimate the conditional
infection count with simulation results in Section V. Finally
we conclude this paper in Section VI.

II. SIC INFORMATION PROPAGATION MODEL

In this section, we elaborate in detail the terminologies,
assumptions and definitions in the SIC propagation model.

A. Preliminary SIC Propagation Model

The SIC information propagation model determines the
dissemination process of an infectious virus under the presence
of an infectious antidote in a network. By infectious, we mean
both the virus and the antidote can propagate along edges
together with data transmitted by individuals.

1) Network G(V, E): The network is described as an undi-
rected, connected and static graph G(V, E), whose vertex set V
corresponds to nodes in a network, and edge set E corresponds
to links. Since G is undirected, edge e(i, j) = e(j, i), i, j ∈ V .
For any vertex v ∈ V , its neighborhood N (v) := {u ∈
V| (u, v) ∈ E} is defined as all the vertices that v can exchange
data with. Being static implies the system is closed, hence size
of the network n(G) = |V| (noted as n for the ease of notation)
remains the same during the whole time.
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Fig. 1: State Transition Diagram of SIC Epidemic Model.

2) Propagation Model: Let x be a virus that is able to
infect every vertex v ∈ V , and ax be the antidote that is able to
cure any vertex infected by x and immune susceptible vertices
from x. For such x and ax, each vertex is associated with a
state, which can be susceptible to x, infected by x or cured
by ax. Let r.v. Xx

v (t) : Ω → Λ, where Λ = {0, 1,−1} ⊂ R,
denote the state of vertex v ∈ V regarding virus x at time t.
Xx
v (t) takes value in {0, 1,−1}, with 0, 1,−1 corresponding

to susceptible, infected and cured state respectively.

Vertex v is said to be susceptible to virus x if.f. it has not
been infected by virus x nor cured by antidote ax. Susceptible
vertices will remain in susceptible state until an infection action
or a curing action is conducted upon it. Vertex v is said to be
infected by virus x (or a copy of x is passed to v) at time
ti if.f. limt→t+i

Xx
v (t) = 1 and limt→t−i

Xx
v (t) = 0. Vertex v

is said to be cured at time tc if.f. limt→t+c X
x
v (t) = −1 and

limt→t−c X
x
v (t) ≥ 0.

Due to infections and curings, the state of an individual
changes over time. Fig. 1 shows the possible state transitions
of a vertex in the network. The transition from susceptible (S)
to infected (I) is caused by an infect action, while that from
S or I to cured (C) are caused by a curing action. Note that
there is no transition from C to I or C to S, indicating cured
is the only absorbing state. Since the network is connected,
lim
t→∞

Xx
i (t) = −1, ∀i ∈ V .

At any time t, the vertex set V decomposes into three
disjoint subsets according to states: the susceptible set Sx(t) =
{v ∈ V : Xx

v (t) = 0}, the infected set Ix(t) = {v ∈
V : Xx

v (t) = 1} and the cured set Cx(t) = {v ∈
V : Xx

v (t) = −1}, i.e. Sx(t) ∪ Ix(t) ∪ Cx(t) = V . When
infected, vertex v will pass copies of virus x to its susceptible
neighbors N x

S (t, v) = N (v) ∩ Sx(t). When cured, vertex v
will pass copies of ax to its non-cured neighbors N x

NC(t, v) =
N x
S (t, v) ∩ N x

I (t, v) = (N (v) ∩ Ix(t)) ∪ (N (v) ∩ Sx(t)). At
time t, for an infected vertex u ∈ Ix(t), let t+ sxu(v) denote
the time that vertex u infects one of its susceptible neighbors,
v ∈ NS(t, v). Similarly for a cured vertex u ∈ Cx(t) and
one of its susceptible or infected neighbor v ∈ N x

NC(t, v), let
t+sax

u (v) denote the time that vertex u pass a copy of antidote
to vertex v and cures (or immunes) it.

With these terminologies, we describe two assumptions in
the SIC propagation model. (i) Virus x can not infect a vertex
that has already been exposed to ax. Or ∀ ε > 0, P[Xx

i (t+ε) =
0|Xx

i (t) = −1] = 0, P[Xx
i (t + ε) = 0|Xx

i (t) = 1] = 0 and
P[Xx

i (t + ε) = 1|Xx
i (t) = −1] = 0. This is later referred to

as the asymmetrical immunity assumption; (ii) For any vertex
u, random intervals {sxu(v)}v∈NS(t,v) and {sax

u (v)}v∈NNC(t,u)

are two groups of r.v.’s satisfying (1) pairwise independent; (2)
exponentially distributed with a time-invariant parameter.

Remark 1: Assumption (ii) may seem inconsistent with
observations. For example, during midnight to dawn, people

exchange information less frequently than during day time,
resulting in a slower dissemination of both virus and antidote.
However, without the assumption of time homogeneity, explicit
theoretical analysis will be difficult, if at all possible. There-
fore, we assume the distribution parameter does not change
over time, as in most research on epidemics [9], [11], [14].

Those two assumptions allow us to define virulence (also
known as the infection rate) of a virus and the curing rate of
an antidote, to measure the propagation intensity of a virus or
an antidote, or equivalently, how frequently a specific virus or
an antidote is exchanged in contacts.

DEFINITION 1: For vertex u ∈ Ix(t), v ∈ N x
S (t, v), the

virulence βxu,v of virus x on edge e(u, v), is defined as

βxu,v := lim
t→0+

P(sxu(v) ≤ t)
t

.

Remark 2: Consider a network composed of only two con-
nected vertices V = {u, v}. Given Xx

v (t) = 0 and Xx
u(t) = 1,

P(Xx
v (t+∆t) = 1|Xx

v (t) = 0) = ∆t·βxu,v·1{Xx
u(t)=1}+o(∆t),

which indicates that virulence βxuv describes how much the
probability of a susceptible vertex v gets infected during
interval ∆t changes, due to its contact with vertex u, so βxuv
is also known as the infection rate of virus x on edge e(u, v).
With assumption (ii), it is clear that sxu(v) ∼ Exp(βxu,v), and
E(sxu(v)) = 1

βx
u,v

. For a certain virus x, βxu,v is an innate
attribute of edge e(u, v), describing the ability of virus x to
infect others (or the propagation speed) via edge e(u, v). Note
that when simulating this process in discrete time, quantity
βxu,v actually equals to the probability P(sxu(v) ≤ t) that vertex
v is infected by u during one time step.

DEFINITION 2: For vertex u ∈ C(t), v ∈ N x
NC(t, v), the

curing rate γxu,v of antidote ax on edge e(u, v), is defined as

γxu,v := lim
t→0+

P(sau(v) ≤ t)
t

.

DEFINITION 3: Infection count, denoted by I(t), is de-
fined as the size of the infected set Ix(t) at time t.

Ix(t) = |Ix(t)| =
∑
v∈V

1{1}(Xx
v (t)).

DEFINITION 4: Cured count, denoted by Cx(t), is de-
fined as the size of the cured set Cx(t) at time t.

Cx(t) = |Cx(t)| =
∑
v∈V

1{−1}(Xx
v (t)).

For a fixed time t, Ix(t) and Cx(t) are r.v.’s on mea-
surable space (Ωn, 2Ωn

,P). Allowing t to take value in do-
main Γ will result in two random processes {Ix(t)}t∈Γ and
{Cx(t)}t∈Γ, driven by the defined SIC dynamics. From the
state transition diagram, it is easy to see that limt→∞Xx

i (t) =
−1, ∀i ∈ V , the system will stabilize at all-cured state, that
is, limt→∞ Cx(t) = n. We then follow the convention and
define Xx

v (t) = limt→t+i
Xx
v (t), then Ix(t) and Cx(t) are both

right-continuous. Cx(t) is a counting process, satisfying (i)
Cx(t) ≥ 0; (ii) Cx(t) ∈ N0 (:= N∪{0}); (iii) non-decreasing.

From this section on, unless indicated otherwise, we
suppress x in Xx

v (t), Sx(t), Ix(t), Cx(t), and write
Xv(t), S(t), I(t), C(t) instead, when no confusion is raised.
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Fig. 2: An Example of a Simple Newtork under SIC Dynamics.

B. Information Propagation under SIC Dynamics

Fig. 2 shows an example of a simple network with 12
vertices under an SIC dynamics. As shown in Fig. 2(a),
initially before antidote is injected in the network, infected
set {v1, v2, v3, v5, v9, v11} (the red shaded area) includes
I0 = 6 infected vertices (colored in red). At t0, one unit
of antidote is given to vertex v8, and cures it immediately,
so C(t0) = {v8}, as blue shaded area in Fig. 2(b). The
infected set remains unchanged at t0, limt→t−0

I(t) = I(t0) =
{v1, v2, v3, v5, v9, v11}. Fig. 2(c-d) illustrate how states of
vertices evolve as virus and antidotes propagate. When the
network is observed at t = t1, the cured vertex v8 has passed
a copy of antidote to its susceptible neighbor v7 and infected
neighbor v9 respectively, so that both of them are in cured state
by t1. From t1 to t2, the cured set C(t2) continues to grow
while the infected set I(t− 2) is forced to shrink. Eventually
the virus is extinct at τe, and I(τe) diminished to φ.

To quickly validate our model, we analyzed the search
interests data1 of OSN mySpace and Facebook during 2007 to
2011, in which the former is modeled as the virus, while the
latter as the antidote, considering their precedence and relative
popularity. Search interest indicates the number of users. As
shown in Fig. 3, normalized search interests of mySpace and
Facebook (bars) can be well approximated by an SIC epidemic
(dashed lines) on a fully connected network.

Since both OSNs are designed for the same group of
users, and people have limited energy to spend on OSNs, it
is reasonable to assume that if one is interested in one of
the two, he/she will not stay active on the other. Moreover,
one’s choice is influenced by both one’s friends and the size
of current user group. In addition, due to a better experience
and increasing popularity of Facebook, people who chose
Facebook will probably not switch back to mySpace. However,
new users, who hasn’t tried either, are prone to pick up the first
product they encounter. These characteristics coincide with the
asymmetrical immunity assumption of our SIC dynamics. On
the other hand, influence of these two OSNs are openly pre-
sented to the whole network (current users or potential users)
by the Internet. Therefore, the network can be considered as
fully connected. Let t0 be the beginning of year 2007, when
mySpace had already gained some attention (mySpace started
in 2003), while Facebook has just expended from universities
to the general public (Facebook started on September 26,

1Search interests data are available on Google Trends,
https://www.google.com/trends/. Search interests are measured by the
search counts during a certain period of time (in this case a week), and are
further normalized by the search counts of Facebook in January 2011 to
mimic a static network.
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Fig. 3: Search Trends of mySpace and Facebook.

2006). The normalized search interest in January 2007 for
mySpace is I0 = 10, while that for Facebook is C0 = 1. Note
that (i) we are only interested in this time period, because
it captures the process of Facebook taking over the market;
(ii) we normalized the search counts over the search count of
Facebook in January 2011 when the portion of mySpace fell
below 1%, i.e. can be treated as extinct.

III. TRANSIENT PROPERTIES OF INFORMATION
PROPAGATION

Though different metrics are defined in previous research
of epidemics, most of them focused on the steady state, that is,
the invariant final size of the infected set. The most commonly
used technique is to describe the system with differential equa-
tions, then find the equilibrium by determining the eigenvalues
of the Jacobian matrix. As commented in [12], it is worth
noticing that transient behavior of information propagation
via epidemics has received much less attention. Therefore,
instead of the asymptotic behavior, we aim to study the
transient properties of conflicting information propagation in
simple networks, with the proposed SIC model. Understanding
these properties can clearly demonstrate epidemic behaviors of
information propagation in a network.

In an SIC dynamic on the network G with the initial states
as in the previous section, we focus on how size of the infected
set I(t) and cured set C(t), evolve over time t.

A. Extinction Time and Half-Life Time

For a network G under an SIC dynamic, virus x is the
information to be propagated, and antidote ax is the coun-
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Fig. 4: Extinction Time and Half-life Time udner SIC Dynamics.

termeasure, which exhibits an obstructive effect on the virus
epidemic process. To observe the impacts of positive and
negative information propagation, we define two new metrics,
extinction time and half-life time as follows.

DEFINITION 5: In an SIC dynamics of virus x and an-
tidote ax, the extinction time of virus x, denoted as τe, is
defined as the time that the infected set I(t) becomes empty,
subjecting to the constrain that it is the first time after t0.

τe := inf{t > t0 : I(t) = φ}.

Event {I(t) = φ} is equivalent to {I(t) = 0}, so τe is
a r.v. on measurable space (Ωn, 2Ωn

,P). τe takes value in
(t0,∞). From the state transition diagram and the fact that
G is connected, the infected set will surely become empty if
we observe long enough time, so P(τe < ∞) = 1. Without
loss of generality, let t0 = 0, I(t0) = I0. All the events we
discuss afterwards happen in the observation window [0, τe].

DEFINITION 6: For an infection count random process
{I(t)}t∈[0,τe] in an SIC dynamic, the half-life time of the virus
epidemic, denoted as τ 1

2
, is defined as the last time that event

{I(t) ≥ 1
2I0} happens in [0, τe].

τ 1
2

:= sup{t ∈ [0, τe] : I(t) ≥ 1
2
I0}.

The term half-life is from chemical kinetics, which de-
scribes the decay of discrete entities. Let tmax denote the time
that infection count I(t) reaches its peak. In SIC dynamics,
though I(t) may not be monotone in [0, tmax] or [tmax, τe],
the trend of infection count in these two intervals are increas-
ing and decreasing in general. Note that unlike in chemical
kinetics, where half-life is the mean, we define half-life as the
actual time that event {I(t) ≥ 1

2I0} happens for the last time.
Similarly as τe, we can show that τ 1

2
: (Ωn, 2Ωn

,P)→ [0, τe)
is a r.v. and we denote its mean as E[τ 1

2
]. Clearly, we always

have 0 ≤ tmax < τ 1
2

. Intuitively, τ 1
2

is the time required for the
infection count function I(t) to drop below half of its initial
value (I0/2) and never exceed I0/2 again, so it reflects how
fast the infection count decreases under the antidote epidemic,
i.e. the efficiency of the antidote dissemination.

Fig. 4 illustrates the implication of extinction time and
half-life time for the same example in Fig. 2, where a red
arrow corresponds to an infection, and a blue one represents
a curing event. At τ 1

2
, the infection count of the system drops

to 3 (= 1
2I(0)), and never exceeds 3 again, which means the

infection epidemic has been restricted to a limited region, or
equivalently, the virus epidemic is under control. At τe, the
infected set is empty and the virus has been eliminated.

B. How Many Nodes Have Received the Data?

Ideally, we are interested in the distributions of infection
count I(t) and cured count C(t), which provide sufficient
information to understand the trend of the information prop-
agation. Recall counting process {C(t)}t≥0. The evolution
process of information propagation can be described by occur-
rences of infection and curing events. Hence if all events are
recorded in the order of their occurrences, we have a path from
(C0, I0) to (n, 0) on the [0, n]× [0, n] ⊂ R2 plane. As a result,
the temporal evolution of the network state can be described by
a discrete time Markov chain {(Ck, Ik)}k∈N0 on state space
B = {(c, i) ∈ [0, n] × [0, n] | c + i ≤ n, c, n ∈ N0}, which
captures the trend of an SIC dynamic in a time-compressing
manner. This process consists of two correlated components:
{Ck}k∈N0 and {Ik}k∈N0 . Since the former is a counting
process, we assume that the network controller (administrator)
can somehow trace the cured count. Then the state of the
network is fully described by the distribution of the infection
count, so we define the conditional infection count distribution
to measure the trend of SIC dynamics.

DEFINITION 7: Given Markov chain {(Ck, Ik)}k∈N0 on
B. Let {Bc}nc=0 be a partition of state space B, where Bc =
{(c, i) | i ∈ [0, n − c]}. Let τBc = min{k ∈ N | (Ck, Ik) ∈
Bc} denote the hitting time of set Bc ∈ B. The conditional
infection count distribution2 πc(i), given the curing count at
that time equals to c, is defined as

πc(i) :=
P0(IτBc

= i)
P0(τBc

<∞)
,

where P0(·) = P(· | (C0, I0) = (c0, i0)) denotes the proba-
bility that the Markov chain {(Ck, Ik)}k∈N0 visits a state, on
condition that it starts from the initial state (c0, i0) ∈ B.

Note that the denominator P0(τBc
< ∞) is used for

normalization, such that πc(·) is a probability measure. Then

πc(i) =
P0(IτBc

= i)∑n−c
j=0 P0(IτBc

= j)

=

∑2(n−C0)−I0
k=c−C0

P0(Ik = i, Ck = c)∑n−c
j=0

∑2(n−C0)−I0
k=c−C0

P0(Ik = j, Ck = c).
(1)

Taken two simple network topologies, complete graph
(clique) and star, into consideration, this paper studies the
transient behavior of the SIC dynamics through perspectives
of both time and count distribution.

2τBc = ∞ when c < C0. In this case, let πc(i) = 0, ∀i. Then πc is
a zero measure, but the states involved are only finite, and easy to discuss.
Otherwise it is always a probability measure, i.e. a distribution.



6

IV. BOUNDED INFORMATION DISSEMINATION IN SIMPLE
NETWORKS

In this paper, we are interested in the bounded properties
of information propagation by controlling epidemic dynamics.
For example, to stop or cease dissemination of negative infor-
mation in a network, positive information propagation can be
carried out by injecting an antidote into the network in the
SIC model. Here we study the upper bounds of extinction
time and half-life time for two simple network topologies,
clique and star networks3. We follow the definitions of network
models that are commonly used in epidemiology and assume
that the network is homogeneous in both cases. This means
both infection rate β and curing rate γ are constant on every
edge of the network.

A. Extinction and Half-Life Time in Clique Networks

Consider first the SIC dynamics on G = Kn, the clique
of n vertices. ∀vi, vj ∈ V (Kn), i 6= j, e(i, j) ∈ E(Kn) and
hence |E(Kn)| = n(n − 1)/2. With full connectivity, clique
is used to describe a homo-mixing and well-connected group.
A real world example of network structure that resembles a
clique can be a household, a neighborhood or a community,
within which people are acquainted with each other. Pairwise
adjacency in a clique allows us to bound the extinction time
τe and half-life τ 1

2
with the initially distributed antidotes C0

and initial infection count I0, via results from deterministic
epidemic model and Continuous Time Markov Chain (CTMC).

THEOREM 1: For an SIC epidemic with curing rate γ,
in action on a clique with n nodes, suppose at t = 0, the
initial infection count is I0 and antidotes are disseminated to
C0 vertices. The extinction time τe and half-life time τ 1

2
can

be bounded above by the following:

E(τe) ≤
1
γn

(
2 + ln

(n− 1)(n− C0)
C0 + 1

)
(2)

E(τ 1
2
) ≤ 1

γn

(
2 + ln

(n− 1)(n− 1− I0/2)
I0/2 + 2

)
; (3)

when C0 ≥ 2, we also have

E(τe) ≤
2

γ(n− 1 + C0)
ln(n− C0) (4)

E(τ 1
2
) ≤ 2

γ(n− 1− I0/2 + C0)

(
1 + ln

n− C0

I0/2 + 1

)
. (5)

Proof: {C(t)} is a CTMC with transition rate γc(n− c),

c→ c+ 1 at rate γc(n− c) ∀ C0 ≤ c ≤ n− 1,

and hence E(∆c
C) = 1

γc(n−c) , ∀ C0 ≤ c ≤ n − 1, since r.v.
∆c
C is Exponentially distributed with parameter γc(n− c).

3The lower bounds are not studied, partially because the upper bounds are
of particular interest to the boundary effects of data, and partially because the
proposed SIC model is insufficient to study the lower bounds.

Then by Lemma 2 (see Appendix), we have

E(τe) ≤ E
( n−1∑
c=C0

∆c
C

)
=

n−1∑
c=C0

1
γc(n− c)

=
1
γn

(Hn−1 −HC0 +Hn−C0)

≤ 1
γn

(
1 + ln(n− 1)− ln(C0 + 1) + 1 + ln(n− C0)

)
=

1
γn

(
2 + ln

(n− 1)(n− C0)
C0 + 1

)
,

where Hn is the Harmonic Number, and ln(n + 1) < Hn ≤
ln(n) + 1. Similarly, the same method can be used to derive
the upper bound of half-life time for clique Kn.

E(τ 1
2
) ≤ E

n−1−I0/2∑
c=C0

∆c
C

 =
n−1−I0/2∑
c=C0

1
γc(n− c)

=
1
γn

(Hn−1−I0/2 −HI0/2+1 +Hn−1)

≤ 1
γn

(
1 + ln(n− 1− I0/2)− ln(I0/2 + 2) + 1 + ln(n− 1)

)
=

1
γn

(
2 + ln

(n− 1)(n− 1− I0/2)
I0/2 + 2

)
.

Similarly, for C0 ≥ 2, we can obtain the presented results.

Theorem 1 provides upper bounds for extinction time and
half-life time for information dissemination in clique networks.
It indicates that as size of the network n grows, both extinction
time and half-life time of the same virus with the same initial
condition will grow with O( logn

n ). More interestingly, as the
initial infection count I0 increases, the extinction time remains
the same, while half-life time decreases as O(log 1

I0
). As for

the impacts of the propagation parameters, both quantities are
not dependent on the infection rate β, but are O( 1

γ ).

Fig. 5 and 6 show the extinction time and half-life time
with simulation results (shown as solid lines) and the upper
bounds derived with different initial conditions, respectively.
For each group of input parameters, the simulation has been
run for 1000 times to get the ensemble mean. As shown in
Fig. 5(a) and (b), the extinction time of an SIC epidemics on a
clique depends on the number of antidote units (C0) distributed
at time 0, and remains unchanged as initial infection count
I0 increases. However, there is a noticeable gap between the
simulation results and the bound when I0 ≤ 5. The reason
behind this is that when the initial infection count is relatively
small, the probability that the virus epidemic never takes off
is large, especially when the curing rate is high, for example,
the gap is larger in 5(a) when γ = 0.001 than 5(b) when
γ = 0.0005. As shown in Fig. 6, the tendencies of half life
of the virus are correctly described by the bounds as initial
infection count I0 increases. However, due to the granularity
issue of the simulation, the upper bound for condition C0 = 1
is slightly less than the actual half life, as can be seen in 6(a)
and 6(b), the blue dashed lines are under the blue solid ones. To
be more specific, our analysis is on continuous time domain,
and thus it is impossible to have two events happen at an exact
time point, while in simulation it has to be in discrete time and
to better simulate the continuity of time, the number of time
steps needed will be huge, resulting in a lengthy simulation.
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Fig. 5: Extinction Time of Information in a Clique Network.
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Fig. 6: Half-life Time of Information in a Clique Network.

B. Extinction and Half-Life Time in Star Networks

Now we consider the case of a same SIC dynamic in a star
network with one hub v1 and n− 1 peripheral vertices.

THEOREM 2: For an SIC epidemic over a star network in
which the initial infection count satisfy I0 ≥ 2, the expected
extinction time and half-life follow the following bounds:

E(τe) <
1
γ

[ 1
C0

+ 1 + ln(I0 − 1)
]

+
β

γ

∞∑
k=1

1
C0γ + kβ

·
(n− C0 − I0
n− C0 − 1

)k
(6)

E(τ 1
2
) <

1
γ

[ 1
C0

+ 1 + ln(
I0 − 1
I0/2

)
]

+
β

γ

∞∑
k=1

1
C0γ + kβ

·
(n− C0 − I0
n− C0 − 1

)k
. (7)

Proof: I0 ≥ 2 indicates that the hub is infected at t0 =
0. Let r.v. τ0 denote the time when the hub is cured, then
I(t) is non-increasing after τ0. Let ∆ denote the number of
new infections until τ0, Tk denote the time that the cured hub
has disseminated antidotes to k infected peripheral vertices.
Equivalently, Tk is the maximum value of k i.i.d exponential
r.v.’s with parameter γ. So E(Tk) = 1

γHk, where ln(k+ 1) <
Hk ≤ 1 + ln k. Then we write the expected extinction time,
E(τe) = E(τ0) + E(T∆+I0−1), where τ0 ∼ Exp(C0γ), with
PDF fτ0(t) = C0γe

−C0γt, therefore E(τ0) = 1
C0γ

. Therefore

E(T∆+I0−1) = E(E(T∆+I0−1|∆))

=
1

γ

n−C0−I0X
k=0

Hk+I0−1 · P(∆ = k)

<
1

γ

n−C0−I0X
k=0

“
1 + ln(k + I0 − 1)

”
· P(∆ = k).

Let g(k) = ln(k + I0 − 1), which means g(·) is concave
in [1, n− C0 − I0]. Then

E(T∆+I0−1) <
1
γ

+
1
γ

E(g(∆)) =
1
γ

+
1
γ

E(E(g(∆)|τ0))

=
1
γ

+
1
γ

∫ ∞
0

E(g(∆)|τ0 = t) · fτ0(t)dt

Jensen
≤ 1

γ
+

1
γ

∫ ∞
0

g(E(∆|τ0 = t)) · fτ0(t)dt.

Now consider r.v. E(∆|τ0). Since the infections of dif-
ferent susceptible vertices are mutually independent, it is not
difficult to find that ∆ obeys Binomial distribution B(n −
C0 − I0, 1 − e−βt), given fixed τ0, that is, P(∆ = k|τ0 =
t) = P(k out of n−C0− I0 vertices are infected before t) =(
n−C0−I0

k

)
(e−βt)n−C0−I0−k(1−e−βt)k. Therefore E(∆|τ0 =

t) = (n− C0 − I0) · (1− e−βt). And we have

E(T∆+I0−1) ≤ 1

γ
+

1

γ

Z ∞
0

g((n− C0 − I0) · (1− e−βt)) · fτ0(t)dt.

By using function g(k) and derivation, we obtain

E(T∆+I0−1) ≤ 1

γ

`
1 + ln(I0 − 1)

´
+
β

γ

∞X
k=1

1

C0γ + kβ
·
“n− C0 − I0
n− C0 − 1

”k
.

Therefore,

E(τe) = E(τ0) + E(T∆+I0−1)

<
1

γ

ˆ 1

C0
+ 1 + ln(I0 − 1)

˜
+
β

γ

∞X
k=1

1

C0γ + kβ
·
“n− C0 − I0
n− C0 − 1

”k
Similarly, when considering the half-life time, at τ0, there

are ∆ + I0 − 1 peripheral vertices that are in the infected
state. Thus T∆+I0/2−1 = t is when there are I0/2 infected
vertices left in the peripheral area, or equivalently, ∆+I0/2−1
out of ∆ + I0 − 1 i.i.d exponential r.v’s are less than t. Let
g′(k) = ln k+I0−1

I0/2
. Then we have

E(τ 1
2
) = E(τ0) + E(T∆+I0/2−1)

Jensen
<

1

C0γ
+

1

γ
+

1

γ

Z ∞
0

g′((n− C0 − I0) · (1− e−βt)) · fτ0(t)dt

=
1

γ

ˆ 1

C0
+ 1 + ln(

I0 − 1

I0/2
)
˜

+
β

γ

∞X
k=1

1

C0γ + kβ
·
“n− C0 − I0
n− C0 − 1

”k
.

Theorem 2 allows us to estimate the extinction time τe and
half-life τ 1

2
of the virus in a star network. Take τe for example.

Though the sum of the series { 1
C0γ+kβ ·

(
n−C0−I0
n−C0−1

)k
}k∈N is

hard to calculate, as k → ∞, the term of this series goes to
zero faster than an exponential decay. Therefore, the sum can
be estimated by summing up first few (finite many) terms. In
addition, it reveals an interesting property of the star topology,
that the hub is of great importance because all the copies
of antidote or virus are passed through the hub except for
the initial distribution of antidote at t0 = 0. As the size of
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Fig. 7: Extinction Time of Information in a Star Network.
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Fig. 8: Half-life Time of Information in a Star Network.
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Fig. 9: Impact of Network Size n on Extinction Time and
Half-life Time in both Clique and Star Topology.

network n increases, the extinction time and half-life time
grow as O(log n), due to the second term in Eq. (6) and (7).
And as the initial infection count I0 increases, the extinction
time grows as O(log I0), while half-life time decreases, as
O(log 1

I0
). Theorem 2 also indicates that both quantities are

not dependent on the infection rate β, but are O( 1
γ ).

Fig. 7 and 8 show the extinction time and half-life of an
SIC dynamics on a star with different initial conditions. As
shown in Fig. 7, the extinction time of SIC dynamics on star
topology grows slower than that of clique topology as initial
infection count I0 increases. It is worth noticing that even the
rates (both infection and curing) are much higher than of clique
topology, it takes much longer to eliminate the virus or force
the infected count to be cut in half in star networks.

Fig. 9 shows the impact of network size n on τe and τ 1
2

for both topologies. We fix C0 = 1, I0 = 10, and examined
β = γ = 0.01 for star topology and β = γ = 0.0001 for clique
topology, because otherwise the two temporal quantities will
be dramatically apart and comparison will be difficult. Both the
simulation results and the bounds indicate that τe and τ 1

2
are

O( logn
n ) for clique networks, while O(log n) for star networks.

V. INFECTION AND CURED COUNTS IN SIMPLE
NETWORKS

Recall that we are interested in conditional infection count
distribution {πc}c∈[0,n], because they provide information to
illustrate the transient behavior of the SIC epidemic in a
network.

The transient behavior of chain {(Ck, Ik)}k∈N0 depends on
two factors: (i) one-step transition probability, which includes
information of network topology, virus and antidote; (ii) initial
state (C0, I0). Let pc,i, rc,i, qc,i denote the probability that the
next event is an infection, a curing of a susceptible vertex or
a curing of an infected vertex respectively, when the current
state of the chain is (c, i). p(·), r(·) and q(·) are functions
of infection rate matrix βββ = {βi,j}i,j∈V , infection rate matrix
γγγ = {γi,j}i,j∈V 4, infection count i, and cured count c.

We refer to P = (pc,i)c,i∈B , R = (rc,i)c,i∈B and Q =
(qc,i)c,i∈B as partial transition (probability) matrices5, since
all together they uniquely determine the transition probability
of the system. Based on those matrices, we give the following
lemma to derive the conditional infection count distribution for
a given initial state (C0, I0).

LEMMA 1: For an SIC dynamics on a n-vertex network
with partial transition matrix P, R and Q, and initial state
(C0, I0). Let pc = {pc,0, pc,1, . . . pc,n}, rc and qc denote
the c-th column vector of matrices P , R and Q respectively.
Let θc,i = P0(IτBc

= i) denote the probability that chain
(Ck, Ik)k∈N0 ever hits (c, i), and vector θθθc = {θc,i|i ∈ [0, n]}.
Then

θθθC0 =pProdC0
(8)

θθθc+1 =[θθθc ◦ rc +DSh(θθθc ◦ qc)] ◦ (111 + pProdc ), (9)

where (· ◦ ·) denotes the Schur product of two vec-
tors, 111 denotes an all-one vector of length n + 1,
pProdc = {

∏n
i=0 pc,i,

∏n
i=1 pc,i, · · · pc,n} and DSh(qc) =

{qc,1, qc,2, · · · qc,n, 0} denote the acyclic down shifting opera-
tion of vector qc.

Proof: There is only one way to reach state (C0, I0 + k)
from initial state (C0, I0) in k steps, that is, through k
steps moving upward. Therefore, P((Ck, Ik) = (C0, I0 +
k)|(C0, I0)) = pC0,I0pC0,I0+1 . . . pC0,I0+k−1. Similarly, there
is only one way to get to state (C0 + k, I0 − k) from initial
state (C0, I0) in k steps, that is, through k steps moving
downward. So P((Ck, Ik) = (C0 + k, I0 − k)|(C0, I0)) =
qC0,I0qC0+1,I0−1 . . . qC0+k−1,I0−k−1. Then iteratively ap-
plying equation P((Ck+1, Ik+1) = (c, i)|(C0, I0)) =
P((Ck, Ik) = (c, i− 1)|(C0, I0)) ∗ pc,i−1 + P((Ck, Ik) = (c−
1, i)|(C0, I0))∗ rc−1,i+ P((Ck, Ik) = (c−1, i+ 1)|(C0, I0))∗
qc,i−1 will yield the results.

By plugging P0(IτBc
= i) = θc,i in Eq. (1), the conditional

infection count distribution πc(·) can be determined, allowing
us to see the evolving trend provided information of the cured
count.

As an illustration of the conditional infection count distri-
bution, we examined the aforementioned Facebook v.s. myS-
pace search interests data again with the estimated propagation

4Note that βi,j = γi,j = 0, ∀(i, j) /∈ E
5P , R and Q for a clique or star network are quite easy and hence omitted.
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Fig. 10: Search Trends of mySpace v.s. Facebook in Field Plot.

parameters. We first calculate the partial transition matrices
P, R and Q, and illustrate their influence on the trend with
vectors (black arrows in Fig. 10) indicating expected state
transition tendency. Then the achieved conditional infection
count distribution is shown by the background color, where the
darker the blue indicates the higher the probability. Data points
with red ‘+’ markers represent the real search data arranged
in the format of (Facebook, mySpace). All the data points
form a “trail” through the field, describing the evolution trend
of the dynamics, where the background blue shade (i.e. the
conditional infection count distribution data) indicates the area
where this trial is most probable to occur. As can be seen, the
estimated conditional infection count distribution coincide with
the collected data points, proving the validity of the proposed
SIC information propagation model.

VI. CONCLUSION

In this paper, we proposed an SIC information propagation
model to study the impact of conflicting information dissemi-
nation. For simple networks with clique and star topology, we
derived theoretical upper bounds for extinction time and half-
life time of data, and validated the results with simulations. In
addition, the conditional infection count distribution of an SIC
dynamic is analyzed with given initial state and propagation
parameters. We hope these will be useful in studying the
conflicting information propagation problem.

VII. APPENDIX

LEMMA 2: Consider a n-vertex network G(V, E) under an
SIC dynamic, with initial infection count I0 and cured count
C0. We have the following upper bounds for extinction time
and half-life time of the virus.

τe ≤
n∑

c=C0

∆c
C , (10)

and τ 1
2
≤
n−1−I0/2∑
c=C0

∆c
C . (11)

Proof: Lemma 2 comes from the asymmetric immunity
assumption. Since a cured vertex will never be infected again,
the cured count C(t) is non-decreasing, then the half-life time
τ 1

2
is bounded above by the spreading time of the antidote.

Recall our definition of time interval between curings ∆c
C =

τ cC − τ
c−1
C . At t1 = inf{t > 0 : C(t) = n − I0/2}, I(t1) +

S(t1) = n−C(t1) = I0/2, therefore I(t) ≤ I0/2,∀t ≥ t1.
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