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Abstract—Online Social Networks (OSNs) is taking over
television and newspapers, to be the dominant information
dissemination option. The growing involvement of individuals
create the situation that colliding, even contradicting information
coexist and propagate in the same network, which gives rise
to an interesting question: how will the conflicting information
propagate? To answer this question, the propagation process is
described to be an Susceptible-Infected-Cured (SIC) epidemic, and
we propose an inference algorithm to study the transient behavior
of the competing propagation processes in connected networks.
Moreover, we provide an analytic method to derive the conditional
infection count distribution for networks with special topologies,
as a step further to understand the evolution. A trace collected
from the Internet is analyzed to validate our model and methods.

I. INTRODUCTION

As the advance of the networking technology, every in-
dividual is somehow connected with others via the Internet.
The enhanced connectivity among individuals enables the rapid
spread of information across the network. In the mean time,
the growing involvement of individuals in the information
production, exchange and consumption processes, contributes
to the co-existence of colliding, conflicting, even contradicting
information in OSNs, for example, posts with different opin-
ions about an incident, and news versus articles about “the
other side of the story”. One interesting phenomenon worth
noticing is, the latter injection of conflicting information into
the same network affects the spread of the prior information.

Such phenomenon can be seen in various OSNs. On June
17th, 2015, in Wechat, a Chinese OSN formed mainly by close
friends and family members, a post (“negative” information)
advocating death sentence to anyone involved in child traf-
ficking caused an epidemic spreading (540,000 re-posts by
the 18th [1]). On the next day, a more rational post holding
the opposite point of view (“positive” and conflicting) started
to gain velocity (10,000 re-posts for the first day), while the
spreading of the prior extreme post decreased significantly.
Later news agency Sina revealed the advertisement nature of
this incitement: a link is hidden in the first post to help a
match-making website gain publicity. Another example is in
Reddit and Twitter, the Boston bombing suspect hunt versus
police clarification incident in April 2013 [2], in which the
later police release eliminated the former viral posts accusing
an innocent man based on a low-definition photo [3].
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In both cases, the later injected “positive” information
significantly affected the spreading of the former epidemic
“negative” information, resulting in the extinction of a potential
or on-going epidemic, which resembles distributing a replica-
tive antidote to control an infectious virus. A natural question
we will ask is how the latter “anti-rumor” kills the former
“rumor”, i.e. we want to study the evolution of the virus
propagation under the influence of the antidote propagation.

The exponential growth of re-posts in those examples
reminds us of the epidemic propagation models, which are
used to study disease [4], virus [5] failure [6] and information
propagation [7] in different networks. The problem of con-
flicting information propagation, for instance, virus v.s. fixing
patches, used to be modeled as a single epidemic problem,
while the dissemination effect of the conflicting information
is neglected. In this sense, two major categories of measures
have been studied. The preventing methods [8], [9] focus on
optimizing the network structure to prevent the epidemic from
breaking out, without prior knowledge of the epidemic, while
the controlling methods [10]–[12] are deployed to control the
epidemic spreading when the network is under attack. On the
other hand, the multiple epidemics competing problem has
been introduced from the rivalry products advertising or belief
propagation problems. Different propagation models have been
proposed to study the competition and co-existence of multiple
epidemics, in terms of time-invariant state of the network, for
instances, the final infected fraction, the epidemic threshold of
a large breakout, etc. To this end, a number of propagation
models are introduced to describe the competition of epi-
demics, including the generalized linear threshold model [13],
the Susceptible-Infected-Recovered (SIR) epidemic model,the
Susceptible-Infected-Susceptible (SIS) model, and its exten-
sion SI1I2S model [14]. All of the aforementioned research
focus on the asymptomatic analysis of population epidemics,
where individuals in the network are viewed as a whole and
influence of the topology is neglected.

For the conflicting information propagation problem, i.e.
how virus and antidote epidemics behave, specifically, how the
number of infected and cured individuals change, we adopted
the Susceptible-Infected-Cured (SIC) propagation model to
study the transient behavior of propagation processes in con-
nected networks with different topologies.

The rest of the paper is organized as follows. First we
introduce the system model and definitions of infection/cured
counts in Section II. Then in Section III, we provide an in-
ference method to estimate the expected infection/cured count
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for arbitrary connected networks, followed by the derivation of
conditional infection count distribution for connected networks
with two special topologies in Section IV. A trace from the
Memetracker [15] is analyzed for validation purpose in Section
V. Finally we conclude the paper in Section VI.

II. SYSTEM MODEL

The dissemination of conflicting information in a network
is modeled as the completion between an infectious virus x and
a replicative antidote ax, later referred to as the SIC propa-
gation model. It was first introduced in [16], but necessary
introduction is given here for the sake of completeness.

A. SIC Propagation Model

1) Network G(V, E): The network G(V, E) is time-
invariant, undirected and connected. For any vertex v ∈ V ,
let N (v) := {u ∈ V| (u, v) ∈ E} be the neighborhood of
v, which consists all of the vertices that can exchange data
(may contain virus or antidote) with v. The adjacency matrix
of network G is An×n = (au,v)u,v∈V , where n = |V| is the
order (size is used interchangeably) of the network.

2) Propagation Model: With respect to a virus and antidote
pair (x, ax), each vertex v is associated with a state, r.v.
Xv(t) : Ω→ {0, 1,−1}. The three possible states, susceptible
to x, infected by x and cured by ax, correspond to value
0, 1,−1 respectively. Actions that can change the state of a
vertex are infect by an infected neighbor and cure by a cured
neighbor. Based on states, V can be decomposed into three
disjoint time-varying subsets: the susceptible set S(t) = {v ∈
V : Xv(t) = 0}, the infected set I(t) = {v ∈ V : Xv(t) = 1}
and the cured set C(t) = {v ∈ V : Xv(t) = −1}. When
infected, vertex v will pass copies of virus x to its susceptible
neighbors NS(t, v) = N (v) ∩ S(t). When cured, v will
pass copies of ax to its non-cured neighbors NNC(t, v) =
(N (v) ∩ I(t)) ∪ (N (v) ∩ S(t)).

Considering the curing effect of antidote ax on virus x,
which is motivated by the observation that the “positive” anti-
rumor information has a dominant credibility over the “nega-
tive” rumor information, we make the following asymmetrical
immunity assumption.

Assumption 1: Antidote ax can cure infected vertices and
immune susceptible vertices (we don’t differentiate these two
actions). Virus x can infect any susceptible vertex in the net-
work, but can not infect a vertex that has already been exposed
to ax (i.e. in cured state). Thus lim

t→∞
Xi(t) = −1, ∀i ∈ V .

A simple example of an SIC epidemic evolution in a
connected network of eight vertices is shown in Fig. 1. At
t0, the infected set I(t0) = {a, g}, while C(t0) = {d}. During
t0 to t0 +1, a tries to infect susceptible vertices b and h, while
d cures (or rather, immunes) susceptible vertex e. As a result,
at t0+1, I(t0+1) = {a, g, b, h} and C(t0+1) = {d, e}. Based
on Assumption 1, at t0 + 2, infected vertex h ∈ I(t0 + 1) is
cured, since d tries to pass an antidote to it before t0 + 2.
Also, we can infer that after some time, cured vertex f won’t
be infected by g even if g tries to pass the virus to it.

As can be seen in the previous example, the propagation
of virus x and antidote ax drives the change in sizes of

Fig. 1: An SIC Epimdemic in a Connected Network.

the infected set I(t) and the cured set S(t). To capture the
behavior of x and ax, it is important to characterize the time
intervals between infections and curings. Suppose vertex u is
infected at t, let t+su(v) denote the time that infected vertex u
infects one of its susceptible neighbors v ∈ NS(t, u). Suppose
u is cured at t, let t+au(v) denote the time that vertex u cures
one of its non-cured neighbors v ∈ NNC(t, u). We make the
following assumption about random intervals su(v) and au(v).

Assumption 2: Random intervals {su(v)}v∈NS(t,u) and
{au(v)}v∈NNC(t,u) are two groups of r.v.’s each satisfying (1)
pairwise independent; (2) exponentially distributed with time-
invariant parameters βu,v and γu,v respectively.

βu,v is called the virulence (or infection rate) of the virus x
on edge e(u, v), which determines how frequently vertex u (if
in infected state) distributes a copy of virus x to its susceptible
neighbor v along edge e(u, v). Note that βu,v is in fact the
derivative of probability P(su(v) ≤ t) over time t. Similarly,
γu,v is the curing rate of the antidote ax on edge e(u, v).

B. The Infection Count and Cured Count

From the network-wise point of view, the evolution of SIC
epidemics can be described by the change of sizes of the
infected set and cured set over time. So we define the infection
count and cured count to study this transient behavior.

Definition 1: Infection count, I(t) : Ωn → R, is the size
of the infected set I(t) at time t. Cured count C(t) : Ωn → R,
is the size of the cured set C(t) at time t.

I(t) =
∑
v∈V

1I(t) =
∑
v∈V

1{1}(Xv(t)).

C(t) =
∑
v∈V

1C(t) =
∑
v∈V

1{−1}(Xv(t)).

The SIC dynamic in a network drives the evolution of ran-
dom processes {I(t)}t∈Γ and {C(t)}t∈Γ. By the asymmetric
immunization assumption, the network will stabilize at all-
cured state, that is, limt→∞ C(t) = n. In addition, C(t) is a
counting process. To study {I(t)}t∈Γ and {C(t)}t∈Γ, we adopt
different approaches for networks with different topologies.
First for any connected network G, we develop an inference
method to derive the expected infection count as a function
of time, then for networks with special topologies (fully-
connected and star), based on the fact that C(t) is a counting
process, we define the conditional infection count distribution
to give more details about the evolving SIC dynamics.
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III. SIC EPIDEMIC IN CONNECTED NETWORKS WITH
ARBITRARY TOPOLOGIES

Given an arbitrary connected network G(V, E), let the time
be discrete and a time step is small enough, such that within
a time step the state of a vertex i ∈ V , Xi(t) depends solely
on the last state of its neighbors {Xj(t − 1)|j ∈ N (i)} and
itself Xi(t−1), which resembles the Local Markov property of
Markov Random Fields (MRF), but with a correlated temporal
and spatial dependent relationship. Inspired by Chen and Ji’s
idea [17] of separating spatial dependence and temporal depen-
dence, we derive a time-recursive expression of P(Xi(t) = 1).

With states of i’s neighbors at time t, the probability that a
susceptible vertex i remains susceptible in the next time step
can be written as

P(Xi(t+ 1) = 0|Xi(t) = 0, XN (i)(t) = xN (i)(t))

=
∏

j∈NI(t,i)

(1− βj,i) ·
∏

k∈NC(t,i)

(1− γk,i)

=
∏

j∈N (i)

(1− βj,i)
1
2 (x2

j (t)+xj(t)) · (1− γj,i)
1
2 (x2

j (t)−xj(t)).

(1)

Let Puv(t) = P(Xi(t + 1) = v|Xi(t) = u) denote the
transition probability from state u to v during one time
step at time t. Note that only three equations are needed
because

∑
v∈Λ Pu,v = 1, P10 = 0 and P−1−1 = 1. Let

Ii(t) = 1 −
∏
j∈N (i)(1 − βj,i)

1
2 (x2

j (t)+xj(t)), Ci(t) = 1 −∏
k∈N (i)(1 − γk,i)

1
2 (x2

k(t)−xk(t)), then the evolution can be
described by the following one-step transition probabilities.

P00(i, t) =
∑

xN(i)(t)

P(XN (i)(t) = xN (i)(t)|Xi(t) = 0)

· (1− Ii(t))(1− Ci(t)). (2)

P01(i, t) =
∑

xN(i)(t)

P(XN (i)(t) = xN (i)(t)|Xi(t) = 0)

· Ii(t)(1− Ci(t)). (3)

P11(i, t) =
∑

xN(i)(t)

P(XN (i)(t) = xN (i)(t)|Xi(t) = 1)Ci(t).

(4)

The temporal dependence is included in Ii(t) and Ci(t),
while the spatial dependence is captured by the joint con-
ditional probability P(XN (i)(t) = xN (i)(t)|Xi(t) = xi(t)),
which is the reason that calculating the exact marginal proba-
bility distribution is expensive. A common assumption is that
during one time step, states of different vertices are mutually
independent, i.e. P(XN (i)(t) = xN (i)(t)|Xi(t) = xi(t)) =∏
j∈N (i) P(Xj(t) = xj(t)). However, this assumption will

result in a noticeable deviation [17]. Based on the observation,

P(XN (i)(t) = xN (i)(t)|Xi(t) = xi(t))

=
∏

j∈N (i)

P(Xj(t) = xj(t)|Xi(t) = xi(t)). (5)

Let Ns
0 (i, j, t) = P(Xj(t) = s|Xi(t) = 0),

Ns
1 (i, j, t) = P(Xj(t) = s|Xi(t) = 1), s ∈ {0,−1, 1}.

Then Eq. (2),(3),(4) can be simplified to

P00(i, t) =
∑

xN(i)(t)

∏
j∈N (i)

[
N
xj(t)
0 (i, j, t) · (1− βj,i)

1
2 (x2

j (t)+xj(t))

· (1− γj,i)
1
2 (x2

j (t)−xj(t))N
xj(t)
0 (i, j, t)

]
=

∏
j∈N (i)

[
1−N1

0 (i, j, t)βj,i

−
(
1−N0

0 (i, j, t)−N1
0 (i, j, t)

)
γj,i
]

(6)

P01(i, t) =
∑

xN(i)(t)

[
1−

∏
j∈N (i)

(1− βj,i)
1
2 (x2

j (t)+xj(t))
]

·
∏

j∈N (i)

(1− γj,i)
1
2 (x2

j (t)−xj(t))N
xj(t)
0 (i, j, t)

=
∏

j∈N (i)

[
1−

(
1−N0

0 (i, j, t)−N1
0 (i, j, t)

)
γj,i
]

− P00(i, t) (7)

P11(i, t) = 1−
∑

xN(i)(t)

[
1−

∏
j∈N (i)

(1− γj,i)
1
2 (x2

j (t)−xj(t))
]

·
∏

j∈N (i)

N
xj(t)
0 (i, j, t)

=
∏

j∈N (i)

[
1−

(
1−N0

1 (i, j, t)−N1
1 (i, j, t)

)
γj,i
]

(8)

With Eq. (5)-(7), the recursive master equations of the system
over time can be written as

P(Xi(t+ 1) = 0) = P(Xi(t) = 0) · P00(i, t), (9)
P(Xi(t+ 1) = 1) = P(Xi(t) = 0) · P01(t)

+ P(Xi(t) = 1) · P11(i, t). (10)

Clearly, N0
0 (i, j, t), N1

0 (i, j, t), N0
1 (i, j, t) and N1

1 (i, j, t)
are necessary to solve these equations. Though it is hard to
give closed form equations of these quantities, it is possible to
derive a recursive relationship with respect to time.

N0
0 (i, j, t) =

P(Xj(t) = 0, Xi(t) = 0)
P(Xi(t) = 0)

=
P(Xi(t− 1) = 0)

P(Xi(t) = 0)
·N0

0 (i, j, t− 1)

· P00(i, j, t− 1) · P00(j, i, t− 1). (11)

N1
0 (i, j, t) =

P(Xj(t) = 1, Xi(t) = 0)
P(Xi(t) = 0)

=
P(Xi(t− 1) = 0)

P(Xi(t) = 0)
· P00(i, j, t− 1)

·
[
N0

0 (i, j, t− 1) · P01(j, i, t− 1)
+ (1− βj,i) ·N1

0 (i, j, t− 1) · P11(j, i, t− 1)
]
.

(12)
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N0
1 (i, j, t) =

P(Xj(t) = 0, Xi(t) = 1)
P(Xi(t) = 1)

=
P00(j, i, t− 1)
P(Xi(t) = 1)

·
[
P(Xi(t− 1) = 0) ·N0

0 (i, j, t− 1)

· P01(i, j, t− 1) + P(Xi(t− 1) = 1) · (1− βi,j)
·N0

1 (i, j, t− 1) · P11(i, j, t− 1)
]
. (13)

N1
1 (i, j, t) =

P(Xj(t) = 1, Xi(t) = 1)
P(Xi(t) = 1)

=
P(Xi(t− 1) = 0)

P(Xi(t) = 1)
·
[
N0

0 (i, j, t− 1) · P01(i, j, t− 1)

· P01(j, i, t− 1) +N1
0 (i, j, t− 1) · P11(j, i, t− 1)

· [βj,i + P01(i, j, t− 1)− βj,iP01(i, j, t− 1)]
]

+
P(Xi(t− 1) = 1)

P(Xi(t) = 1)
· P11(j, i, t− 1)

·
[
[βi,j + P01(j, i, t− 1)− βi,jP01(j, i, t− 1)]

·N0
1 (i, j, t− 1) +N1

1 (i, j, t− 1) · P11(i, j, t− 1)
]
.

(14)

where

P00(i, j, t) =
∏

k∈N (i)\{j}

[
1−N1

0 (i, k, t)βk,i

−
(
1−N0

0 (i, k, t)−N1
0 (i, k, t)

)
γk,i
]

(15)

P01(i, j, t) =
∏

k∈N (i)\{j}

[
1−

(
1−N0

0 (i, k, t)−N1
0 (i, k, t)

)
γk,i
]

− P00(i, j, t) (16)

P11(i, j, t) =
∏

k∈N (i)\{j}

[
1−

(
1−N0

1 (i, k, t)−N1
1 (i, k, t)

)
γk,i
]
.

(17)

denote the probability that without considering vertex j ∈
N (i), vertex i remains susceptible, becomes infected, and
remains infected during time step t respectively.

Note that Eq. (11)-(14) are time-recursive, allowing us to
estimate the state evolution as long as the initial state of the
network is known (equivalent to the case that the initial distri-
bution of state vector X(0) is a δ-distribution at time t = 0). It
is clear that P(Xv(0) = 1) = 1 ∀v ∈ I(0), P(Xu(0) = −1) =
1 ∀u ∈ C(0) and P(Xw(0) = 0) = 1 ∀w ∈ S(0). Therefore,
P(X(0) = x(0)) = 1 =

∏
v∈V P(Xv(0) = xv(0)), where

x(0) = {xv(0)}v∈V is the state vector of the network at time
0, which indicates r.v.’s {Xv(0)}v∈V are mutually independent.
Hence Ns

r (j, 0) = P(Xj(0) = s|Xi(0) = r) = P(Xj(0) = s)
is determined for any r, s ∈ {0, 1,−1}. Then P(Xi(t) = 1)
can be solved iteratively, and the expected infection count at
time t can be calculated by

E(I(t)) = E[
∑
i∈V

1{1}(Xi(t))] =
∑
i∈V

P(Xi(t) = 1), (18)

E(C(t)) =
∑
i∈V

[
1− P(Xi(t) = 0)− P(Xi(t) = 1)

]
. (19)

The manipulations described above can be summarized
into the following iterative algorithm. Note that ~P0(t) =
{P(Xi(t) = 0)}i∈V and ~P1(t) = {P(Xi(t) = 1)}i∈V are
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Fig. 2: Simulated v.s. Calculated Infection/Cured Count in
Networks of Size 40,80 and 100, with Arbitrary Topologies.

two n × 1 vectors. ~RS(t) = {P00(i, j, t)}i,j∈V , ~NC(t) =
{P11(i, j, t)}i,j∈V , ~N 0

0 (t) = {N0
0 (i, j, t)}i,j∈V , ~N 0

1 (t) =
{N1

0 (i, j, t)}i,j∈V , ~N 1
0 (t) = {N0

1 (i, j, t)}i,j∈V , ~N 1
1 (t) =

{N1
1 (i, j, t)}i,j∈V are n× n matrices.

Algorithm 1 Iterative Inference Method.
Input: I(0), C(0), βββ, γγγ, V
Output: E(I(t)), E(C(t))

1: Initialize: n = |V|, I(0) = |I(0)|, C(0) = n−I(0)−|C(0)|
~P0(0) = ~N 0

0 (0) = ~N 0
1 (0) = 1V\(I(0)∪C(0)),

~P1(0) = ~N 1
0 (0) = ~N 1

1 (0) = 1I(0)

2: Calculate ~P0(1) with Eq. (4) and (8)
3: Calculate ~P1(1) with Eq. (6), (7) and (10)
4: Output E(I(1)) = sum(~P1(1)),

E(C(1)) = n− E(I(1))− sum(~P0(1))
5: Calculate ~RS(0) and ~NC(0) with Eq. (15) and (16)
6: t = 1
7: while E(C(t)) < n do

Calculate ~N 0
0 (t), ~N 1

0 (t), ~N 0
1 (t), ~N 1

1 (t) with Eq. (11)-
(15)

Calculate ~P0(t+ 1) with Eq. (4) and (8)
Calculate ~P1(t+ 1) with Eq. (6), (7) and (10)
Output E(I(t+ 1)) = sum(~P1(t+ 1)),

E(C(1)) = n− E(I(t+ 1))− sum(~P0(t+ 1))
Calculate ~RS(t) and ~NC(t) with Eq. (15) and (16)
t = t+ 1

8: end while

Fig. 2 shows the simulation (dashed lines with s in the
legend) v.s. calculation (solid lines with c in the legend) of
expected value of infection and cured counts, in arbitrary
connected networks with various size. As shown, the infec-
tion/cured counts can be well captured by the algorithm.

IV. SIC EPIDEMIC IN NETWORKS WITH SPECIAL
TOPOLOGIES

When the underlying graph of the network is of special
topologies, i.e. a complete graph (Kn) or a star with one
hub(Sn) , more information can be achieved. We can derive
a “conditional” distribution of the infection count given the
cured count if the following additional assumption is given.
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Assumption 3: For any edge in the network, the infection
rate and the curing rate are constant, i.e.

βi,j = β, γi,j = γ, ∀i, j ∈ V s.t. e(i, j) ∈ E .

The state of the network can be described by tuple
(C(t), I(t)) for any given time t, which takes value in a
discrete state space [0, n]×[0, n]. Since we are more interested
in how the epidemic evolves, rather than when, we index
(C(t), I(t)) with k ∈ N0 = N ∪ {0}, to record a sequence
of infection and curing events ordered by their occurrences.
Thus we have a discrete time discrete state space Markov
Chain {(Ck, Ik)}k∈N0 on M = [0, n] × [0, n] ⊂ R2. Due
to the assumption of asymmetrical immunity, the evolution of
the SIC epidemic is a path connecting the initial state (C0, I0)
and the steady state (n, 0) on state space M .

At any state (c, i), there are three possible events that
can result a state change: an infection of a susceptible vertex
with probability pc,i = P((c, i) → (c, i + 1)), a curing of a
susceptible vertex with probability rc,i = P((c, i)→ (c+1, i)),
and a curing of an infected vertex with probability qc,i =
P((c, i) → (c + 1, i − 1)). Note that p0,i = 1, qc,n−c = 1,
and pc,i + rc,i + qc,i = 1. We refer to P = (pc,i)c,i∈M ,
R = (rc,i)c,i∈M and Q = (qc,i)c,i∈M as the partial transition
(probability) matrix, since all together they uniquely determine
the transition probability of the system.

Considering {Ck}k∈N0 is a counting process, and antidote
is easier to monitor since it is distributed by the network
administrator, we define the conditional infection count dis-
tribution to study the evolution of the virus epidemic.

Definition 2: Let P0(·) = P(· | (C0, I0) = (c0, i0)) denote
the probability that the chain visits a state on condition that
the initial state is (c0, i0). The conditional infection count
distribution πc(i) is defined as the probability that the infection
count is i on condition that the cured count is c, i.e.

πc(i) =
∑
k∈N0

P0((Ck, Ik) = (c, i))∑n−1
j=0 P0((Ck, Ik) = (c, j))

.

Note that we require at least one cured vertex and one
infected vertex at t = 0, or else the SIC epidemic will
degenerate to an SI epidemic. P0((Ck, Ik) = (c, j)) can be
calculated with matrices P , R and Q, which we omit here
due to the limitation of space. If the network is of a special
topology, the P, R and Q matrix can be obtained with the
graphical characteristics of the network.

1) Complete Graph Kn:

Theorem 1: For an SIC epidemic with propagation param-
eters β, γ and initial state (c0, i0), if G = Kn, then

pc,i =
i(n− i− c)

ρc(n− c) + i(n− c− i)
, (20)

rc,i =
ρc(n− i− c)

ρc(n− c) + i(n− c− i)
, (21)

where ρ = γ/β.

Proof: Since I(t) +C(t) +S(t) = n in the SIC dynamic,
and the network is fully connected, the master equations of

the system are

C ′(t) = γC(t) (n− C(t)) (22)
I ′(t) = βI(t)S(t)− γC(t)I(t) (23)
S′(t) = −βI(t)S(t)− γC(t)S(t). (24)

By relating the rate to probability, it is clear to see that pc,i
equals to the probability that an infection happens before any
curing when the chain is at state (c, i). Therefore

pc,i = P((Ck+1, Ik+1) = (c, i+ 1)|(Ck, Ik) = (c, i))

=
βi(n− i− c)

γc(n− c) + βi(n− i− c)
. (25)

Similarly, rc,i is the probability that a curing of a susceptible
vertex happens before any infection when the chain is at state
(c, i) and qc,i corresponds to the probability that a curing of an
infected vertex happens before any infection when the chain
is at state (c, i).

2) Star Graph Sn:

Theorem 2: For an SIC epidemic with parameters β, γ and
initial infection count i0 ≥ 2 (i.e. the hub is infected at t0 = 0),
if G = Sn with one hub and n−1 leaves, then for c ≥ C0 +1,

pc,i = 0, (26)

rc,i =
n− c− i
n− c

, (27)

where ρ = γ/β.

Proof: Note that pc0,i = (n−C0−i)
(n−C0−i)+C0ρ

and rc0,i = 0.
The curing of the hub is the turning point of the evolution.
First, since the antidote are distributed to susceptible vertices
at t0 = 0, the dissemination of the antidote can not reach other
peripheral vertices without passing through the bub. Hence
rC0,i = 0. In addition, due to similar reasons, once the antidote
is passed to the hub, virus can’t infect the hub again, therefore
after c = C0, no peripheral susceptible vertices will suffer
from infection again, i.e. pC0,i = 0.

V. TRACE ANALYSIS

In this section, we present a trace of a propaganda inci-
dent captured in the Internet, analyze the data with our SIC
propagation model, and compare the simulation results with
the captured data to show how our SIC model describes the
evolution of information propagation in networks.

On March 20th 2009, President Obama joked about his
bowling skills, saying “It was like a Special Olympics, or
something” on ‘The Tonight Show with Jay Leno’. Realizing
this joke could be inappropriate, he then apologized to Special
Olympics chairman Tim Shriver, before the program was aired.
With information about both the show and the clarification
released around the same time, the meme tracker [18] recorded
the evolution of this incident in terms of popularity, as shown
in Figure 3. In this case, the clarification afterwords functions
as the antidote to the viral offensive joke. The vertical axis, that
is, the number of mentions, can be treated as a quantification
of popularity, or equivalently, the infection count I(t). Due to
the injection of “positive” information, the spread of the viral
information was limited, and the whole incident died down
within 65 hours after its initiation.
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Fig. 3: President Obama’s ‘Special Olympics’ Joke Incident:
Real Number of Mentions v.s. SIC Model Simulation with
parameters: β = 0.011, γ = 0.0012, C0 = 5, I0 = 51.

Data points (I(t)) are shown as the black solid line with
round markers in Fig.3. We then simulate the evolution of
an SIC epidemic on K100 with propagation parameters β =
0.011, γ = 0.0012, and initial condition C0 = 5, I0 = 511,
as the corrected infection counts Î(t) (the red solid line with
triangle markers). By “corrected”, we mean the human online
activity pattern [19] is taken into consideration, to calibrate the
simulation, since the spread of this incident lasts more than 24
hours. The trend of the dynamics evolution is well captured
by the SIC model, especially at the following turning points:
(i) at 12:00 am March 20th (t = 0) when the incident started
spreading, I(0) = 31.95 ' Î(0); (ii) both peaks occurred
around t = 14, and the peak value I(t = 14) is 83.142;
(iii) the extinction of the virus happens at t = 65. However,
there are two noticeable gaps at the initiation phase and the
extinction phase, i.e. Î(t) < I(t) for t ∈ [1, 8] and t ∈ [49, 57].
The possible reason are: first, the human activity pattern is
an average over a large sample space, hence is less accurate
when applied to small group of people, that is, at the beginning
and the extinction phases; second, information propagation rate
decays as time goes on, so in the initiation phase where the
virus dominants the propagation, β is actually larger, while
in the extinction phase where the antidote dominants the
propagation, γ is smaller than the middle part.

VI. CONCLUSION

In this paper, we adopted an SIC information propagation
model to study the the conflicting information propagation
problem. For connected networks with arbitrary topology
and varying propagation parameters, an inference method is
proposed to study the mean infection count and cured count
as a function of time, while for networks with special topolo-
gies, the transition probability matrix and conditional infec-
tion count are analyzed. The proposed methods are validated
through a trace analysis. We hope this work will be useful in
studying information dissemination problem in networks.

1Complete graph is chosen as the topology due to the universal availability
of the content. Parameters are set to best fit the shape of this meme.

2This value can be considered as normalized quantity out of 100.
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