
Divide and Conquer: Leveraging Topology in
Control of Epidemic Information Dynamics

Jie Wang Wenye Wang
Department of Electrical and Computer Engineering
North Carolina State University, Raleigh, NC 27606

Email: {jwang50@ncsu.edu,wwang}@ncsu.edu

Cliff Wang
Army Research Office

Research Triangle Park, NC 27709
Email: cliff.wang@us.army.mil

Abstract—As online social networks grow in both size and
connectivity, epidemic information dynamics in such networks is
attracting considerable research interests, due to its impact on
both the network and individuals. This paper studies control of
malicious information (virus) epidemic with replicable antidote
information, taking topological characteristics of the underlying
graph into consideration. Specifically, we analytically relate the
extinction time of the virus to the diameter and giant component
size of the remaining graph after the initial antidote distribution.
With this divide and conquer guideline, topology-based antidote
distribution approaches are designed, and then examined through
simulations in real world network portions.

I. I NTRODUCTION

Advances in communication and networking technologies
are allowing humans’ need of exchanging information to be
satisfied more easily than ever, creating ever-growing, heavily-
knit complex networks. The rapid expanding user population
and shift of people’s information acquisition source from
tradition media to the Internet, have accelerated information
circulation in Online Social Networks (OSNs),e.g.Facebook.
Consequently, huge amount of data are flowing through OSNs
in every single second. Facebook users alone generate 4 new
petabytes of data per day [1]. The generation, forwarding
and storage of information has considerable impacts on the
participants, when malicious link/malware is hidden in the
data, or in other cases, the information itself is a rumor or
misinformation. For example, an innocent man was accused
to be the Boston Bombing suspect by Reddit users, and this
rumor went viral in Twitter, causing inconvenience to the
wrongly accused [2]. Impacts are even more severe when
the propagation is rapid, and the potential audience is large.
In this sense, the dynamic of information propagation is
usually described as anepidemicprocess of a piece of virus
information. As a powerful tool, single virus epidemic has
been studied in contexts of information diffusion in social
networks [3], cascading failures in smart grid [4],etc.

Similarly as in epidemiology, we are interested inhow to
contain hazard of the virus information. In addition to immu-
nization [5] and quarantine [6], that are also used in epidemiol-
ogy, more flexible control measures can be applied in OSNs,
due to its half-synthetic nature. To be more specific, OSNs
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differ from the contact network of a herd/flock/population in
the following aspects: i) Changes in the underlying topology
of the contact network are negligible within the time span of
a certain information dynamic, resulting in a more steady and
predictable infection pattern among individuals. ii) To alle-
viate the influence of the virus information, information with
counter-value, later referred to as theantidote information, can
be injected easily into the network. Unlike in epidemiology
where only one individual can be cured by one unit of antidote,
antidote information in OSNs can bereplicatedandforwarded,
since itself is a piece of information.

Control of epidemic information propagation is usually
modeled as an optimization problem under certain resource
constraint. Preciadoet.al.developed a convex framework [7] to
evaluate the optimal allocation of edge control, immunization
and non-replicable antidotes resources, in which the network
is modeled as a directed graph. Borgset.al.studied the optimal
distribution of non-replicable antidote [8] given that thecuring
rate, proportional to the units of given antidote, is non-uniform.
As for replicable antidote, Khouzaniet.al. formulated the
control strategy [9] with both replicable and non-replicable
antidote into an optimal resource allocation problem. Chen
utilized optimal control theory to determine the optimal dis-
tribution time [10] of a replicable antidote for timely control.
However in [8]–[10], the information dynamic in the system is
described by nonlinear differential equations, which indicates
it is a population dynamic, rather than anetwork dynamic,
or equivalently, topology of the network is not taken into
consideration. On the other hand, the influence of network
topology is studied in terms of epidemic threshold [11] under
immunization and spreading/extinction time [6] under SI or
SIS epidemic propagation models, while the dissemination of
replicable antidote is not incorporated.

Therefore, this paper intends to exploreefficient distribution
strategies of replicable antidote, taking topological charac-
teristics into account. The rest of the paper is is organized
as follows. First we introduce the system model and restate
our research question in Section II. Then in Section III, we
analyze the influence of network topology on the upper bound
of the virus extinction time, and utilize such result in designing
antidote distribution strategies. Numerical results are presented
in Section IV to validate the proposed mechanism and finally
the paper is concluded in Section V.



II. PROBLEM FORMULATION

In this section, we review basic terminologies, settings and
definitions of the Susceptible-Infected-Cured (SIC) epidemic
model [12],then formulate our effective antidote distribution
strategy problem.

A. System Model

The SIC epidemic model is used to describe the propagation
of conflicting information,i.e. the propagation of a virus under
the presence of aninfectiousantidote.

1) Network Model: The networkG(V , E) describes the
relationship between individuals. For simplicity reasons, it is
assumed to be connected, undirected and simple. As men-
tioned in the previous section,G remainsstatic during the
dynamic due to the negligible changes of the “following”
relationships during a news/meme cycle [13].

2) Propagation Model:The state transition diagram of a
vertex during an SIC epidemic is shown in Fig. 1, where
S, I, C corresponds to thesusceptible, infectedand cured
state respectively. During the dynamic, any infected vertex will
pass a copy of virus to its susceptible neighbors after a random
interval drawn fromExp(β), and any cured vertex will pass a
copy of antidote after a random interval drawn fromExp(γ).
β andγ are theinfectionandcuring rate respectively.

Fig. 1. State transition diagram of a vertex in an SIC epidemic.

Let I(t) andC(t) ⊂ V denote the set of infected and cured
vertices at timet, respectively. The antidote is distributed to
the initial cured setC(0) at time 0, which we also refer to as
the initial distribution. At t = 0, the virus is already present in
the network,i.e. I(0) 6= φ. There is no interference from the
outside after the initial distribution, hence the system evolve
on their own along the edges ofG after time 0.

B. Effectiveness of the Antidote Distribution

Sincecured is the only absorbing state for each vertex, and
G is connected, the virus will be eliminated in finite time. So
we define theextinction timeand use it as the indication of
the effectiveness of a certain initial distribution.

DEFINITION 1. The extinction timeτe of the virus is defined
as the first time after the initial distribution that none of the
vertices are in infected state any more, i.e.

τe = sup{t > 0|I(t) = φ}.

In addition to when the virus is eliminated, we are also
interested in how much time it takes an initial distributionto
keep the infected setI(t) below a manageable size. Therefore,
we introduce thehalf-life timeof the virus epidemic.

DEFINITION 2. The half-life time of the virus epidemic,
denoted asτ 1

2

, is defined as the last time that the size of the

Fig. 2. An example of (a) random distribution; (b) targeted distribution.

infected setI(t) is larger than half of its original size|I(0)|,
i.e.

τ 1

2

:= sup{t ∈ [0, τe] : |I(t)| ≥
1

2
|I(0)|}.

Apparently, both the extinction time and the half-life time
depends on the initial distributionC(0). Fig. 2 shows an exam-
ple of the evolution of an SIC epidemic with different initial
distributions. As can be seen, after the initial distribution,
the potential hazard zone (pink shaded region) in the random
distribution case is larger than that of the targeted distribution.

The effect of the replicable antidote is two-fold: on indi-
vidual bases, it cures infected vertices which decreases the
infection count; on the other hand, the expanding cured set
composes a structure to retain the potential hazard zone of the
virus. In the latter case the influence of network topology is
more evident because the dynamics is changing a topological
property of the system.

Provided the SIC epidemic model, this paper studiesthe
effective initial antidote distribution strategy, that is,the choice
of the initial cured setC0 such that the mean extinction time
E(τe) and E(τ 1

2

) of the virus can be shortened.

III. T OPOLOGY-BASED ANTIDOTE DISTRIBUTION

In this section, we first relate the upper bound of expected
extinction timeE(τe) to graphical characteristics of the re-
maining graphG∗(t) as the theoretic basis of thedivide and
conquerguideline, then propose several operable approaches
to achieve the goal of shorteningE(τe) andE(τ 1

2

).

A. Reiteration of the Expected Extinction TimeE(τe)

As shown in the previous example in Fig. 2 (b), the
potential hazard zone of the virus is restricted to a limited
region of the network,i.e. a non-empty set of susceptible
vertices are “quarantined” by the initial antidote distribution
C(t), that will never be infected during the dynamic. We are
interested in suchlockingcondition, that effectively restrained
the propagation of the virus. First we introduce theinitial
locking time to characterize such effect, eventually relating
to the extinction timeτe.

DEFINITION 3. Let G∗(t) be the induced subgraph of
G by removing the cured verticesC(t). We write G∗(t) =
∪1≤i≤k(t)Gi, whereGi(Vi, Ei) are components ofG∗(t) and



k(t) denote the number of components at timet. The initial
locking timeτ0 is defined as the first time thatG∗(t) becomes
disconnected, or equivalently

τ0 = sup{t > 0 | k(t) ≥ 2}.

Remark 1. τ0 marks a critical point of the virus epidemic,
since at that instance, a topological property of the remaining
graph G∗(t) has been changed, that is, the connectivity of
G∗(t).

Consequently in the dynamics, whent < τ0, k(t) = 1, the
virus can potentially spread to every corner of the remaining
graphG∗(t). As time t goes beyondτ0, further fragmentation
starts to happen in eachGi ⊂ G∗(t), and potential hazard of
the virus can be treated as under control. Then we have the
following theorem regarding the extinction timeE(τe).

THEOREM 1. Let C0 = |C(0)|, diam(G) and η(G) denote
the diameter and Cheeger constant of graphG, respectively.
Then the expected extinction time can be upper bounded by

E(τe) ≤ E(τ0) +
1

γ
[

2

(n − C0)η(G)
+ max

1≤i≤k(τ0)
{diam(Gi)}].

(1)

Proof. Let r.v. Zi andYi be defined as the following.

Zi := inf
t>τ0

{t − τ0||Vi ∩ I(t)| = 1}, (2)

Yi := inf
t>Zi+τ0

{t − (Zi + τ0)||Vi ∩ I(t)| = 0}. (3)

Now we re-writeE(τe) with E(τ0),

E(τe) ≤ E(τ0) + E( max
1≤i≤k(τ0)

{Zi + Yi})

Jensen

≤ E(τ0) + max
1≤i≤k(τ0)

{E(Zi) + E(Yi)}

≤ E(τ0) + max
1≤i≤k(τ0)

{E(Zi)} + max
1≤i≤k(τ0)

{E(Yi)}),

(4)

Note that the first inequality of Eq. (4) follows from the fact
that among all the components ofG∗(τ0), some may not con-
tain infected vertices. The physical meaning ofZi is the time
interval between the initial locking and the first vertex inGi is
cured, or equivalently, the minimum ofδ(Gi) i.i.d exponential
r.v.’s with parameterγ, where δ(Gi) denote the number of
edges in edge cut[Vi,V \ Vi]. HenceZi ∼ Exp(δ(Gi)γ).
Therefore

max
1≤i≤k(τ0)

{E(Zi)}) =
1

γ
[ max
1≤i≤k(τ0)

{
1

|δ(Gi)|
}

≤
1

γ
[ max
1≤i≤k(τ0)

{
1

η(G)min{|Vi|, n − |Vi|}
}

≤
1

γ

2

(n − C0)η(G)
. (5)

For Yi, it denotes the time interval betweenτ0 +Zi and the
time that all the infected vertices inGi are cured. Suppose the
first cured vertex inGi is vi ∈ Vi, thenYi is bounded above
by the spreading time of the antidote along the shortest-path
spanning tree ofGi rooted atvi. Since vi ∈ i can be any

vertex that is directed connected toC(τ0). Then

Yi ≤ max
vi∈Ei

{

depth(Gi,vi)
∑

s=1

∆s
C} ≤

diam(Gi)
∑

s=1

∆s
C , (6)

where ∆s
C ∼ Exp(γ) denote the time intervals between

the s − 1-th and the s-th curing, depth(Gi, vi) denotes
the depth of the shortest-path spanning tree ofGi, and
diam(Gi) is the diameter (length of the longest shortest-
path) of Gi. The second inequality of Eq. (6) follows from
the fact thatdepth(Gi, vi) ≤ diam(Gi), ∀vi ∈ Ei, so
∑depth(Gi,vi)

s=1 ∆s
C ≤

∑diam(Gi)
s=1 ∆s

C , ∀vi ∈ Ei. So

max
1≤i≤k(τ0)

{E(Yi)}) ≤
1

γ
[ max
1≤i≤k(τ0)

{diam(Gi)}] (7)

Combining Eq. 4, (5) and (7) completes the proof.

Theorem 1 implies the infection is defeated through adivide
and conquerprocedure. Specially, the extinction time can be
mainly determined byE(τ0) and max1≤i≤k(τ0){diam(Gi)},
sinceη(G) ≥ n

2 (the case that all vertices form a single line)
indicates the second term in Eq. (1) is at mostO(1).

B. Ideal Antidote Distribution Policy

From a holistic view, there are two influential factors on the
extinction time: the initial antidote distribution policy, and the
network topology. The former includes the initial cured count
C0 and the recipient of theC0 antidotes,i.e. assignment of
C(0). Now consider the initial locking timeτ0. Apparently it
is decreasing as the initial cured countC0 increases, as well
asdiam(Gi). However, it is not reasonable nor realistic to let
C0 approachn. We want to find the most effective way to
distribute as less antidote as possible, under condition that the
extinction time can be mostly shortened. So in this subsection,
we assume that we have just enough antidote such thatτ0 = 0,
i.e. C(0) is a vertex cutof G. Then we define the following
metric to describe the impact of the graph topology on the
extinction time with respect to an assignment ofC(0).

DEFINITION 4. The hazard indexφ(C(0)) is defined as the
maximum diameter of components of the initially disconnected
graphG∗(t) = ∪1≤i≤k(t)Gi,

φ(C(0)) = max{diam(Gi) | Gi ⊂ G∗(τ0), 1 ≤ i ≤ k(τ0)}.

Considering diameter is rather difficult to attain especially
when the network is large, we provide the following upper
bound ofφ(C(0)) in terms of |Vi|, the number of vertices in
each components ofG∗(0).

THEOREM 2. Letd′(G) denote the minimum degree of graph
G, then

φ(C(0)) ≤
3

d′(G) + 1
max

1≤i≤k(τ0)
{|Vi|} − 1. (8)

Proof. Let the minimum degree of each componentGi be
denoted asd′i. If it satisfies d′i ≤ |Vi|−2

2 (d′i >
|Vi|−2

2 is



highly unlikely, because it would suggest every component
Gi is dense), then [14]

diam(Gi) ≤ 3⌊
|Vi|

d′i + 1
⌋ −











3, n mod (d′i + 1) = 0;

2, n mod (d′i + 1) = 1;

1, otherwise.
(9)

Then

φ(C(0)) ≤ max
1≤i≤k(τ0)

{3⌊
|Vi|

d′i + 1
⌋ − 1}

≤ max
1≤i≤k(τ0)

{3(
|Vi|

d′(G∗(τ0)) + 1
) − 1}

Note
≤ max

1≤i≤k(τ0)
{3(

|Vi|

d′(G) + 1
) − 1}

≤
3

d′(G) + 1
max

1≤i≤k(τ0)
{|Vi|} − 1. (10)

Note that the third inequality in Eq. (10) is not strict, but
still reasonable. Sinced′(G∗(τ0)) ≥ d′(G) holds except the
case that the vertext with the minimal degree (denote as h)
is directly adjacent to a vertex inC(0). If the degree of h is
decreased much due to the removal ofC(0), then it would be
more convenient to includeh in C(0) at the initial antidote
distribution, and in this case, the degree of the remaining
vertices is decreased at most 1, due to the fact thatG is
simple.

Theorem 2 provides an upper bound ofφ(C(0)) in terms of
the size of the giant componentmax1≤i≤k(τ0)(|Vi|) in G(τ0),
where τ0 = 0 in this case. In discrete mathematics, this is
equivalent to themost balanced cutproblem, that is, finding
such vertex-cut constrained on different balance requirements,
which in our case, is the number of vertices in each component
Gi (order ofGi).

On the other hand, clearly from Eq. (1), our goal
of assigning C(0) is to minimize the hazard index,i.e.
minC(0){φ(C(0))}. From the Moore Bound [15] Inequality,
we know that the diameter of each subgraphGi can be lower
bounded by1

diam(Gi) ≥

{

|Vi|−2
2 , di = 2,

logdi−1[(|Vi| − 1)di−2
di

) + 1], di > 2,

where di is the maximum degree and|Vi| is the number
of vertices of graphGi respectively. Letf(di, |Vi|) :=
logdi−1[(|Vi| − 1)di−2

di

) + 1]. We can show thatf(di, |Vi|)
is decreasing indi, but increasing in|Vi|. In the mean time,
|Vi|−2

2 is also increasing in|Vi|, irrelevant todi. So

f(di, |Vi|) ≥ f(d(G), |Vi|),

whered(G) denotes the maximum degree of the networkG.
Now minimizing max{diam(Gi)} becomes minimizing

max{|Vi|}, that is, we want to find a minimum vertex cut
C(0) ⊂ V , such that in the induced subgraphG∗(τ0) =

1The Moore Bound is fairly difficult to attain, but it is a validlower bound
with respect to the number of vertices of each component.

G \ C(0), minC(0){maxi{|Vi|}} can be achieved. Again, the
upper bound ofφ(C(0)), (and hence that ofE(τe)) is related
to the maximum number of vertices in each component of
G∗(τ0), which also leads to theminimum most balanced
vertex-cutproblem. By assigningC(0) to the minimum most
balanced cut, the upper bound ofE(τe) in Eq. (1) can be
tightened becausemaxi{diam(Gi)} is tightened.

Therefore, to maximize the effect of antidote, as well as
to minimize the extinction time, the target of an ideal initial
antidote distribution strategy is to assignC(0) to the minimum
most balanced vertext-cut of the networkG.

C. Realistic Approaches

However, in some networks, it is not possible to find a
“small” vertex-cut, let alone a minimum most balanced vertex-
cut. For example, in the complete graphKn, the minimum
vertex-cut containsn − 1 vertices. It translates to either a
long τ0, or a large enoughC0, but E(Yi) ≃

1
γ(n−1) , in which

case the upper bound in [12] Section IV.A is more applicable.
In addition, searching for the minimum most balanced cut or
directly searching for vertices whose removal will result in a
smallerφ(C(0)) is difficult. Especially, finding the minimum
most balanced cut for general graphs is NP-Hard [16]. So
we introduce the following operable approaches under the
guideline of minimizingφ(C(0)), or minimizing the size of
the giant component inG∗(τ0).

1) betcen-based approach: Betweenness centralityof a
vertex v is defined asg(v) =

∑

s6=v 6=t
δst(v)

δst
, where δst

denotes the number of shortest paths between vertexs andv,
while δst(v) are the number of those paths that passes through
vertex v. g(v) indicates how likely vertexv sits in other
vertices’ shortest paths. However, it requires global knowledge
and takesO(|V||E|) [17] time to calculate. Removal of a
vertex with highg value will likely break more shortest paths,
rendering a disconnected network.

2) ccfs-based approach: Clustering Coefficientof a vertex
v is defined asC(v) = 2|{est|est,evs,evt∈E}|

d(v)[d(v)−1] , which shows how
densely connected isv’s neighborhood. To calculateC(v),
knowledge of vertices within the distance of two tov is
required. The reason of usingC value as an indicator is that
whenC(v) is a small but strictly positive value, it implies that
v’s neighbor is not well-connected, and reliesv to function as
a bridge between its neighbors. This is especially true when
the graph does not have many “long edges”.

3) degree-based approach: Degreeof vertex v, d(v) is
easy to attain because it only requires knowledge of one-hop
neighbors of a vertex. Higher degree indicates a vertex has a
higher chance of being a hub. Hence the removal of such a
vertex will result in the removal of a lot of edges.

In the implementation of these approaches in Section IV, we
first calculate theg, C andd values for each vertex, and then
sort them to find the best candidates. Considering the sorting
process require global knowledge of the graph, in real world
implementation, the sorting process can be substituted with a
cut-off mechanism with predetermined threshold values.



(a) t = 0 (b) t = 150 (c) t = 400

Fig. 3. A realization of an SIC information dynamic evolution after an initial distribution with ccfs-based strategy. The topology of the network is based on
dataset0, initial cured count|C(0)| = C0 equals to 40, while the initial infection count|I(0)| = I0 equals to 200. Propagation parameters:β = γ = 0.003.

IV. N UMERICAL RESULTS AND DISCUSSION

To validate and compare the proposed approaches, we first
analyze an extreme case scenario, and then present simulation
results in network portions acquired from the real world OSN,
Facebook. Fig. 3 shows a set of snapshots of an SIC infor-
mation dynamics evolution in dataset0, where color red, white
and blue indicates infected, susceptible and cured respectively.

A. A Special Case: the Star Network

Consider a special case whenG = Sn, i.e. the star network
with one hub andn − 1 peripherals. Based on all three
approaches, the hub will be the first one selected inC(0), due
to its high g and d value, as well as its lowC value. When
the hub is cured, the SIC dynamic is in alocked condition,
that is, the SIC dynamic fragmented the remaining of the
star into disconnected vertices, leaving no further expansion
space for the virus. The extinction timeτe in Sn will be the
maximum ofI0 i.i.d. r.v.’s, each with distributionExp(γ), and
E(τe) =

HI0

γ
, whereHk is thek-th Harmonic number.

B. SIC Information Dynamics in Real Networks

To examine the effectiveness and efficiency of the proposed
antidote dissemination policy, we conducted simulation of
SIC dynamics on two connected network, both fractions from
Facebook [18], dataset02 and dataset348. Statistics of the two
networks fraction are shown in Table I. As can be seen from
the average degree, dataset348 is much denser than dataset0.
In addition, from the average ccfs (clustering coefficient),
dataset348 is more clustered than dataset0.

TABLE I
STATISTICS OF THE TWO UNDERLYING GRAPHS.

Statistics dataset0 dataset348

order (number of vertices) 324 224
size (number of edges) 5028 6384
average degree 31.037 57
diameter 11 9
average ccfs 0.522 0.544
average path length 3.573 3.042

Fig. 4 shows topology of the two networks, where the
betweenness centrality value is indicated by color. Candidates
for C(0) in the betcen-based approach are the vertices in red.

2Originally, dataset0 contains 342 vertices and is disconnected, so we select
the giant component to be dataset0 during the simulation.

(a) dataset0 (b) dataset348

Fig. 4. Topology of the two networks. Red vertices have high betweenness
centrality (betcen,g) values, while blue ones have lowg values.

Intuitively from the figure, we can tell that dataset0 is more
“scattered” than dataset348, which implies that it will be easier
(with a smallerC0 = |C(0)|) to achieve the locking condition,
i.e. G∗(0) is disconnected.

Fig. 5 illustrates topological changes of dataset0 and
dataset348, induced by different initial antidote distribution
strategies,i.e. different assignments ofC(0). These results can
be used to predict the effectiveness of those three approaches,
plus a random distribution, in terms ofE(τe) andE(τ 1

2

). As
discussed in Section III, the approach that can minimize the
size of the giant component will most effectively shorten the
extinction time. From the topological characteristics shown
in Fig. 5, it is interesting to see that betcen-based approach
will be outperformed by ccfs-based approach in dataset348,
while in dataset0 it is the opposite. The possible reason is that
dataset348 is much denser (avg. degree 57) and more clustered
(avg. ccfs 0.544) than dataset0, which is also manifested in
Fig. 4. This implies the betcen-based approach will disconnect
dataset0 more easily, while leaving dataset348 still connected
during the initial distribution.

Fig. 6 illustrate the mean extinction time and half-life time,
each over 1000 simulation runs. The propagation parameters
of the SIC epidemic are: infection rateβ = 0.01, the curing
rateγ = 0.01 and initial infection countI0 = |I(0)| ≃ 1

2 |V|,
i.e. 150 for dataset0 and 110 for dataset348.

Simulation results in Fig. 6 echoes with the prediction
we had from Fig. 5, in which performance of degree-based
approach is poor, and the best approach is either betcen-based
or ccfs-based. In terms of extinction time, the degree-based
approach is even worse than random distribution, because
high degree does not imply high importance. Due to the
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(b) Giant component size in dataset0
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(c) No. of components in dataset348
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(d) Giant component size in dataset348

Fig. 5. Topological change ofG∗(0) with different C(0).
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Fig. 6. Extinction timeE(τe) and Half-life timeE(τ 1

2

) under different initial
distibution strategies on network dataset0 and dataset 348.

clustering effect of human social interactions, high degree
vertices is often located in a densely connected core, where
the removal of such a vertex can be compensated by its
neighbors. However, the zig-zag pattern of the green line,
i.e. the random distribution, indicates the instability of this
approach. What’s more, considering the ccfs-based approach
only requires knowledge of two-hop neighbors, rather than
global knowledge in the betcen-based approach, it is an
optimal choice, especially when the network is denser. As for
the half-life time, which indicates the effectiveness in allevi-
ating heavy infection conditions, simulation suggests similar
conclusion as the extinction time, except that degree-based
distribution performs better whenC0 is small in dataset348,
where the network is more clustered.

V. CONCLUSION

In this paper, we examined the influence of topology on
the expected extinction time of an SIC information dynamic
through theoretic analysis, and leveraged such influence in
designing effective antidote distribution strategies. Real world
network portions were included in the simulation validation.
We hope our work would contribute to the knowledge of
information dynamic in networks.

REFERENCES

[1] N. B. Janet Wiener, “Facebook’s top open data problems.”https://
research.facebook.com/blog/facebook-s-top-open-data-problems/, 2014.

[2] D. Lee, “Boston bombing: How internet detectives got it very wrong.”
http://www.bbc.com/news/technology-22214511, 2013.

[3] Y.-C. Chen, H.-S. Ma, and J.-W. Huang, “Multi-state openopinion
model based on positive and negative social influences,” inProceedings
of the 2015 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining 2015, ASONAM ’15, (New York, NY,
USA), pp. 170–177, ACM, 2015.

[4] J.-W. Wang and L.-L. Rong, “Cascade-based attack vulnerability on the
us power grid,”Safety Science, vol. 47, no. 10, pp. 1332–1336, 2009.

[5] B. A. Prakash, H. Tong, N. Valler, M. Faloutsos, and C. Faloutsos,
“Virus propagation on time-varying networks: Theory and immunization
algorithms,” in Proceedings of the 2010 European Conference on
Machine Learning and Knowledge Discovery in Databases: Part III ,
ECML PKDD’10, (Berlin, Heidelberg), pp. 99–114, Springer-Verlag,
2010.

[6] S. Krishnasamy, S. Banerjee, and S. Shakkottai, “The behavior of
epidemics under bounded susceptibility,” inThe 2014 ACM Interna-
tional Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’14, (New York, NY, USA), pp. 263–275, ACM, 2014.

[7] V. Preciado, M. Zargham, and D. Sun, “A convex framework to control
spreading processes in directed networks,” inInformation Sciences and
Systems (CISS), 2014 48th Annual Conference on, pp. 1–6, March 2014.

[8] C. Borgs, J. Chayes, A. Ganesh, and A. Saberi, “How to distribute an-
tidote to control epidemics,”Random Structures & Algorithms, vol. 37,
no. 2, pp. 204–222, 2010.

[9] M. Khouzani, S. Sarkar, and E. Altman, “Optimal control of epidemic
evolution,” in INFOCOM, 2011 Proceedings IEEE, pp. 1683–1691,
April 2011.

[10] P. Y. Chen and K. C. Chen, “Optimal control of epidemic information
dissemination in mobile ad hoc networks,” inGlobal Telecommunica-
tions Conference (GLOBECOM 2011), 2011 IEEE, pp. 1–5, Dec 2011.

[11] M. Lelarge, “Efficient control of epidemics over randomnetworks,” in
Proceedings of the Eleventh International Joint Conference on Mea-
surement and Modeling of Computer Systems, SIGMETRICS ’09, (New
York, NY, USA), pp. 1–12, ACM, 2009.

[12] J. Wang and W. Wang, “To live or to die: Encountering conflict
information propagation over simple networks,” inIEEE INFOCOM
2016 - The 35th Annual IEEE International Conference on Computer
Communications (INFOCOM 2016), (San Francisco, USA), Apr. 2016.

[13] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and the
dynamics of the news cycle,” inProceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’09, (New York, NY, USA), pp. 497–506, ACM, 2009.

[14] L. Caccetta and W. Smyth, “Graphs of maximum diameter,”Discrete
Mathematics, vol. 102, no. 2, pp. 121 – 141, 1992.

[15] M. Miller and J. Siran, “Moore graphs and beyond: A survey of
the degree/diameter problem,”Electronic Journal of Combinatorics
(Dynamic Surveys), pp. 1–92, May 2013.

[16] M. Kim and K. S. Candan, “Sbv-cut: Vertex-cut based graph partitioning
using structural balance vertices,”Data & Knowledge Engineering,
vol. 72, pp. 285 – 303, 2012.

[17] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, pp. 163–177, 2001.

[18] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in
ego networks,” inAdvances in Neural Information Processing Systems
25 (P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger,
eds.), pp. 548–556, 2012.


