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Abstract—As online social networks grow in both size and differ from the contact network of a herd/flock/population i
conne_ctivity, ep_idemic information_ dynamics in SUCh thWd(S is  the following aspects: i) Changes in the underlying topglog
attracting considerable research interests, due to its imact on of the contact network are negligible within the time span of

both the network and individuals. This paper studies contrd of tain inf tion d . Iting i ¢
malicious information (virus) epidemic with replicable antidote a certain information dynamic, resulting in a more steady an

information, taking topological characteristics of the underlying ~Predictable infection pattern among individuals. ii) Tdeal
graph into consideration. Specifically, we analytically réate the viate the influence of the virus information, informationthvi
extinction time of the virus to the diameter and giant comporent  counter-value, later referred to as #tidote informationcan
size of the remaining graph after the initial antidote distribution. be injected easily into the network. Unlike in epidemiology

With this divide and conquer guideline, topology-based antidote L ) .
distribution approaches are designed, and then examined tbugh where only one individual can be cured by one unit of antidote

simulations in real world network portions. antidote information in OSNs can beplicatedandforwarded
since itself is a piece of information.
. INTRODUCTION Control of epidemic information propagation is usually

égodeled as an optimization problem under certain resource

Advances in communication and networking technologi traint. Preciadet al develoned f K71t
are allowing humans’ need of exchanging information to pe nstraint. Freciadet.al. developeda convex framewor [7]to

satisfied more easily than ever, creating ever-growingyilyea evaluate the optimal allocation of edge control, immuriczat

knit complex networks. The rapid expanding user populatioaﬁ1d non-replicable antidotes resources, in which the métwo

and shift of people’s information acquisition source front modeled as a directed graph. Boegsl. studied the optimal

tradition media to the Internet, have accelerated infoionat dlftrlbunon ?_f nolnt-retflllcaplte a][mglote [8]t%|vten _that I:I!:fmlng
circulation in Online Social Networks (OSN%),g. Facebook. ra e],cproporllloré)alt ° t?du?l S ﬁhglven a? II ofe, IS Tot m
Consequently, huge amount of data are flowing through OS or repiicable anticote, ouzaret.al. formulate €

in every single second. Facebook users alone generate 4 ﬁg\pvtrol strategy [9] with both replicable and non-repligab

petabytes of data per day [1]. The generation, forwardi@';dme into an optimal resource allocation problem. Chen

and storage of information has considerable impacts on t “Zte.d otpnma:llgon]:[rol thelprybito de;erlnfe tT.e olptlmad;t-dl
participants, when malicious link/malware is hidden in th ibution time [10] of a replicable antidote for timely coa

data, or in other cases, the information itself is a rumor owe.\éerdlnb[B]—[l(l).],the(ljljffformattlloln dyn?mlc n t::.eEYSte.m'
misinformation. For example, an innocent man was accus| gcribed by nonlinear ditierential equations, whic S

to be the Boston Bombing suspect by Reddit users, and t ids @ porl)ul?lnor: dyr|1am|,c rflttr;]er thz;m alw(ef[workt dtyr;amu_:t
rumor went viral in Twitter, causing inconvenience to the" equivaiently, topology of the network 1S not taken into

wrongly accused [2]. Impacts are even more severe Wh(é?]n&deratlon. On the other hand, the influence of network

the propagation is rapid, and the potential audience islar opology 'S studied in tem?s of ep|dgm|c Fhreshold [11] unde
In this sense, the dynamic of information propagation munization and spreading/extinction time [6] under SI or

usually described as aepidemicprocess of a piece of virus IS epidemic propagation models, while the disseminatfon o

information. As a powerful tool, single virus epidemic hager_i_llhcablfe antt|rcil_ote IS nqt ancérpfratecilm ient distributi
been studied in contexts of information diffusion in social eretore, this paperintends to exp cient distribution

networks [3], cascading failures in smart grid [dc. strategies of replicable antidotdaking topological charac-

L ) : . . . teristics into account. The rest of the paper is is organized
Similarly as in epidemiology, we are interestedhow to . .
. L . o . as follows. First we introduce the system model and restate
contain hazard of the virus informatioin addition to immu-

nization [5] and quarantine [6], that are also used in epidem our research question in Section Il. Then in Section I, we

. . nalyze the influence of network topology on the upper bound
0gy, more flexible control measures can be applied in oSN} ‘the virus extinction time, and utilize such result in dgsng

due to its half-synthetic nature. To be more specific, osNs ! s . )
y P antidote distribution strategies. Numerical results aesented
This work is partially supported by NSF CNS1423151, CNS7E and 1N Section 1V to validate the proposed mechanism and finally

ARO W911NF-15-2-0102. the paper is concluded in Section V.
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Il. PROBLEM FORMULATION > infect

In this section, we review basic terminologies, settingd an
definitions of the Susceptible-Infected-Cured (SIC) epiibe
model [12],then formulate our effective antidote disttibn
strategy problem.

A. System Model b

The SIC epidemic model is used to describe the propagation CIRY;
of conflicting informationj.e. the propagation of a virus under
the presence of aimfectiousantidote.

1) Network Model: The networkG(V,&) describes the Fig. 2. An example of (a) random distribution; (b) targetéstrébution.
relationship between individuals. For simplicity reasoibss
foned! 1 the.previous section: remamsetat during the | THected SSE() is arger than half of s original sizeZ(0).
dynamic due to the negligible changes of the “foIIowingJ"e' 1
relationships during a news/meme cycle [13]. 1= sup{t € [0, 7] : |[Z(¢)] 2 §|I(O)|}'

2) Propagation Model:The state transition diagram of a Apparently.
vertex during an SIC epidemic is shown in Fig. 1, wher ’
S, I, C corresponds to theusceptible infected and cured

(b) Targeted Distribution

T

both the extinction time and the half-life time
epends on the initial distributia®0). Fig. 2 shows an exam-

: : _ ) ) ple of the evolution of an SIC epidemic with different inltia

state respectively. During the dynamic, any infected Yamtil  qiqyrihtions, As can be seen, after the initial distriboti

pass alcgpy offvlrumsEto Its suscgptlble ne|ghbors aft‘?”r aamndthe potential hazard zone (pink shaded region) in the random
Interva rawn fromexp (), an any cure vertex will pass agiqrrinytion case is larger than that of the targeted distion.
copy of antidote after a random interval drawn frdtap(~y).

£ andy are theinfectionandcuring rate respectively. The effect of the replicable antidote is two-fold: on indi-

vidual bases, it cures infected vertices which decreases th
< o infection count; on the other hand, the expanding cured set
<~ infect composes a structure to retain the potential hazard zorfesof t

virus. In the latter case the influence of network topology is

more evident because the dynamics is changing a topological
Fig. 1. State transition diagram of a vertex in an SIC epidemi property of the system.

Let Z(t) andC(t) C V denote the set of infected and cured PrO.VId.ed. .the S.IC ep@ermc _model, this paper studm
: . . . S effective initial antidote distribution strategthat is,the choice
vertices at timet, respectively. The antidote is distributed to L o .
o ) . of the initial cured set’, such that the mean extinction time
the initial cured set(0) at time 0, which we also refer to as

theinitial distribution. At ¢ = 0, the virus is already present inE(Te) and E(T%) of the virus can be shortened

the network,i.e. Z(0) # ¢. There is no interference from the I11. TOPOLOGYBASED ANTIDOTE DISTRIBUTION
outside after the initial distribution, hence the systeroles

on their own along the edges ¢f after time 0.

In this section, we first relate the upper bound of expected
extinction timeE(7.) to graphical characteristics of the re-
B. Effectiveness of the Antidote Distribution maining graphG*(t) as the theoretic basis of thivide and

Sincecuredis the only absorbing state for each vertex, angPnduerguideline, then propose several operable approaches
G is connected, the virus will be eliminated in finite time, S&° achieve the goal of shortenirig(7.) and E(ry).
we define theextinction timeand use it as the indication ofA_ Reiteration of the Expected Extinction Titfér.)

the effectiveness of a certain initial distribution. ) i ) _
As shown in the previous example in Fig. 2 (b), the

DEFINITION 1. The extinction time. of the virus is defined potential hazard zone of the virus is restricted to a limited
as the first time after the initial distribution that none diet region of the networkj.e. a non-empty set of susceptible
vertices are in infected state any more, i.e. vertices are “quarantined” by the initial antidote distition
C(t), that will never be infected during the dynamic. We are
7e = sup{t > O|Z(t) = ¢} in(te)rested in suchocking condition, tha?effecti\)//ely restrained
In addition to when the virus is eliminated, we are alsthe propagation of the virus. First we introduce tindial
interested in how much time it takes an initial distributimn locking timeto characterize such effect, eventually relating
keep the infected séi(t) below a manageable size. Therefordp the extinction timer,.

we introduce théhalf-life time of the virus epidemic. DEFINITION 3. Let G*(f) be the induced subgraph of
DEFINITION 2. The half-life time of the virus epidemic,G by removing the cured vertice3(t). We write G*(¢) =
denoted as1, is defined as the last time that the size of the, ;<) Gi, whereG;(V;, E;) are components of*(¢) and



k(t) denote the number of components at tim@he initial vertex that is directed connected@@r). Then
locking timer is defined as the first time thgt*(¢) becomes

. . depth(G;,v;) diam(G;)
disconnected, or equivalentl
q y Y; < max { AL} < Z A, (6)
7o = sup{t > 0 | k(t) > 2}. viehi s=1 s=1

Remark 1. 7o marks a critical point of the virus epidemic,where A%, ~ FEuxp(y) denote the time intervals between
since at that instance, a topological property of the renragn the s — 1-th and the s-th curing, depth(G;,v;) denotes
graph G*(t) has been changed, that is, the connectivity #fie depth of the shortest-path spanning tree (if and
G*(t). diam(G;) is the diameter (length of the longest shortest-

. . ath) of GG;. The second inequality of Eq. (6) follows from
Consequently in the dynamics, wher< 7o, k() = 1, the fhe 1)°act that depth (G, v;) <q diafn(G-)q v(v) c E. so
virus can potentially spread to every corner of the remginiridepth(gwi) As, < Zgia:n(GT) As ZevE- ZSo i
graphg*(¢). As timet goes beyondy, further fragmentation =1 C = £us=1 cr Vi v

starts to happen in eadh; C G*(t), and potential hazard of 1 _
the virus can be treated as under control. Then we have the 1§?§%)(<T0){E(Yi)}) < ;[IS%%’{TO){dmm(Gi)H 7

following theorem regarding the extinction tinf& . ).

THEOREM 1. LetCy = |C(0)|, diam(G) andn(G) denote
the diameter and Cheeger constant of graphrespectively.  Theorem 1 implies the infection is defeated throughade
Then the expected extinction time can be upper bounded ®nd conquemprocedure. Specially, the extinction time can be
1 9 . mainly determined byE(7y) andmax<;<p(ry){diam(G;)},
E(re) < E(m0) + ;[m + 1<§g%>(<m){dwm(Gi)}]- sincen(G) > 2 (the case that all vertices form a single line)
T (1) indicates the second term in Eq. (1) is at moxt).

Combining Eq. 4, (5) and (7) completes the proof. O

Proof. Let r.v. Z; andY; be defined as the following. B. Ideal Antidote Distribution Policy
Z; = tlilf {t—=m||lViNZ(t)| =1}, ) From a holistic view, there are two influential factors on the
! extinction time: the initial antidote distribution policgnd the

Yii= t>ini1£7-g{t — (Zi+n)llVinZ(#)] =0} ®) network topology. The former includes the initial cured sbu

Cp and the recipient of th&', antidotes,i.e. assignment of

N -writeE(r.) with E(rp), : o .
oW we re-writeE(r. ) wi (70) C(0). Now consider the initial locking timey. Apparently it

E(re) < E(r) +E( _max {Z;+Y:}) is decreasing as the initial cured couiy increases, as well
; 1sish(ro) asdiam(G;). However, it is not reasonable nor realistic to let
LR+ max {E(Z)+EY)) C,, approachn. We want to find the most effective way to
1<i<k(7o0) distribute as less antidote as possible, under conditianttte

<E(r)+ max {E(Z;)}+ max {E(Y;)}), extinctiontime can be mostly shortened. So in this subsecti
1<i<k(ro) 1<i<k(ro) (4) Weassume that we have just enough antidote suchghato,
i.e. C(0) is avertex cutof G. Then we define the following

Note that the first inequality of Eq. (4) follows from the facinetric to describe the impact of the graph topology on the
that among all the components Gf(7;), some may not con- extinction time with respect to an assignmentCg6).
tain infected vertices. The physical meaning#fis the time _ _ _
interval between the initial locking and the first vertexcinis PEFINITION 4. The hazard index(C(0)) is defined as the
cured, or equivalently, the minimum 6{G;) i.i.d exponential maximum diameter of components of the initially discorgubct
rv’s with parametery, where 3(G;) denote the number of 9@PNG" (1) = Ur<icr(n Gis

edges in edge cufV;,V \ V;]. HenceZ; ~ Exp(6(G;)7y). $(C(0)) = max{diam(G;) | Gi C G*(70),1 < i < k(70)}.

Therefore
b 1 Considering diameter is rather difficult to attain espégial
1§2%?70){E(Z1)}) N 7[1grir%?((ro){|5(Gi)l} when the network is large, we provide the following upper
- 1[ ( 1 ! bound of$(C(0)) in terms of|V;|, the number of vertices in
= 5 <) (@) min{|Vi],n — [V}’ each components @*(0).
< l# (5) THEOREM 2. Letd'(G) denote the minimum degree of graph
~ v (n—Co)n(9) G, then
ForY;, it denotes the time interval between+ Z; and the 3
time that all the infected vertices i@; are cured. Suppose the #(C(0)) < TG 11155 ){|Vz‘|} -1 (8)

first cured vertex inG; is v; € V;, thenY; is bounded above
by the spreading time of the antidote along the shortest-pdtroof. Let the minimum degree of each compone&nt be
spanning tree of7; rooted atv;. Sincewv; € ; can be any denoted asd]. If it satisfiesd], < # (d; > w is



highly unlikely, because it would suggest every componegt\ C(0), min¢ (g {max;{|V;|}} can be achieved. Again, the
G, is dense), then [14] upper bound of(C(0)), (and hence that dE(r.)) is related
to the maximum number of vertices in each component of

/ — -
, Vil 3, n mod (df—H) =0 G*(10), which also leads to theminimum most balanced
diam(G;) < 3|~ mn 71=y2 n mod (& +1)=1; vertex-cutproblem. By assigning(0) to the minimum most
! 1, otherwise balanced cut, the upper bound Bfr.) in Eg. (1) can be
(9) tightened becauseax;{diam(G;)} is tightened.
Then Therefore, to maximize the effect of antidote, as well as
[Vi] to minimize the extinction time, the target of an ideal militi
¢(C(0)) = 1g?%?((70){3td’i n 1J -1} antidote distribution strategy is to assig0) to the minimum
V| most balanced vertext-cut of the netwayk
< (—rt—) -1
< Py s Y -
Note Vil C. Realistic Approaches
< 13?%%’(20){3((1/@) n 1) -1} However, in some networks, it is not possible to find a
3 “small” vertex-cut, let alone a minimum most balanced verte
< 7d’(g) T1 1<gn‘<}g(<m){lVil} -1 (10)  cut. For example, in the complete grapfy,, the minimum

o o ] ) vertex-cut containg: — 1 vertices. It translates to either a

Note that the third inequality in Eq. (10) is not strict, b“?ong 70, OF a large enouglly, but E(Y;) ~ —L— in which
. . * 1 1 1 - 71 1

still reasonable. Sincé’(G* (o)) > d’(G) holds except the caqe the upper bound in [12] Section IV.A'is more applicable.
case that the vertext with the minimal degree (denote as |R)aqdition, searching for the minimum most balanced cut or
is directly adjacent to a vertex ii(0). If the degree of h is girecily searching for vertices whose removal will resultzi
decreased much due to the removaled), then it would be  sajiers(c(0)) is difficult. Especially, finding the minimum
more convenient to includé in C(0) at the initial antidote o<t balanced cut for general graphs is NP-Hard [16]. So
distribution, and in this case, the degree of the remaining jntroduce the following operable approaches under the
vertices is decreased at most 1, due to the fact has yideline of minimizing$(C(0)), or minimizing the size of

simple. U the giant component ig* (7).
Theorem 2 provides an upper boundddf(0)) in terms of 1) betcen-based approach: Betweenness centralftya
the size of the giant componeniax, << (-, (|Vi|) in G(7), vertex v is defined asg(v) = >, ot sgs(tu), where d;

where o = 0 in this case. In discrete mathematics, this igenotes the number of shortest paths between vertad v,
equivalent to themost balanced cuproblem, that is, finding While d;(v) are the number of those paths that passes through
such vertex-cut constrained on different balance requéres; vertex v. g(v) indicates how likely vertexv sits in other
which in our case, is the number of vertices in each componaftices’ shortest paths. However, it requires global Kedge

G; (order of G;). and takesO(|V||€]) [17] time to calculate. Removal of a

On the other hand, clearly from Eq. (1), our goaYertex with highg value will likely break more shortest paths,
of assigningC(0) is to minimize the hazard index,e. rendering a disconnected network.
ming){¢(C(0))}. From the Moore Bound [15] Inequality, 2) ccfs-based approach: Clustering Coefficiefita vertex
we know that the diameter of each subgraphcan be lower v is defined ag’(v) = 2|{653‘(i5)t[;leés)f”le |, which shows how
bounded by densely connected is’s neighborhood. To calculat€'(v),
Wil2 4 _ o knowledge of vertices within the distance of two tois

2 0 TS required. The reason of using value as an indicator is that
logg, 1[(Vil = )42) + 1], d; > 2, whenC(v) is a small but strictly positive value, it implies that

v's neighbor is not well-connected, and relie$o function as
a bridge between its neighbors. This is especially true when
the graph does not have many “long edges”.

3) degree-based approach: Degred vertex v, d(v) is
easy to attain because it only requires knowledge of one-hop
neighbors of a vertex. Higher degree indicates a vertex has a
f(di, Vi) = f(d(G),|Vil]), higher chance of being a hub. Hence the removal of such a
vertex will result in the removal of a lot of edges.

diam/(G;) > {

where d; is the maximum degree anfi;| is the number
of vertices of graphG; respectively. Letf(d;,|Vi|) :=
logg, _1[(|Vi] — 1)%72) + 1]. We can show thaff(d;, |V;|)
is decreasing ini;, but increasing inV;|. In the mean time,
% is also increasing inV;|, irrelevant tod;. So

Whered(g? ‘?'e'_“?tes the maximum degree of the ne.tw.ng In the implementation of these approaches in Section 1V, we
Now minimizing max{diam(G;)} becomes minimizing fir

. ! - st calculate they, C andd values for each vertex, and then
max{|V;|}, that is, we want to find a minimum vertex cut ¥, ¢

. . ~ " “sort them to find the best candidates. Considering the gprtin
€(0) < V, such that in the induced subgragit(ro) = process require global knowledge of the graph, in real world

1The Moore Bound is fairly difficult to attain, but it is a valldwer bound |mplementat|on_, the ;ortlng proces_s can be substitutenl avit
with respect to the number of vertices of each component. cut-off mechanism with predetermined threshold values.
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Fig. 3. A realization of an SIC information dynamic evolutiafter an initial distribution with ccfs-based strategyeTtopology of the network is based on
dataset0, initial cured coun€(0)| = Cy equals to 40, while the initial infection coufif(0)| = I equals to 200. Propagation parametgis= v = 0.003.

IV. NUMERICAL RESULTS AND DISCUSSION \ 0

To validate and compare the proposed approaches, we { =
analyze an extreme case scenario, and then present sonule “—.
results in network portions acquired from the real world QS!
Facebook. Fig. 3 shows a set of snapshots of an SIC infi
mation dynamics evolution in datasetO, where color redtevhi
and blue indicates infected, susceptible and cured resphct

A. A Special Case: the Star Network

Consider a special case whén= S,,, i.e. the star network (a) dataset0 (b) dataset348
with one hub andn — 1 peripherals. Based on all threerig. 4. Topology of the two networks. Red vertices have highweenness
approaches, the hub will be the first one selected(i)), due centrality (betceng) values, while blue ones have loyvalues.
to its highg andd value, as well as its lov’ value. When

the hub is cured, the SIC dynamic is inlacked condition, |ntyitively from the figure, we can tell that datasetO is more
that is, the SIC dynamic fragmented the remaining of thgcattered” than dataset348, which implies that it will lsier
star into dlscoqnected vertices, Iea\_/lng no further eXoaNs (yith a smallerC, = |C(0)|) to achieve the locking condition,
space for the virus. The extinction time in .S,, will be the | q G*(0) is disconnected.
maleuT{IOro Li.d. r.v's, each with dlSt”bU_tIOIExp(W), and  Fig. 5 jllustrates topological changes of dataset0 and
E(re) = =*, where, is the k-th Harmonic number. dataset348, induced by different initial antidote disttion
B. SIC Information Dynamics in Real Networks strategiesi.e. diﬁerent assignlments @f(0). These results can
. . . be used to predict the effectiveness of those three appeeach
To examine the effectiveness and efficiency of the proposgqls a random distribution, in terms @f(.) andE(r1). As

antidote digsemination policy, we conducted simqlation iscussed in Section Ill, the approach that can minimize the
SIC dbynall(mlcg 03 two é(i;nréegted ne:tawgrks, bo.th.frac?orr]ls frog?ze of the giant component will most effectively shortea th
Facebook [18], dataset@nd dataset348. Statistics of t € WQytinction time. From the topological characteristics vgho

nhetworks fra%tion are dshown BI’ZST "?‘b'e . ,:sdcan behseer; f“’ffﬁ‘ I(:)ig. 5, it is interesting to see that betcen-based apjproac
the average degree, ataset IS muc ef?se” an _atamﬁ be outperformed by ccfs-based approach in dataset348,
In add|t|on,.from the average ccfs (clustering Coefficient) e jn gataseto it is the opposite. The possible reasomaits t
dataset348 is more clustered than dataset0. dataset348 is much denser (avg. degree 57) and more chlistere
TABLE | (avg. ccfs 0.544) than datasetO, which is also manifested in
STATISTICS OF THE TWO UNDERLYING GRAPHS Fig. 4. This implies the betcen-based approach will diseahn
datasetO more easily, while leaving dataset348 still cotae

| Statistics | datasel0] datasel34g] during the initial distribution.
order (number of vertices] 324 224 . . N . . .
size (number of edges) | 5028 6354 Fig. 6 illustrate t_he mean extinction time and half—ln‘e am
average degree 31.037 | 57 each over 1000 simulation runs. The propagation parameters
diameter 11 9 of the SIC epidemic are: infection rate = 0.01, the curing
average ccfs 0522 [ 0544 ratey = 0.01 and initial infection countly = |Z(0)| ~ %
average path length 3573 3.042 7 ’ 0 = |Z(0)] = 2|V|’

i.e. 150 for datasetO and 110 for dataset348.

Simulation results in Fig. 6 echoes with the prediction

e had from Fig. 5, in which performance of degree-based

approach is poor, and the best approach is either betceutbas

B cefs-based. In terms of extinction time, the degree-base
2Originally, datasetO contains 342 vertices and is discoteak so we select approach is even worse than random distribution, because

the giant component to be datasetO during the simulation. high degree does not imply high importance. Due to the

Fig. 4 shows topology of the two networks, where th%
betweenness centrality value is indicated by color. Caatdil
for C(0) in the betcen-based approach are the vertices in r
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V. CONCLUSION

In this paper, we examined the influence of topology on
the expected extinction time of an SIC information dynamic
through theoretic analysis, and leveraged such influence in
designing effective antidote distribution strategiesalReorld
network portions were included in the simulation validatio
We hope our work would contribute to the knowledge of
information dynamic in networks.
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Fig. 5. Topological change af*(0) with different C(0).
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Fig. 6. Extinction timeE(7.) and Half-life timeE(71 ) under different initial
distibution strategies on network datasetO0 and dataset 348

clustering effect of human social interactions, high degre
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