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Abstract—Network Multiple Input Multiple Output (MIMO)
is able to increase spectrum efficiency and mitigate inter-cell
interference. These benefits mainly result from one salient feature
of network MIMO, the centralized control enabling coordinated
scheduling. As Software Defined Networking (SDN) provides the
innate centralized control, we propose a new cellular system
architecture featuring SDN network MIMO. In this setting,
the coordination of network MIMO downlink transmission is
achieved in the SDN fashion. Two performance metrics, Cluster
Average flow rule Storage Load (CASL) and Cluster Average flow
table Miss Rate (CAMR) of Base Stations (BSs) are solved based
on a Multivariate Markov Chain (MMC) model for flow rule
dynamics of the BSs in a cluster. According to the analysis, we
design an algorithm for the controller to assign flow rule timeout
values to minimize the CASL for a given CAMR. Simulation
results are presented to show the accuracy of the analysis, and
the insight into the trade-off between the two metrics.

I. INTRODUCTION

Compared to former generations, cellular wireless systems
are providing higher data rate which translates to more effi-
cient radio spectrum usage as exploitable spectrum becoming
scarce [1]. To increase spectrum efficiency, many technologies
require certain levels of cooperation among nearby cells,
such as Coordinated Multi-Point (CoMP) [2], Heterogeneous
Networks (HetNet) [3], and network MIMO. Among these
technologies, network MIMO [4] downlink transmission de-
mands even tighter cooperation of cells to the extent that a
central controller is needed to do MIMO precoding for all
the cells. Though there exist works on various aspects of
network MIMO, how to achieve the centralized control of cells
in a cluster has not received adequate research attention. In
[5], simulations show how the size of a coordinated cluster
affects throughput in network MIMO system. The authors of
[6] discover that different levels of BS cooperation result in
different capacity improvements. The quantitative analysis of
the benefits brought by cell cooperation is conducted in [7]
under ideal conditions. In these works [4]-[7], it is either
explicitly or implicitly assumed that the centralized control of
BSs is available to facilitate the downlink MIMO broadcast of
network MIMO, but how to centrally control network MIMO
BSs is left as a future research direction by [4].

In terms of centralized control, it is an innate feature of SDN
where controllers inform switches of forwarding interface of
each flow using flow rule replies upon receiving the requests,
which has been shown to be successful in production networks
[8]. Thus, it is worthwhile to explore what the network MIMO

cellular system architecture will be if the SDN centralized
control is adopted, and how to model the flow rule dynamics
and characterize the SDN performance in this environment.

To study the performance of SDN in network MIMO
analytically, two challenges need to be conquered. Firstly,
the model needs to capture the SDN flow rule dynamics,
such as requests, replies, usage, and storage of flow rules,
which is the key difference between SDN and traditional
routing. This is a challenge because classical tools for network
performance studies, such as network calculus and queueing
theory, cannot be used to study metrics of flow rule dynamics.
Network calculus is applied to analyze delay bounds, queue
length of SDN switches and controllers in [9]. However, these
performance metrics are not related to SDN flow rules. The
authors of [10] analyze the queue length of SDN switches
using M/M/1 queue. This model is achieved by abstracting
the dynamics of SDN flow rule into a constant flow table
miss rate which is considered to be a fixed measurement value.
This modeling technique is also used in [11] and [12] for SDN
performance studies to bring the system model into a queueing
framework, but the flow rule related parameters cannot be
captured. Secondly, the network MIMO setting changes the
common hardware constraint assumptions of SDN. Regarding
the flow table size, many SDN based applications consider
the flow rule storage load to be a physical constraint because
the Ternary Content Addressable Memory (TCAM) for flow
rule storage and lookup is space limited, costly and energy
hungry [13]. For the flow rule reply from the controller, the
usual assumption is that instantaneous flow rule feedback and
installation are reasonable with a powerful controller, sufficient
bandwidth, and infrequent flow rule requests such as in cache
system [14]. In network MIMO, however, these two popular
assumptions are reversed. Though TCAM has limited space,
it is still enough for SDN network MIMO flow rules that
time out fast because they are dependent on channel states
which are ephemeral. SDN network MIMO controller cannot
instantaneously reply to flow rule requests because scheduling
tasks for a cluster of BSs are nontrivial for the controller in
terms of processing [15] and backhaul capability [4].

In order to address the challenges, we model the flow
rule dynamics using MMC [16]. Based on the transition
probabilities of the MMC, recursive functions are derived to
solve two metrics, CAMR and CASL. They characterize two
important aspects of flow rule dynamics, the flow table miss



rate and the flow rule storage load in the SDN network MIMO
setting respectively. Equipped with the solutions, an algorithm
for the flow rule timeout assignment is proposed to achieve
the minimum CASL for a target CAMR. The performance
metrics and the algorithm are meaningful for the planning
and the deployment of SDN network MIMO systems and the
design of the corresponding hardware, such as the processing
capability of the controller and the flow table size of BSs.

The rest of the paper is organized as follows. Section II
describes the system model, including the architecture, the
network components, the downlink data transmission steps,
and the modeling of the flow rule dynamics for the downlink
data transmission in the access network. In Section III, two
performance metrics CAMR and CASL are defined, and then
solved based on the recursive functions derived from the MMC
model. Evaluations of the analysis and the insight into the
trade-off between the two performance metrics are presented
in Section IV, and the paper is concluded in Section V.

II. SYSTEM MODEL

A. SDN network MIMO architecture for cellular system
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Fig. 1. Cellular system architecture with SDN network MIMO

The cellular system architecture featuring SDN network
MIMO is shown in Fig. 1. It is an SDN based cellular network
where nearby cells form centrally controlled clusters. The
system adopts the SDN paradigm in the core network, the
backhaul, and the access network where the control plane and
the forwarding plane are separated. Though this is similar
to the SDN cellular network architectures in the existing
literature, such as the one proposed in [17], special controller
applications and servers for network MIMO are required in
the core network and the backhaul to accommodate network
MIMO in the access network. In the core network, controller
applications and special servers supporting high level network
MIMO functions are developed, such as forming and maintain-
ing the clusters. In the backhaul, controllers are equipped with
applications for switches to assure data synchronization at BSs,
and the applications for BS scheduling, including network
MIMO precoding matrix generation.

B. Components in the network

This subsection describes the network components and their
functions directly related to the analysis of the flow rule
dynamics in the access network of SDN network MIMO.

1) Cluster formation server: In the core network, there are
servers responsible for the formation and the maintenance of
the SDN network MIMO cluster. We assume that a server
configures the cluster of interest to be formed by one controller
C, and N cells, {ci|i ∈ [1, N ]} each of which serves mi ∈ N+

users, adding to
∑N

i=1mi = M users in total. Another
assumption is that the cluster changes very slowly so the
formation is considered to be time invariant.

2) Network MIMO cluster controller: The controller C
processes the flow rule requests from all the N BSs in the
cluster of interest. The flow rule replies indicate how to
transmit the downlink data, i.e. the network MIMO precoding
matrix and the other physical layer resources. As the flow rules
incorporate the BS scheduling information, they are generated
and configured to be effective in units of scheduling intervals,
the period of time for the controller to make flow rule replies.
For flow rule i, the timeout parameter is Ti, meaning that flow
rule i will become ineffective after Ti number of scheduling
intervals. In each scheduling interval, the controller C can
only handle up to H flow rule requests. If the number of BS
requesting flow rules in a scheduling interval is greater than
H , the controller C randomly replies to H requests.

3) Mobile user: Each of the M users has certain probability
of receiving downlink data in every scheduling interval. Let
Ai(t) be the event that user i has downlink data arrival at
the scheduling interval t, and Ai(t) are mutually independent
among all i and t. As the flow rules specify the network MIMO
precoding matrix that are different for every combination of
active users, M users map to 2M − 1 flow rules.

4) SDN network MIMO BS: When transmitting downlink
data in a scheduling interval, BSs first look for the correspond-
ing flow rule locally. If the flow rule is still effective in the
flow rule table of BSs, they transmit the downlink data using
the locally available flow rule; otherwise, the BSs will request
the flow rule from the controller C. The freshness of the flow
rules stored in all the BSs are defined by the random process

F (t) = {fij(t)}(2M−1)×N , (1)

where fij(t) ∈ [0, Ti] is the number of scheduling intervals
for the flow rule i to remain effective in BS j. Each row i
corresponds to a flow rule mapped from the combination of
mobile devices that are active at a scheduling interval with
probability pi. fij(t) = 0 means that the flow rule is not
installed or has become ineffective due to timeout. When a
BS bj receives a flow rule for user combination i from the
controller with a timeout parameter Ti at scheduling interval
t, then fij(t) = Ti. After that, the fij value decreases by one
every scheduling interval until it freezes at zero.

C. Downlink data transmission process in access network

The downlink data transmission steps in the access network
of SDN network MIMO are illustrated in Fig. 2 which shows
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Fig. 2. Downlink data transmission steps

a small scale example of one SDN network MIMO cluster
comprised of three cells. In this example, three adjacent BSs
are grouped into a cluster governed by a controller. At one
scheduling interval, there are downlink data to three users, the
mobiles enclosed in color rectangles in Fig. 2. The data are
transmitted from the switches in the backhaul to all the BSs
in the cluster as shown in Fig. 2(a) to ensure that all the BSs
have the same data so they can collaborate on the downlink
MIMO transmission. Then, as depicted in Fig. 2(b), the BSs
look for the corresponding flow rule that matches the three
users. The BSs finding the flow rule stored in their own flow
rule tables transmit the data in the next scheduling interval,
but the BSs that do not have the flow rule at hand need to
request the flow rule from the controller, which is shown in
Fig. 2(c). Table miss events happen at the BSs without locally
available flow rules. Though two flow rule requests are sent
to the controller, only one reply is made before the end of the
current scheduling interval as shown in Fig. 2(d), because the
processing capacity of the controller is limited.

D. MMC model of the flow rule timeout dynamics

To analyze CAMR and CASL which are defined in the next
section, the random process Si(t) is defined based on the flow
rule freshness process F (t) in Eq. (1). As we will see, the
two metrics CAMR and CASL depend on the steady state
expectation of one variate, S0

i (t) in Si(t). Recursive functions
are derived from the transition probabilities of Si(t), resulting
in a more convenient way to solve the two metrics than finding
the steady state distributions for Si(t) whose state space is so
large that the steady state distribution defies analysis. Define

the multivariate random process Si(t) = (S0
i (t), · · · , STi

i (t))
where each element Sk

i (t) is the number of BSs with fij(t) =

k at scheduling interval t. Sk
i (t) =

∑N
j=1 1{fij(t)=k} for k ∈

[0, Ti], and 1{·} is the indicator function.
For flow rule i, the transition probabilities of Si(t) are

S0
i (t+ 1) =

{
S1
i (t) + (S0

i (t)−H)+, w.p. pi,
S1
i (t) + S0

i (t), w.p. 1− pi,
(2)

Sj
i (t+ 1) = Sj+1

i (t), j ∈ [1, Ti − 1], (3)

STi
i (t+ 1) =

{
H − (H − S0

i (t))+, w.p. pi,
0, w.p. 1− pi.

(4)

The function (x)+ = max{x, 0}. As shown in Eq. (2)-(4),
Si(t) is Markovian because the future state of any variate is
independent of the history states given the current states of
all the variates, so Si(t) is an MMC. Define R(t) as the total
number of flow rule requests from all the BSs in the cluster
at tth scheduling interval, so it can be written as

R(t) = S0
i (t), w.p. pi, (5)

the number of BSs that have no effective flow rule i. Since
the MMC Si(t) applies to any flow rule i, the index i will be
suppressed when no confusion is caused.

III. PERFORMANCE METRIC STUDY

In this section, two performance metrics in SDN network
MIMO, CAMR and CASL, are first defined, and then solved
based on the recursive functions obtained from the transition
probabilities of S(t). It is also shown that the solutions derived



from the recursive functions are equal to the results achieved
by solving the steady state distribution of S(t).

A. Definitions of the metrics

1) Definition of CAMR: Flow table miss rate appears in
many SDN performance analysis papers as a measured value,
and it is considered to be very influential on the performance
of SDN switches [11][12]. In SDN network MIMO setting, the
flow table miss rate of the BSs in a cluster is characterized by
CAMR which is denoted as ρ and defined as follows.

ρ =
lim
t→∞

E(R(t))

N
=

2M−1∑
i=1

piE(S0
i (∞))

N
. (6)

E(S0
i (∞)) denotes limt→∞ E(S0

i (t)) and CAMR is the ratio
between the expectation of the number of BS with no matching
flow rule in the steady state and the total number of BS.

2) Definition of CASL: Currently, the storage of SDN flow
rules in switches is limited by the hardware capability and
considered as a major design constraint [13][18], so it is
meaningful to analyze the flow rule storage load on the BSs
in SDN network MIMO. Define CASL, denoted by ω, as the
average flow rule storage load of all the N BSs in the cluster
in the steady state of S(t), so it can be written as

ω =

2M−1∑
i=1

N − E(S0
i (∞))

N
, (7)

which is the expectation of the number of effective flow rules
in all the BSs in a cluster in the steady state of S(t).

B. Solving the metrics

The key to solving the metrics is to find E(S0(∞)), the
expectation of the number of BSs with no matching flow rule
in the steady state of S(t). The existence of the steady state
of the MMC is guaranteed by that fact that it has finite state
space, and it is irreducible and aperiodic. The proof of the
existence of the steady state is not presented in the paper due
to space limitation. Since the metrics of concern depend only
on the average value of one variate of the MMC in steady state,
we derive a set of recursive functions to solve E(S0(∞)). The
following group of recursive functions can be obtained from
Eq. (3) and Eq. (4) by taking expectations on both sides.

E(Sj(t+ 1)) = E(Sj+1(t)), j ∈ [1, Ti − 1]. (8)
E(ST (t+ 1)) = p(H − (1− r(t))(H − E(S0(t)))). (9)

In (9), r(t) = P(S0(t) > H) . As t goes to infinity, all the
expectations exist and converge, and so does r(t). Taking the
limit of Eq. (8) and Eq. (9) as t goes to infinity gives

E(Sj(∞)) = E(Sj+1(∞)), 1 ≤ j ≤ T − 1, (10)
E(ST (∞)) = p(H − (1− r)(H − E(S0(∞)))), (11)

where r = limt→∞ r(t). Together with the condition∑T
j=0 E(Sj(∞)) = N , we can solve the equations of steady

state expectations in Eq. (10) and Eq. (11), and E(S0(∞)) is

E(S0(∞)) =
N − rpHT

1 + p(1− r)T
. (12)

To show that E(S0(∞)) is equal to the expectation
of S0(t) when t approaches infinity, suppose that S∗ =
limt→∞ E(S(t)) = E(S(k)) and E(Sn+1|Sn = a) = h(a),
so E(S0(∞)) is in the solution of h(a) = a where a is a
constant vector. Thus, S∗ can be written as follows.

S∗ = E(S(k + 1)) = E(E(S(k + 1)|S(k))) = E(h(S(k))).
(13)

In the steady state of S(t), the function h(·) is linear according
to (10) and (11), so we can change the order of the expectation
operator and the linear function, which results in

S∗ = E(h(S(k))) = h(E(S(k))) = h(S∗). (14)

According to Eq. (14), the solution of h(a) = a equals to S∗,
justifying that the results obtained using the recursive functions
are the same with the expectations of steady state distribution.

Thus, CAMR can be further derived as

ρ =
1

N

2M−1∑
i=1

pi(N − ripiHTi)
1 + pi(1− ri)Ti

, (15)

and CASL is obtained by plugging (12) in (7)

ω =
1

N

2M−1∑
i=1

Npi(1− ri)Ti + ripiHTi
1 + pi(1− ri)Ti

. (16)

Note that r ∈ [0, 1] is an unknown probability, so the solutions
for E(S0(∞)), CAMR, and CASL involving r are ranges of
values depending on r. The range of r can be further narrowed
down by applying Markov inequality,

r = P(S0(∞) > H) ≤ E(S0(∞))

H
. (17)

The accuracy of the results is discussed in section IV.

C. Algorithm for timeout assignment

Assigning timeout values for flow rules is part of the
controller design, and one important goal is to achieve the
target table miss rate with as low flow rule storage as possible.
Using the above results, a greedy algorithm can be designed
to achieve the target CAMR with the lowest CASL. As shown
in Alg.1, the inputs of the algorithm are the probabilities
of the flow rule usage at a scheduling interval, the bounds
of timeout values, the target CAMR, and the output is the
timeout assignment. It is worth noting that the while loop
starting from line eight can be regarded as a linear search
which can be easily changed to an equivalent binary search
for lower time complexity to adapt for large inputs. It is
shown here as a linear search for easy presentation. If binary
search algorithm is used, the time complexity of the algorithm
is O(M log(|{TOmin, · · · , TOmax}|)). Since the complexity
increases linearly with the number of users in the cluster, the
scalability of the algorithm is demonstrated thereby.

IV. EVALUATION

In this section, simulation results are presented to demon-
strate the accuracy of the analysis and the insight into the
trade-off between the two performance metrics.



Algorithm 1 Achieve target CAMR with the lowest CASL
Input: p[], TOmin, TOmax, targetMissRate,
Output: T[]

1: p[] = sort p[] from large to small
2: T[] = [TOmax,...,TOmax]
3: missRate = calculate using (12)-(15)
4: if (missRate > targetRate) then
5: no such T assignment exists, return empty
6: else
7: i=length of T[]
8: while i 6= 0 do
9: while T [i] > TOmin do

10: missRate = calculate using (12)-(15)
11: if missRate >= targetRate then
12: break
13: end if
14: T[i]=T[i]-1
15: end while
16: missRate = calculate using (12)-(15)
17: if missRate >= targetRate then
18: break
19: end if
20: i=i-1
21: end while
22: end if
23: return T[]

TABLE I
PARAMETERS OF THE THREE SCENARIOS IN ALL THE CASES FOR FIG. 3

Scenario H N T

1 7 13 2, 3, 4

2 8 13 2, 3, 4

3 9 13 2, 3, 4

A. Accuracy of E(S0(t))

The accuracy of the analysis for E(S0(t)) is examined
because it is an important intermediate result on which the two
metrics depend and its solution given by Eq. (12) and (17) is
a range of values. Depending on the form of Eq. (12), three
cases are considered based on the value of ∆ = N−H−pHT .
When ∆ = 0, E(S0(∞)) equals to H and does not depend
on r; when ∆ < 0, the range of Eq. (12) is restricted by
Eq. (17); when ∆ > 0, Eq. (17) has no effect on the range
of E(S0(t)) given by Eq. (12) when r is in [0, 1]. For each
case, simulations are conducted in three scenarios and the
parameters are summarized in table I, where the parameters
remain the same for comparability in all the cases except p
for which the computation is explained in each case below.

1) Case 1, ∆ = 0: In this case, E(S0(∞)) = H according
to Eq. (12), so r does not affect the result and the p values
are computed as (N −H)/HT in this case.

The simulation results for the three scenarios are illustrated
in the three figures in the first row of Fig. 3. The simulation
results within the 5th and the 95th percentiles are enclosed
in the blue boxes. The red bars show the medians and black
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Fig. 3. Simulation and analysis results of E(S0(∞)) in 3 cases

bars are the extreme values. Red crosses represent the outliers
excluded from the statistics, and the purple stars are the mean
values. As we can see, the simulation mean for three scenarios
stays almost the same regardless of the changes of p and T
as long as ∆ = 0, which is in accordance with our analysis.
The analysis results of E(S0(∞)) are not plotted in the figures
because they are equal to H in this case. They are consistently
below the simulation results by no more than one.

2) Case 2, ∆ < 0: In this case, the Markov inequality
constraint in Eq. (17) further restricts the range of E(S0(∞)).
The p values here are achieved by increasing the p values in
case 1 by 25 percent to bring ∆ below zero. The simulation
results and the analysis are shown in the second row of Fig. 3.
The ranges of analysis results are represented by three brown
circles indicating the bounds and the center of the range. The
range is small compared to the range of simulation results and
the analysis results are near the simulation mean.

3) Case 3, ∆ > 0: In this case, Eq. (17) does not restrict the
solution of Eq. (12), and the p values are obtained by reducing
the p values in case 1 by 25 percent to bring ∆ above zero.
The simulation and analysis results are shown in row three of
Fig. 3. Similar to the previous case, the ranges of the analysis
are also small and close to the simulation results.

B. Accuracy of CAMR and CASL
In this subsection, the simulation parameters are H = 3,

N = 4, M = 5, and the profile of user traffic arrival
probability in a scheduling interval is given in the first row in
table II. Timeout assignment is the same for all the 25−1 = 31
flow rules. According to the figure on the left of Fig. 4, CAMR
decreases as timeout values increases. The simulation result,
shown as Sim in the legend of Fig. 4, is very close to the
analysis upper bound, AUB in the legend of Fig. 4.

Presented on the right in Fig. 4, the simulation results for
CASL are not far below the analysis lower bound, put as ALB
in the legend in Fig. 4. Contrary to the trend of CAMR versus
timeout growth, CASL increases as timeout value grows.
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TABLE II
PROBABILITY PROFILES OF USER TRAFFIC ARRIVAL

Profile p1 p2 p3 p4 p5 σ

1 0.1833 0.5999 0.6131 0.3764 0.3987 0.1782

2 0.3230 0.1942 0.1171 0.8518 0.4784 0.2908

3 0.9434 0.7154 0.6545 0.5098 0.0922 0.3157

4 0.0912 0.9648 0.0081 0.9771 0.0018 0.5146

C. Trade-off between CAMR and CASL

When Alg.1 is adopted, the relation between CASL and
CAMR is studied using simulation in which the parameters
are H = 3, N = 4, M = 5, and four different profiles (shown
in table II) of user traffic arrival probabilities in a scheduling
interval are considered. As shown in Fig. 5, CAMR decreases
as CASL increases and the speed of decreasing slows down
as CAMR becomes small, so it is beneficial to stop trying to
obtain small CAMR by increasing CASL after a certain point.
This phenomenon is more obvious in the probability profiles
with a large standard deviation, since profile 4 has the steepest
decrease, followed by profile 3 and 2 which have smaller and
similar standard deviation. The standard deviation of profile 1
is the smallest and its curve descends most mildly.
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Fig. 5. CASL versus CAMR when Alg.1 is used to assign timeout

V. CONCLUSION

In this paper, we propose the SDN network MIMO architec-
ture to facilitate the centralized control in network MIMO. The
SDN flow rule dynamics is analyzed in this setting using an
MMC mode based on which CASL and CAMR are defined

and solved. Observing that the solution of the two metrics
requires only the expectation of one variate in the MMC in the
steady state, recursive functions are derived from the transition
probabilities to solve the metrics. Armed with the solutions
of the metrics, an algorithm is designed for flow rule timeout
assignment to minimize CASL for a given CAMR. Simulation
results corroborate the accuracy of the analysis and provide
insight into the trade-off between the two metrics.
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