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Abstract—Internet of things (IoT) is expected to provide a
fully informative and controllable environment that features
networking, automation, and intelligence by interconnecting
physical systems to cyber world. Such a correlation opens the
interdependence between the two, so that a single incident in one
domain, e.g., a broken communication link, or an out-of-battery
device, can cause a cascade-of-failures across physical and cyber
domains. To understand the resilience of IoT systems against
such detrimental cascades, this paper studies the aftermath of
edge and jointly-induced cascades, that is, a sequence of failures
induced by randomly broken physical links (and simultaneous
failing cyber nodes) by answering how many nodes will survive
the cascade with a newly defined node yield metric. Specifically,
we construct a framework to establish self-consistent equations
of node yield through an auxiliary graph, without requiring the
exact network topology. Then two algorithms are proposed to
numerically calculate node yield for interdependent networks
with arbitrary degree distributions. For random graph with
Poisson degree distributions, we prove the existence of a critical
initial edge disconnecting probability φcr under which an edge-
induced cascade will result in dissolving the network topology,
derive the closed form solution for φcr, and find that φcr increases
sub-linearly with the mean degree of the physical network.

I. INTRODUCTION

Internet of Things (IoT) is envisioned as a future paradigm

that connects numerous physical devices, i.e., “things”, to

the cyber world, i.e., the Internet, creating an intelligent

ecosystem that enables smart home, factory automation, in-

telligent transportation, and so on [1]. In such a system-of-

systems, sensing and actuation become a utility [2], just like

electricity and water, that is accessible by various applica-

tions, such as remote medicine and health care supported by

home monitoring. Though the underlying platforms can be

different and complicated, the nature of IoT systems is a

networked application built upon networked utility, creating

a strongly coupled cyber-physical system (CPS) [3]–[5]. For

instance, in a mobile social network (MSN), smartphones can

be connected by device-to-device (D2D) communication links

as utility/physical nodes, and upon that the application/cyber

network is composed of users connected by social interactions.

Along with these complex networks and communications,

the intelligence of IoT systems is enabled by mutual con-

nections between application and utility, through real-time
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communication and control. However, such close coupling

introduces complex interdependence between cyber and phys-

ical domains, adding to the vulnerability of IoT systems [2].

On one hand, connection to the Internet that enables remote

control, also surrenders IoT systems to malware [6] and cyber

attacks [7], [8]. More importantly, because of the interdepen-

dence, faults triggered by a single incident in one domain,

e.g., a broken communication link or a hacked smart device,

can propagate across both the cyber and physical domains,

causing a chain of reactions, which is referred to as a cascade-

of-failures in CPS [5], [9]. In IoT systems, such phenomena

of cascade-of-failures can be especially detrimental since the

actuators (physical nodes) can directly impact human lives.

For example, a hacked smart home device (usually with weak

security measures [7]), e.g., a malfunctioning oven, is much

more dangerous than a hacked computer that leaks personal

information. To make things worse, the impact of cascade-

of-failures can be even exacerbated by the massive scale of

IoT systems [2], [10], as evidenced by the 2003 country-

wide blackout in Italy [11]. Considering the severe impact

of cascades in the physical world, it is crucial to understand

the structural capacity of an IoT system in resisting cascades-

of-failures, that is, the resilience in IoT systems with intrinsic

characters of as interdependent networks.

Resilience of interdependent networks against random or

correlated cascading failures is not a brand new topic, and

has been addressed from two main aspects: the outcome

after a cascade, and the critical condition of the system.

The former reveals the impact of a cascade, as well as the

expected replenishment/replacement workload. To this end,

the remaining fraction of functional nodes after a cascade has

been studied under random node failures [5], [12]. In terms

of system restoration, resilience of a smart grid system has

also been quantified by the control effort to steer the system

back to normal operation [13]. The latter aspect examines

the threshold behavior of interdependent networks, which

provides important guidelines to the design of such systems.

For example, Buldyrev et.al. found a critical average node

degree below which an interdependent network will eventually

collapse under random node failures.

The root causes of a cascade-of-failures can be attributed to

cyber/physical node functions with respect to communication

links, data acquisition, and reporting, etc., while the edge, that



is the connection between a node-pair, could be the conse-

quence of any one of them or combination of multiple failures.

Therefore, broken links in an IoT system are not only much

more visible than individual failing nodes, but also indicate

much more impacts in a networking perspective. The grand

challenge is that the primary network modeling approach,

graph theory, offers comprehensive results on networks with

node failures, which can be random or targeted [4], [5], [9],

[12]. The edge and node jointly-induced cascades, albeit as

prevalent in IoT systems, have not been discussed in the

context of interdependent networks. Links, especially those

in the physical domain, are as vulnerable as (if not more

than) nodes, so that link breakage/impairment constitutes a

major cause of cascades in IoT systems: on one hand, many

IoT applications rely on unstable wireless communication as

their physical links and consequently suffer from random link

breakages, e.g. D2D-based MSN and smart home devices

connected by IEEE 802.11ah WiFi-HaLow [10]; on the other

hand, wired utility links, such as power lines in smart grids,

are under-guarded and exposed to vandalism. Though edge-

induced cascades have been discussed in a single network

context, e.g., power grids [14] and scale-free networks [15],

these results do not extend to IoT systems due to the complex

interdependence. Motivated by the importance and lack of

study, this paper addresses the resilience problem in IoT

systems. Specifically, we aim to find:

(i) residual node ratio: how many nodes will survive an

edge or jointly-induced cascade-of-failures?

(ii) critical condition: what is the minimum intensity of

initial random failures to fully collapse an IoT system?

The rest of this paper is organized as follows. We introduce

concept, system model and metrics in Sec. II to formulate

the resilience problem of IoT systems. Then in Sec. III, an

analytical framework is established to examine the expected

residual node ratios of a generic IoT system under an edge

or jointly-induced cascade. With the proposed framework,

theoretical and numerical solutions of node yield for IoT

systems with arbitrary node degree distributions are provided

in Sec. IV. The critical initial disconnecting probability is

studied with theoretical analysis and simulation in Sec. V.

Finally, the paper is concluded in Sec. VI.

II. RESILIENCE PROBLEM IN IOT SYSTEMS

In this section, we elaborate the resilience concept of

IoT systems, and then briefly introduce our approach, the

interdependent network model, triggering incidents, residual

process and metrics to address the resilience problem.

A. What is Resilience in the IoT Context?

Resilience of a system measures its capability to maintain

functions and structure in the face of internal and external

change [16]. In the IoT context, it is the survivability of

cyber and physical nodes against cascades induced by faults,

failures and attacks. In a deterministic sense, resilience can

be quantified by the expected response of an IoT system to a

cascade, while in a probabilistic sense, it can be evaluated by

Fig. 1. An IoT system is modeled as an interdependent network (Gp,Gc,

Ec→p, Ep→c). Direction of a cross-domain edge indicates the support/control
relationship. For instance, cyber-to-physical edge e(b1 → c1) ∈ Ec→p (solid
arrow) implies physical node b1 supports cyber node c1, so c1 is dependent

on b1; physical-to-cyber edge e(c1 → b1) ∈ Ep→c (dashed arrow) indicates
that c1 controls b1, so b1 is dependent on c1 as well.

the intensity of random failures that the system can withhold,

as enumerated in the aforementioned resilience problem. From

the outcome and critical condition aspects, answers to this

problem offer information on the resisting capacity of an

existing IoT system against cascades, as well as the necessary

redundancy level in designing a future IoT system. However,

the resilience problem is challenging due to the massive scale,

complex interdependence, and broad application scenarios of

IoT systems. Consequently, extracting meaningful insights

through experiments is both difficult and costly, while analysis

measures are hindered by the limited topology information that

a large IoT system can provide.

B. Our Approach toward the Resilience Problem

To answer the resilience problem of IoT systems, we

establish an analytical framework detailed as follows.

• Develop a network model of IoT systems to characterize

the complex interdependence across the cyber and phys-

ical domains, and a network residual process to capture

the impact of a cross-domain cascade.

• Define metrics, node yield Yn and critical initial discon-

nection probability φcr, to quantify the resilience of an

IoT system against edge and jointly-induced cascades.

• Construct an auxiliary graph to establish self-consistent

equations, and derive node yield Yn as a function of initial

disconnecting probability φ and node degree distributions.

• Propose algorithms to numerically calculate node yield

value for networks with arbitrary degree distributions.

• Prove the the existence of φcr in IoT systems with

Poisson degree distributions with closed-form solutions.

C. Interdependent Network Model of an IoT System

Consider an IoT system that can be described as an interde-

pendent network (Gp,Gc, Ec→p, Ep→c), illustrated by a simple

example in Fig. 1. In this tuple, Gp(P , Ep) denotes the physical

network that abstracts links between physical nodes (utility

entities) in set P = {b1, . . . , bnp
}, while Gc(C, Ec) denotes



the cyber network that describes connections between cyber

nodes (application instances) in set C = {c1, . . . , cnc
}. Let

{Pp(k)}
dmax(Gp)
k=1 (respectively, {Pc(k)}

dmax(Gc)
k=1 ) denote the

node degree distribution of physical graph Gp (cyber graph

Gc), where Pp(k) (Pc(k)) is the probability that a randomly

selected physical (cyber) node is of degree k in graph Gp (Gc).

The interdependent relationship between the physical and

cyber domain of an IoT system is described by sets Ec→p

and Ep→c, that contain directed cross-domain edges. We adopt

the ‘one-to-multiple’ support assumption in [5], and modify

its ‘one-to-one’ control assumption to ‘none/one-to-one’, to

allow modeling of legacy physical nodes, that only provide

information support to applications, but maintain an isolated

control. Specifically, one physical node can support multiple

cyber nodes, while each ‘smart’ (non-legacy) physical node

can only be controlled by one of its supported cyber nodes.

In other words, for any physical node b ∈ P :

a) There exists at most one cyber node Ct(b) ∈ C that can

control physical node b (and hence b depends on Ct(b)),
described by the directed edge e (Ct(b)→ b) ∈ Ep→c.

We denote Ct(b) = ∅ if b is a legacy physical node that

can not be controlled by any cyber node.

b) There exists a non-empty set Sp(b) ⊂ C, containing

all the cyber nodes that are supported by (hence de-

pendent on) physical node b. Then for any cyber node

cj ∈ Sp(b), there is a directed edge e(b→ cj) ∈ Ep→c.

Further, the number of cyber nodes |Sp(b)| that a

randomly chosen physical node b ∈ P supports follows

a binomial distribution B(nc,
1
np

).

c) If Ct(b) 6= ∅, which means b is a smart physical node,

then its controller Ct(b) is chosen uniformly at random

from its supported cyber nodes, i.e., Ct(b) ∈ Sp(b) ⊂ C.

Let Ps = {b ∈ P|Ct(b) 6= ∅} denote the set of smart

physical nodes, and α = Ps

P is referred to as the adoption

ratio of the IoT system. Then, the system of interest, or more

specifically the interdependent network (Gp,Gc, Ec→p, Ep→c),
is characterized by a set of parameters, that is, the adoption

ratio α, size np and degree distribution {Pp(k)}k of physical

graph Gp, and that (nc and {Pc(k)}k) of cyber graph Gc.

D. Triggering Incident and the Cascade Process

Let time t proceed in discrete steps T = {0, 1, . . .}. Without

loss of generality, let the triggering incident take place at

time t = 0, when each physical edge in Ep disconnects with

probability φ ∈ (0, 1), and each cyber node in C crashes

with probability κφ, where κ ∈ [0, 1]. We call this triggering

incident the joint φ-edge and κφ-node failure. Particularly,

κ = 0 corresponds to the physical link breakage case, which

we refer to as a Type-1 scenario, while κ > 0 corresponds

to a joint-failure case, referred to as the Type-2 scenario.

As a result of the initial failure, a set Efail of physical links

and set Cfail of cyber nodes are removed from the system

at time t = 0, with expected values E(|Efail|) = φ|Ep| and

E(|Cfail|) = κφnc respectively.

Right after the initial failure, a sequence of alternating

node/edge removal, i.e., a cascade-of-failures, begin to unfold

as time proceeds. Following a similar mechanism detailed in

[5], we examine the residual physical network Gp(Pt) in the

first half of a time slot (odd steps), and the residual cyber

network Gc(Ct) in the second half (even steps). Note that

Pt ⊂ P and Ct ⊂ C are time-decreasing sets of functional

nodes at time t. At odd (respectively, even) steps, any physical

(cyber) node is deemed as dysfunctional and removed, if it

does not belong to the largest connected component (LCC) of

the current remaining physical graph Gp(Pt) (remaining cyber

graph Gc(Ct)), or the cyber (physical) node it depends on was

removed in the previous step. The removal of dysfunctional

physical (respectively, cyber) nodes then results in the removal

of all of its physical and support edges in Ep and Ec→p

(cyber and control edges in Ec and Ep→c). Fig. 2 illustrates an

example of this cascade-of-failures process in the IoT system,

whose network structure was shown in Fig. 1. To capture the

evolution and impact of such cascades, we define a numerical

random process that indicates the healthiness of the system.

Definition 1 (Physical/Cyber Residual Process). The residual

physical node ratio Rp
t (respectively, residual cyber node ratio

Rc
t ) is defined as the proportion of physical (cyber) node that

remains functional at time t, that is, Rp
t := |Pt|

np
(Rc

t :=
|Ct|
nc

).

The resulting processes {Rp
t }t and {Rc

t}t are called physical

and cyber residual processes respectively.

Since the residual networks Gp(Pt) and Gc(Ct) are node-

induced graphs of Gp and Gc, random variables Rp
t and Rc

t

both take value in [0, 1], and the residual processes {Rp
t }t and

{Rc
t}t are non-increasing in time t.

E. Metrics and Problem Formulation

The resilience problem focuses on the final outcome and

critical condition of the network under cascades, that is, will

the network collapse? If not, how many will remain functional?

To answer these questions, we define the following metrics.

Definition 2 (Node Yield1). Given a physical residual process

{Rp
t }t∈T of an IoT system (Gp,Gc, Ec→p, Ep→c), node yield

Yn is defined as the expected minimum residual physical node

ratio over time, that is,

Yn := min
t∈T

E(Rp
t ) = lim

t→∞
E(Rp

t ). (1)

Node yield Yn illustrates the worst-case impact of a cascade-

of-failures on an IoT system given long enough time. Viewing

node yield as a function of the initial disconnecting probability

φ, we identify the critical condition φcr upon which the

interdependent network will eventually collapse.

Definition 3. Let Yn(φ) denote the value of node yield as

a function of the physical edge disconnecting probability φ.

Then, the critical disconnection probability φcr is defined as

the minimum φ that triggers total network fragmentation, i.e.,

φcr := max{0 ≤ φ ≤ 1 | Yn(φ) > 0}. (2)

1The name, node yield, is inspired by the demand yield defined in the
smart grid context [17], which represents the portion of serviceable electricity
demand after cascades.
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(c) Step 3: Gp and Ec→p (t = 2)
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(d) Step 4: Gc and Ep→c (t = 2)

Fig. 2. Step-by-step illustration of cascading failures (Type-2) in an interdependent network: During t = 1, (a) disconnected physical edges {e(b1, b4),
e(b3, b4), e(b4, b5)} are removed, resulting in the removal of node b4 and all of its supporting edges in Ec→p; (b) then in Gc, node c3 is removed due to
initial failure, {c4, c5, c7} for losing support, and {c1, c2} for disconnection to the LCC, together with their control edges in Ep→c. Current residual ratio

R
p
1
= 6

7
, Rc

1
= 4

10
. Then similarly in t = 2, (c) physical nodes {b1, b3} are removed due to lost of control edges, and b7 for not in LCC; (d) after similar

operations, cyber graph Gc dissolves and Rc
2
= 0. Eventually, only legacy physical nodes b2 and b6 are functional, so node yield becomes Yn = 2

7
.

Critical condition φcr identifies the worst initial failure

that an interdependent network can barely survive, so that

at least φcr|Ep| amount of physical edges will need to be

removed to collapse the network. With the defined metrics,

the resilience problem in IoT systems now translates to the

following mathematical questions. Given an IoT network with

adoption ratio α, composed of physical graph Gp of size np

and degree distribution {Pp(k)}k, and cyber graph Gc of size

nc and degree distribution {Pc(k)}k: What is the node yield

Yn under a cascade induced by the joint φ-edge κφ-node

failure? Is there a critical initial disconnecting probability φcr

such that node yield Yn = 0?

III. ANALYSIS FRAMEWORK FOR RESIDUAL PROCESSES

In order to answer the first question of the resilience

problem, i.e., the outcome of a cascade, we first analyze the

process of residual physical node ratios {Rp
t }t, because node

yield is the minimum expected physical residual that does not

change over time any more. On the residual fraction, Huang et

al. employed percolation theory to describe cascading failures

induced by random physical node failures (referred to as

Type-0 scenario), for scale-free interdependent networks of

infinite size [5]. However, their model and solution do not ap-

ply to edge-induced cascades (Type-1 scenario), or the more

complicated jointly-induced cascades (Type-2 scenario). To

overcome this challenge, we introduce a framework that

maps Type-1 and Type-2 scenarios to equivalent Type-0

scenarios, and then develop self-consistent equations on the

residual processes so that node yield can be analyzed later.

A. Mapping of the Triggering Incident

The main idea of the mapping method is to construct

an auxiliary interdependent network (G̃p,Gc), such that the

residual process of the original network (Gp,Gc) under an edge

or jointly-induced cascade, is equivalent to that of the auxiliary

graph (G̃p,Gc) under a node-induced cascade. Specifically, this

is done by matching the initial impact (removal) between the

two scenarios at time t = 0. In this section, we assume that

edge disconnections occur and modify only the physical graph,

i.e. random physical link breakages, so that the structure of the

auxiliary and original cyber graphs remain equal to Gc. But

we note here that initial cyber link breakages can similarly be

analyzed by exchanging subscripts ()p and ()c.

1) Type-0 scenario as a primer: Consider a cascade in-

duced by random physical node failures in the auxiliary

interdependent network (G̃p,Gc), whose construction will be

detailed in the next subsection. Let φ̃p denote the node

failing probability/ratio in the physical graph G̃p(P , Ẽp), and

its degree distribution is characterized by {P̃p(k)}k.

After the random node removal in G̃p at t = 0, a fraction

(1− φ̃p) of the |P̃p| physical nodes remain. These nodes may

further fragment into disconnected components among which

the fraction that still belongs to the LCC of G̃p is given [12]

as

g̃p(φ̃p) = 1− G̃p,1

(

1− (1− φ̃p)(1 − fp)
)

. (3)

Here, G̃p,1(x) := G̃′
p,0(x)/G̃

′
p,0(1) is a supplementary func-

tion, while G̃′
p,0(x) := d

dx
G̃p,0(x) denotes the first-order

derivative of the probability generating function (PGF)

G̃p,0(x) :=
∞
∑

k=0

P̃p(k)x
k (4)

of the degree distribution {P̃p(k)}k. Moreover, fp is a variable

that satisfies a transcendental (self-consistent) equation

fp = G̃p,1

(

1− (1− φ̃p)(1 − fp)
)

. (5)

Similar results apply to the cyber graph G̃c after random cyber

node removal with probability φc, and can be obtained by

substituting the subscript ()p with ()c and omitting the tilde

sign in Eq. (3)-(5). The remaining LCC fractions g̃p and gc will

be utilized in analyzing the expected residual physical/cyber

node fractions, as discussed by the step-by-step measure in

[5]. So, it is crucial to construct the auxiliary graph to match

the impact of random edge and joint failures.



2) Construction of the Auxiliary Graph (G̃p,Gc): As indi-

cated by Eq. (3)-(5), the key intermediate parameters in the

residual process analysis are the node removal probability φ̃p

and the PGF G̃p,0(x). Therefore, for Type-1 scenario, the

goal of the construction is to match these parameters, that

is, to find the corresponding φ̃p and G̃p,0(x) in terms of the

initial disconnecting probability φ and physical node degree

distribution {Pp(k)}k of the original interdependent network.

Right after the random physical link/edge disconnection, the

probability that a physical node bi ∈ P is fully disconnected,

i.e., losing all of its physical edges, is φdp(bi). Then from the

network’s point-of-view, the expected fraction/ratio of physical

nodes that are to be removed (due to edge disconnection) is

φ̃p =

∞
∑

k=0

Pp(k)φ
k. (6)

In addition, because of the random link breakages, the node

degree distribution of the remaining graph becomes

Pφ,p(k) =

∞
∑

j=k

Pp(j)φ
j−k(1− φ)k, (7)

with PGF Gφ,p(x) =
∑∞

k=0 Pφ,p(k)x
k.

To match Eq. (7) against the node degree distribution of

auxiliary graph G̃p in Type-0 scenario (random physical

node failures), the PGF of the resulting degree distribution in

the auxiliary graph G̃p after initial removal of physical nodes

should equal to Gφ,p(x). Then, we have

G̃p,0

(

φ̃p + (1 − φ̃p)x
)

= Gφ,p(x) (8)

from [12], where G̃p,0(x) denotes the PGF of the auxiliary

graph G̃p before initial node removal in Type-0 scenario,

and φ̃p can be obtained from Eq. (6). Performing an inversion

to Eq. (8) gives

G̃p,0(x) = Gφ,p

(

x− φ̃p

1− φ̃p

)

. (9)

Note that the set of physical nodes remain the same in

the auxiliary physical graph G̃p and the original Gp, so do

the cross-domain edges for interdependence, while the only

difference is the degree distribution in the physical domain. For

Type-2 scenario, where random physical link breakages are

accompanied by random cyber node failures, similar procedure

can be applied to construct the auxiliary G̃p, since all the initial

random edge disconnection occur in the physical graph Gp.

In fact, as we will show in the next subsection (Lemma 1),

the two influences can be jointly considered in one auxiliary

physical graph G̃p, such that derived self-consistent equations

can apply to both Type-1 and Type-2 scenarios.

B. Self-consistent Equations of the Expected Network Residual

With auxiliary graph (G̃p,Gc) in which initial edge failures

in Type-1 and Type-2 scenarios are transformed into an

equivalent Type-0 scenario, the network residual processes

{Rp
t }t and {Rc

t}t (see Definition 1) can be analyzed through

self-consistent equations.

Lemma 1 (Expected physical/cyber residual ratio). Denote

xt := E(Rp
t ) and yt := E(Rc

t ) as the expected residual

physical and cyber node ratios of the original IoT system

(Gp,Gc) (with adoption ratio α) at time t. Then, under a joint

φ-edge and κφ-node failure,

xt = x′
t × g̃p(x

′
t), and (10)

yt = y′t × gc(y
′
t), (11)

where quantities x′
t and y′t satisfy

{

x′
t = (1 − φ̃p)(1 − κφ)

[

1− α
(

1− gc(y
′
t−1)

)]

,

y′t = (1− φ̃p)(1− κφ)× g̃p(x
′
t),

(12)

in which the equivalent node removal probability φ̃p can be

obtained from Eq. (6); remaining LCC fractions g̃p() and gc()
can be found in Eq. (3).

Lemma 1 can be proved with a similar step-by-step tech-

nique presented in [5, Sec. 5], to which interested readers are

directed. Note that the physical meaning of x′
t and y′t are the

expected fractions of the remaining physical/cyber node after

the last time step t− 1, but not the residual fraction, because

some of the remaining nodes may not be functional as they

are not in the LCC.

In addition, consider Type-2 scenario (κ > 0) in which

physical edges break with probability φ and cyber nodes crash

with probability κφ. After removing φ̃p and κφ fractions of

nodes from G̃p and Gc, the fraction of nodes that are residues

in both G̃p and Gc becomes φ̃p×κφ. As a result, discarding φ̃p

and κφ fractions of nodes separately is equivalent to removing

(1 − φ̃p)(1 − κφ) fraction of nodes from either graph G̃p or

graph Gc alone. We assume that the removals occur in G̃p
to be consistence with Type-1 scenario (κ = 0). Though

the employed proof technique is similar with [5], it should

be noted that [5] is restricted to a full adoption (α = 1)

case, where every physical node is controlled by a cyber node,

while our model can be applied to scenarios that contain legacy

manually-controlled physical nodes.

IV. SOLUTION OF NODE YIELD FROM

SELF-CONSISTENT EQUATIONS

Recall that node yield Yn is defined as the expected steady

state of physical residual process {Rp
t }, that is, xt = xt−1 in

Lemma 1. The key challenge of obtaining Yn from Lemma

1 lies in finding the solution to Eq. (12), that is tied closely

to node degree distributions of the physical network Gp and

the cyber network Gc. Interdependent networks with power

law degree distribution have been discussed in [5] for random

physical node failures (Type-0). However, various applica-

tion scenarios of IoT render an assortment of node degree

distributions. To address this, we provide calculation measures

of the node yield Yn in this section, for interdependent

networks with generic node degree distributions.



A. Poisson Degree Distribution

Random graph (Erdös-Rényi or ER graphs) has been identi-

fied to be useful in realizing network connectivity and resource

distribution in IoT systems [18]. For instance, a D2D-based

MSN on a conference was shown to follow Poisson node

distributions [19], which corresponds to an ER graph. For this

kind of networks, we have the following theorem.

Theorem 1. If node degrees of physical graph Gp and cyber

graph Gc follow Poisson distribution with mean k̄p and k̄c,

respectively, then the under joint φ-edge and κφ-node failure,

the node yield Yn of the system satisfies

Yn = (1− κφ) (1− e−k̄p(1−φ))
(

1− α exp
{

−k̄cYn

})

×

(

1− exp

{

−
k̄p(1− φ)

1− exp(−k̄p(1 − φ))
Yn

})

. (13)

Proof: Physical graph Gp has a Poisson degree distribu-

tion of Pp(k) =
e−k̄p

k! (k̄p)
k. Plugging Pp(k) into Eq. (7), we

obtain the degree distribution of Gp after the initial failure,

Pφ,p(k) =
e−k̄p

k!

(

1− φ

φ

)k ∞
∑

j=k

1

(j − k)!
(k̄pφ)

j (14)

=
e−k̄pφ

k!

(

k̄p(1− φ)
)k

. (15)

From Eq. (7) and its following explanation, the PGF of

{Pφ,p(k)}k can be restated as

Gφ,p(x) = ek̄p(1−φ)(x−1). (16)

According to Eq. (6), the average fraction of physical node

to be removed is φ̃p = e−k̄pφ. Combining this with Eq. (16),

we can derive the PGF of the auxiliary graph G̃p before the

equivalent initial node removal, that is, G̃p,0(x), from Eq. (9).

Subsequently, we have

g̃p(x) = 1− G̃p,0(1− x(1 − fp)) = 1− fp, (17)

since G̃p,1(x) = G̃′
p,0(x)/G̃

′
p,0(1) and fp = G̃p,1(1 − x(1 −

fp)) = exp(
−k̄p(1−φ)

1−exp(−k̄p(1−φ))
x(1 − fp)) by definition.

The cyber graph Gc, on the other hand, has a degree distribu-

tion of Pc(k) =
(k̄c)

k

k! e−k̄c and a PGF of Gc,0(x) = ek̄c(x−1).

Hence, we obtain

gc(y) = 1−Gc,0(1− y(1− fc)) = 1− fc, (18)

with fc satisfying fc = Gc,1(1− y(1− fc)) = e−k̄cy(1−fc).

At steady state, denote x∗ := x′
t = x′

t−1 and y∗ := y′t =
y′t−1 to indicate that the expected remaining fractions become

constant. Then, we plug Eq. (17)-(18) into Lemma 1 and re-

evaluate the node yield as

Yn = (1 − φ̃p)(1− κφ) [1− α(1− gc(y
∗)]× g̃p(x

∗) (19)

= (1 − e−k̄p(1−φ))(1 − κφ)(1 − α[exp{−k̄cy
∗(1− fc)}])

×

(

1− exp

{

−
k̄p(1− φ)

1− exp{−k̄p(1− φ)}
x∗(1− fp)

})

.

To proceed, we assume that adoption ratio α is large (near

one). This assumption is reasonable in future IoT scenarios like

smart grid and intelligent transportation systems, where many

physical resources are controlled by cyber entities/controllers.

Then, Eq. (13) can be acquired by approximating the node

yield given in Eq. (19) with Yn ≈ (1−e−k̄p(1−φ))(1−κφ)(1−
fp)(1− fc).

Theorem 1 gives a closed-form result on node yield in

networks with Poisson degree distributions, that can then be

solved graphically or via the bisection method. It is known

that Binomial degree distribution converges to Poisson for

large number of vertices [20], so we validate our theoretical

analysis in Theorem 1 in a system whose physical and

cyber degrees follow B(np,
k̄p

np
) and B(nc,

k̄c

nc
) respectively.

Unless specified otherwise, we generate ER networks with

np = nc = 5000 nodes, set the mean physical and cyber

degrees to k̄p = k̄c = 10, and employ the adoption ratio of

α = 1. Each of the presented numerical result is executed in

Python over 5× 103 network realizations.

We plot in Fig. 3.(a) the node yield Yn versus physical

edge survival ratio 1 − φ in Type-1 (κ = 0) scenario. The

numerical simulation result is shown with red triangle markers,

while dashed black lines represent analytical result in Eq. (23),

which is obtained via the bisection method [21, Alg. 4.1]. We

observe that the former agrees with the latter, as indicated

by Theorem 1. The validity is preserved for 0 < α < 1, as

implied by the matching plots in Fig. 3.(b) even when the

adoption ratio α is reduced to 0.2. Moreover, high similarity

between Fig. 3.(a) and (b) reveals that the impact of α to

node yield is negligible in Type-1 scenarios. For Type-2

scenario, we employ different κ values in Fig. 3.(c): κ = 1 and

κ = 0.4, and observe an agreement between the analytical and

numerical simulations. In addition, as κ decreases, the result

for Type-2 scenario converges to the node yield of Type-1

scenario in Fig. 3.(a), that is, a special case of κ = 0.

To visualize the importance comparison between physical

edges and cyber nodes, we compare a ‘pure’ cyber node failure

(red triangle markers), discussed in [9], to Type-1 scenario

(‘pure’ physical edge disconnection, black square markers) in

Fig. 3.(d). Observe that the resulting node yield Yn is smaller

upon cyber node failures, indicating IoT is more vulnerable

against cyber node failures due to cyber attacks or software

crashes. This is because random cyber node failures will result

in a lower average degree (and generally low degrees among

nodes) in the physical graph, right after the removal of initially

failed cyber nodes, which can be observed by examining

quantity {Pφ,p(k)}k. Therefore, a practical guidance for IoT

protection is that cyber nodes should be safe-guarded with

more resource to sustain a robust IoT service.

B. Generic Degree Distribution

In a more general sense, the physical and cyber node degrees

of an IoT system do not always follow distributions with nice

properties, e.g., Poisson or power law. Rather, they can be

quite spontaneous. For these cases, we propose two iterative

algorithms to solve node yield Yn from Eq. (10) - (12).

A key to numerically solving node yield from Lemma 1

is to find the steady fraction of the remaining (not residual)



(a) Type-1 with α = 1. (b) Type-1 with α = 0.2. (c) Type-2 initial fault. (d) Type-1 vs node removal [9].

Fig. 3. Validation of Theorem 1: Theoretical results of node yield Yn obtained from Theorem 1. match with that obtained from numerical simulations in a
cyber-physical networks (np = nc = 5000 nodes) with Binomial degree distributions (k̄p = k̄c = 10).

Algorithm 1 Calculation of node yield, Yn

1: procedure NODE-YIELD(φ)

2: a← 0, b← 1 ⊲ initial condition

3: repeat

4: Calculate g(a)← x∗(a)− a
5: Calculate c← a+b

2 and g(c)← x∗(c)− c
6: if sgn(g(c)) = sgn(g(a)) then a← c
7: else b← c
8: end if

9: until convergence

10: x∗ ← x∗(c)
11: return x∗ × GP-CALC(x∗) ⊲ Outputs Yn = x∗g̃p(x

∗)
12: end procedure

13: function x∗(a)

14: Calculate pp using Eq. (6)

15: y′ ← pp × GP-CALC(a)
16: return pp × (1− α[1 − GC-CALC(y′)])
17: end function

fraction of physical nodes x∗ and that of the cyber nodes y∗.

This imposes two challenges: (i) determining x∗ that satisfies

the self-consistent equation in Eq. (12), and (ii) finding the

LCC fractions g̃p and gc on the right sides of Eq. (12),

that satisfy another self-consistent equation, Eq. (5). To find

these values simultaneously, we apply a two-step process as

follows. At the first (higher) level, we solve x∗ in Eq. (12) by

applying Algorithm 1. Since x∗, g̃p, and gc all take value in

[0, 1], we can find their respective values using the bisection

method [21], which essentially performs a binary search over

a continuous range [0, 1] (see line 2-9 in Algorithm 1) until

either the number of iterations is large enough or the solution

is close enough to the convergence point.

For every first-level iteration, we solve g̃p and gc at the

second (lower) level. Specifically, g̃p is obtained by applying

Algorithm 2. In Algorithm 2, line 2-9 is the bisection algo-

rithm, line 12-15 applies the finite difference method [22] to

calculate the derivative G̃p,1(x) =
G̃′

p,0(x)

G̃′

p,0(1)
, while line 16-19

employs our mapping described by Eq. (7)-(9). Quantity gc
(as called by GC-CALC in line 16 of Algorithm 1) can be

found by re-using Algorithm 2 after substituting subscript ()p
with ()c, omitting the tilde symbol, and directly applying the

Algorithm 2 Calculation of g̃p(x
∗)

1: procedure GP-CALC(x∗)

2: a← 0, b← 1 ⊲ initial condition

3: repeat

4: Calculate g(a)← fp(a, x
∗)− a

5: Calculate c← a+b
2 and g(c)← fp(c, x

∗)− c
6: if sgn(g(c)) = sgn(g(a)) then a← c
7: else b← c
8: end if

9: until convergence

10: return 1− c ⊲ Returns g̃p(x
∗) satisfying Eq. (3)-(5)

11: end procedure

12: function fp(a, x∗)

13: Calculate x̃← 1− x∗(1 − a)

14: return
G̃p,1(x̃+h)−G̃p,1(x̃−h)

G̃p,1(1+h)−G̃p,1(1−h)

15: end function

16: function G̃p,1(x̃)

17: Calculate Pφ,p(k) for all k using Eq. (7)

18: return
∑∞

k=0 Pφ,p(k)(
x̃

1−φ̃p

+ (1− 1
1−φ̃p

))k

19: end function

Q

��
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Fig. 4. Evaluation of the proposed Algorithm 1 and 2 in Erdös-Rényi graphs.

degree distribution of Gc into Eq. (4).

To evaluate the numerical scheme, we compare the calcu-

lated node yield (blue solid line) from Algorithm 1 to the

analysis in Eq. (13) (red dashed line) in Fig. 4.(a). We observe

the existence of a gap between the numerical calculation and

theoretic analysis, which can be attributed to two main reasons.

Firstly, numerical calculation of the PDF of the physical node

degree distribution right after the physical edge removal, i.e.,



Pφ,p(k), relies on the infinite sum of the degree, while empiri-

cal degree, however, is upper-bounded. Thus, the numerical

result for the sum as shown in Fig. 4.(b), will always be

underestimated. Secondly, the centered difference method used

in Algorithm 2 to approximate derivative Gp,1(x) =
G′

p,0(x)

G′

p,0(1)

also introduces deviation, especially when x is small. Note

that, despite the numerical gap, Algorithm 1 and 2 provide a

crude estimate of the node yield Yn.

V. RESILIENCE OF IOT THROUGH CRITICAL

DISCONNECTING PROBABILITY φcr

Apart from the outcome aspect that is addressed in the pre-

vious two sections, resilience is also a measure of a network’s

intrinsic capability to resist faults and attacks, as described

by the second half of the resilience problem. In other words,

what is the worst case attack an IoT system can withhold?

For instance, resilience of a simple network is quantified by

its connectivity [23], i.e., the minimum number of edges to

be removed before the network becomes disconnected. In a

similar spirit, we expand the existing notion of connectivity-

based resilience to interdependent IoT systems, with respect

to the intensity of the triggering incident, i.e. the edge discon-

necting probability φ. Particularly, we examine the existence

of a critical condition φcr in interdependent networks with

Poisson degree distributions (ER graphs), through theoretical

analysis and numerical simulations.

A. Theoretical Analysis on Critical Disconnecting Ratio φcr

For interdependent network with Poisson degree distribution

in both cyber and physical domains, we prove the existence of

such a critical condition φcr upon which an IoT system can

fully fragment into isolated nodes and collapse. Further, we

provide a closed-form solution to φcr, i.e., the critical initial

disconnecting probability, with respect to structural properties

of the interdependent network.

Theorem 2. Consider an interdependent network (Gp,Gc)
with Poisson physical degree distributions of mean k̄p, and an

adoption ratio of α = 1. The critical disconnection probability

φcr can be approximated by

φcr ≈

{

1− 1.59362
k̄p

, under Type-1 fault,

1− κ+1
κ+k̄p

, under Type-2 fault.
(20)

Proof: We start by considering Type-1 scenario. In this

case, solving φcr is equivalent to finding the smallest edge

survival ratio γ = 1 − φcr that results in a non-zero node

yield Yn, where Yn satisfies Eq. (13). To this end, we apply

the following two-step approach.

(Step 1) By assuming that γ is fixed, we find Yn such

that the left-hand side of Eq. (13) has the same gradient as

the right-hand side. In this so called gradient condition, the

following equation holds.

d

dYn

Yn =
d

dYn

[(

1− e−k̄pγ
)

(

1− exp
{

−k̄cYn

})

×

(

1− exp

{

−
k̄pγ

1− exp(−k̄pγ)
Yn

})]

. (21)

To proceed, a first-order Taylor series approximation

e−f(Yn) ≈ 1 − f(Yn) [24] is applied to Eq. (21) such that

the gradient condition in Eq. (21) becomes

1 =
(1− e−k̄pγ)k̄pk̄cγ

1− exp{−k̄pγ}
× 2Yn. (22)

Then, solution to Eq. (22) can be found as

Yn = (2k̄ck̄pγ)
−1. (23)

(Step 2) Next, given Yn in Eq. (23) above, we find the

critical ratio γcr. To illustrate how this is done, we present

Fig. 5.(a), where the curve is plotted for different initial ratios,

φ1 < φcr < φ2. Note that there can be several values of φ’s

with their corresponding Yn’s that satisfy the gradient condi-

tion. However, there is only one, φcr = 1− γcr, that satisfies

the critical condition in which the line and curve intersects

non-trivially (i.e. other than at origin) only once. This critical

solution can be obtained by plugging Eq. (23) into Eq. (13)

and re-applying the Taylor series approximation. We obtain
1

2k̄ck̄pγcr
= k̄pγcr

(

k̄c

2k̄ck̄pγ

)

×
(

k̄pγcr

1−exp{−k̄pγcr}
× 1

2k̄ck̄pγcr

)

.

After re-arranging and variable eliminations,

k̄pγcr = 2
(

1− exp{−k̄pγcr}
)

. (24)

Numerical evaluations [25] show that Eq. (24) has two solu-

tions: k̄pγcr = 0 and k̄pγcr = 1.59362. Taking the non-trivial

solution (the latter) completes the proof for Type-1 scenario.

For cyber-physical networks in Type-2 scenario, we re-

employ the Steps 1 and 2 above to the self-consistent equation

Eq. (13), and obtain

(1− exp{−k̄pγcr}) = k̄pγcr(1 − κ(1− γcr)). (25)

By applying a second-order Taylor approximation e−f(γcr) ≈

1− f(γcr) +
(−f(γcr))

2

2! to the left-hand side of Eq. (25),

2

(

k̄pγcr −
k̄2pγ

2
cr

2

)

= k̄pγcr (1− κ(1− γcr)) . (26)

Finally, the second line of Eq. (20) can be acquired after re-

arranging Eq. (26) and plugging the obtained critical residual

ratio γcr into φcr = 1− γcr.

B. Numerical Simulation

To validate the analytical critical initial disconnecting prob-

ability φcr obtained from Eq. (20), we first consider Type-1

scenario and re-use the simulation parameters in the previous

section. In Fig. 5.(b), the analytical result (dashed black

line) is compared to the numerical solution (solid red line)

that searches φcr in Eq. (2) over all possible values. The

slight gap between the analytical and numerical results is

due to a deviation introduced by the first-order approximation

e−f(Yn) ≈ 1 − f(Yn) of Eq. (22) in the proof of Theorem 2.

The deviation diminishes as Yn becomes smaller, so the

approximation and the first line of Eq. (20) are more accurate,

because Yn is small near φcr (see Fig. 3.(a) and (b), where

Yn abruptly increases from zero).



(a) Node yield v.s. φcr (b) Type-1 (κ = 0) (c) Type-2 (κ = 0.8) (d) Type-2 (κ = 0.2)

Fig. 5. Illustration of the critical edge disconnection ratio/probability φcr with respect to average physical degree k̄p in Erdös-Rényi graphs.

Next, we evaluate the analytical φcr in Type-2 scenario

(the second line of Eq. (20)), setting κ = 0.8, and plotting

the numerical and analytical φcr versus k̄p in Fig. 5.(c). We

observe a non-trivial gap between the two, which is due to

the first and second-order approximations used to obtain Eq.

(20). Although the gap is larger than that of Type-1 scenario

in Fig. 5.(b), it becomes smaller as the average physical

degree k̄p increases. When κ is decreased to 0.2, as depicted

in Fig. 5.(d), the gap is reduced even further. Despite the

analytical-numerical gap, Eq. (20) provides a useful indication

of φcr’s trend: it increases sub-linearly with k̄p in Type-2

scenarios, and decreases at least linearly versus κ.

VI. CONCLUSION

This paper studies the resilience of IoT systems, against

edge and jointly-induced cascade-of-failures. The IoT system

is modeled as an interdependent network, and the outcome of

the cascade is captured by the node yield metric. With the

proposed model, we derive node yield as functions of initial

disconnecting probability (property of the triggering incident)

and node degree distributions (property of network topology).

Without knowledge of the exact network topology, node yield

can be solved using numerical algorithms for arbitrary degree

distributions. Then, a critical initial disconnecting probability

is obtained for networks with Poisson degree distributions.

Node yield and the critical condition can provide information

on the estimated impact of a cascade, the amount of repair

needed after the cascade, and required redundancy level in

designing a new system. Our work in this paper contributes to

the knowledge on network resilience, which will benefit the

design, deployment, and operation of real-world IoT systems.
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