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Abstract—The explosive number of IoT nodes and adoption
of software-defined radio have enabled an efficient method of
exploiting idle frequency spectrums called dynamic spectrum
access (DSA). The foremost problem in DSA is for a pair
of nodes to rendezvous and form a control channel prior to
communication. Existing schemes require a channel hopping
(CH) pattern with length O(N2), which is overly complex
especially when the number of channels N is large. Moreover, the
CH patterns are designed assuming DSA nodes have unlimited
CH capability, which is hardly satisfied by nodes with long
frequency switching time and limited sensing capacity. In this
paper, we design a low-complexity rendezvous scheme that account
for CH capability limits. The CH capability is captured using
spectrum slice graphs that describe the possible channels for the
next hop, given the currently-visited channel. By viewing the CH
patterns as random walks over the spectrum graphs, we assign
the walks with optimal transition probabilities that achieve the
smallest rendezvous delay. The resulting symmetric random CH
(S-RCH) scheme, which is suitable for IoT nodes without pre-
determined roles, achieves a lower rendezvous delay than existing
Modular Modified Clock (MMC) scheme and offers more than
80% successful rendezvous in mobile networks.

I. INTRODUCTION

Internet-of-Things (IoT) is an emerging paradigm in which

smart objects (e.g., smart phones, wearables, and RFID tags)

are interconnected via wireless communications to form an ex-

tension to the Internet [1]. By 2020, it is expected that there are

about 5 IoT devices near each person, with up to an explosive

number of 35 billion devices worldwide [2]. Such a dense net-

work of IoT devices will require the wireless spectrum—that

is limited in bandwidth—to be utilized efficiently. To this end,

another new paradigm called software-defined radio (SDR)

enables wireless devices to adjust their transmit power, carrier

frequency, and modulation scheme intelligently. By employing

SDR, IoT nodes may act as unlicensed users (i.e., secondary

users, SUs) to search for spectrum “holes” and communicate

over unused frequency bands, without interfering with licensed

users (i.e., primary users, PUs). Such an opportunistic way of

efficiently accessing wireless channels is referred as dynamic

spectrum access (DSA) [3].

In networks with DSA, one of the most challenging aspect,

especially in fully distributed settings, is to establish a common
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channel prior to communication. A common method of provid-

ing control channel is to assign one or more dedicated channels

for all nodes [3]. However, the IoT nodes may occupy their

own locations and have different sets of available channels,

due to the distinct channel occupation pattern of nearby PUs.

Moreover, a PU can initiate a wireless transmission over the

control channel(s). As these channels are blocked, IoT nodes

cannot perform any data transmission, although other channels

may still be unoccupied. Finally, allowing multiple nodes to

use one or few control channels may introduce bottleneck,

which is intensified in high-density settings like IoT.

To relax the diverse availability, channel blocking, and

bottleneck problems, control channel establishment in DSA

networks typically relies on channel hopping (CH) [4], [5]. A

CH scheme, programmed into every IoT node’s SDR, evenly

divides the time into slots and then generates a CH pattern,

that is, the sequence of channels that the associated node has

to hop into at each time slot. It is the CH scheme’s duty to

ensure that any pair of nodes can rendezvous [4], i.e., to hop

to a common channel for control channel establishment.

The majority of CH schemes in the literature are orthogonal

sequence-based, where each node employs a fixed-length

CH pattern that is repeated indefinitely, or at least until a

rendezvous is achieved [5], [6]. Early schemes had considered

the asymmetric case, in which one SU identified as a sender

and another SU acting as a receiver employ two different

CH patterns, respectively [7]. These CH schemes have also

been applied to heterogeneous networks where the SUs have

different ranges of observable channels [4], [8]. More recent

studies, on the other hand, considered the symmetric case

where all SUs employ identical hopping patterns irrespective

of their roles [9]. Unfortunately, the aforementioned CH

schemes impose a strong assumption in designing their CH

pattern: SUs must be able to hop to any arbitrary channel,

despite the vast bandwidth that their SDRs have to cover.

In DSA networks, the large spectrum bandwidth im-

poses practical CH limits to SU nodes. Specifically, modern

standards—such as LTE over unlicensed band (LTE-U) [10]—

provides up to 700MHz of spectrum bandwidth, while state-

of-art SDR like Ettus E310 only has a digital bandwidth

of BWSDR = 56MHz. Hopping to an arbitrary channel

spaced larger than BWSDR apart from the current channel



requires more than 30ms of switching time [11], which is

way beyond the 10ms CH interval specification.1 Moreover,

the IoT nodes should also sense the channels before every new

hop, to avoid colliding with a PU transmission in the newly-

selected channel. To this end, Nyquist-based sensing [12] can

be applied, but limits the range of senseable and candidate

channels for the next-hop to BWSDR

2 Hz away from the current

channel. As a result, the CH pattern becomes restricted by the

frequency switching time and channel sensing limits, and we

refer to IoT nodes with these restrictions as having a limited

CH capability. To account for the CH limits, the CH patterns

of existing schemes [4]–[9] must be re-designed completely.

More importantly, existing schemes are not suitable for

IoT-based DSA nodes due to the following reason. Existing

DSA standards like LTE-U divides the spectrum into up to

N = 7000 channels.2 Under large N , the existing orthogonal

sequence-based schemes [4]–[9], which are known to require

designing and storing CH pattern with O(N2) length, become

overly complex, especially for low-complexity IoT nodes.

Motivated by the lack of applicable schemes for IoT-based

DSA networks, we design graph-based CH schemes for ren-

dezvous between IoT nodes. Specifically, we build spectrum

slice graphs to capture the limited CH capability of IoT nodes,

and then treat the proposed CH schemes as random walks

over the graphs. Then, the random walks are configured so

that the corresponding CH schemes achieve quick rendezvous

irrespective of the choice of the initial channel hop, by

minimizing a maximum expected TTR (MTTR) metric. Our

major contributions are outlined as follows.

1) We propose spectrum slice graphs to capture the possible

CH sequences of a pair of IoT nodes, SUa and SUb, with

limited CH capability. As exemplified by the spectrum

slice graph of SUa in Fig. 1(a), the vertices (nodes) rep-

resent the set of available channels while their neighbors

are the possible channels for the next hop.

2) To account for IoT nodes that do not have distinct pre-

determined roles, we propose a symmetric random CH (S-

RCH) scheme where SUa and SUb symmetrically walk

over their respective spectrum slice graph. Unlike existing

sequence-based schemes that require long CH patterns

[4]–[9], S-RCH provides a low-complexity, memoryless

way of generating CH sequences on-the-fly. Then, we

improve the performance of S-RCH by allowing the SU

nodes to detect rendezvous on different but neighboring

channels (vertices) of the spectrum slice graph.

3) We perform numerical evaluations and show that the

proposed S-RCH scheme has a lower TTR than the R-

RCH scheme, both of which outperform the state-of-art

scheme [13]. Finally, we show that the proposed schemes

1Each radio frame has a length of δ = 10ms, according to LTE-U [10].
Similarly, IEEE 802.22 specifies a frame length of δ = 10ms.

2Existing LTE-U standard divides the U-NII bands into 20Mhz channels,
and reserves the 100kHz channel raster for future uses. We envision the
smaller raster size will enable a fine-grained and efficient channel allocation
for dense IoT-based DSA networks, which could be a norm in the future.
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Fig. 1. Illustration of spectrum slice graphs.

provide at least 80% successful rendezvous under realistic

node mobility based on traces [14].

The rest of this paper is organized as follows. Section II

describes the network model and problem formulation. The

S-RCH scheme is presented in Section III and analyzed in

Section IV. Finally, Section V concludes this paper.

II. MODELS AND PROBLEM FORMULATION

In this section, we explain the major challenges in achieving

rendezvous between nodes with limited channel hopping capa-

bility. Then, we outline a graph-based approach to accomplish

rendezvous. Finally, we state our main research problem.

A. Network Model

We consider a DSA network operating over an (N×B0) Hz

spectrum that is divided into a set C = {c0, . . . , cN−1} of non-

overlapping channels, where ci denotes the i-th channel, B0

is the bandwidth of each channel, and N is the total number

of channels. The DSA network consists of PUs as the high-

priority users and IoT nodes as the lower-priority SUs. Each

SU is equipped with half-duplex SDR that can be tuned to any

of the N channels. The SUs are also capable of performing

spectrum sensing, to obtain their sets of available channels that

are temporally unoccupied by co-located PUs. The channel

occupation status is assumed to be slowly-dynamic so that the

DSA network is mildly time-varying.

B. Channel Hopping for Rendezvous

We focus on the pairwise rendezvous problem, in which two

IoT nodes—respectively denoted as SUa and SUb—want to

establish a mutual control channel before data transmission.

However, this work can be extended to a multi-user setting by

employing message passing scheme [15]. The time is assumed

to be slotted and each slot—denoted as a non-negative integer

t—has a uniform span of δ.1 Let Ca ⊂ C and Cb ⊂ C be the sets

of channels available to nodes SUa and SUb, respectively. The

sets Ca and Cb are not necessarily identical to each other (i.e.,

heterogeneous [4], [8]) since SUa and SUb may be placed

at different locations and surrounded by distinct sets of PU

neighbors and channel occupation status. However, we assume

that Ca ∩ Cb 6= ∅ to ensure that nodes SUa and SUb can still

find a common channel for rendezvous.

In DSA networks, rendezvous is commonly achieved via

channel hopping (CH), which is a process describable as



follows. Let Xa(t) ∈ Ca be the channel that the IoT node SUa

hops into at time slot t, while the collection {Xa(t) : t ∈ N0}
denotes the CH pattern of SUa. Similar denotations exist for

the other IoT node SUb by exchanging (·)a with subscript (·)b.

Then, two SU nodes achieve rendezvous when they both hop to

the same channel at the same time slot (i.e., Xa(t) = Xb(t)).

C. Limits on Channel Hopping Capability

IoT-based DSA networks will operate over a very wide

frequency spectrum. For example, TV white space in Kansas,

USA provides up to 204MHz of bandwidth [16], while LTE-U

provides a 5.15 to 5.85 GHz unlicensed spectrum [10]. In con-

trast to such a wide spectrum, IoT nodes have limited hardware

specifications, which leads to the following challenges.

1) Large frequency tuning time: Consider the CH pattern of

node SUa, which has an SDR with an associated bandwidth of

BWSDR Hz. When SUa wants to hop from channel Xa(t) =
ci that has a center frequency fi to a new channel Xa(t+1) =
cj with frequency fj , it performs one of the following steps.

• The node can do a one-stage tuning [17], by digitally

shifting the current center frequency fi to a new one

fj , as long as these two frequencies are within the SDR

bandwidth. Specifically, the indices of channels ci and cj
must be within a maximum CH range of

R := ⌊(BWSDR −B0)/2B0⌋ . (1)

For example, see Fig. 2(a) for a one-stage tuning from fi
to fj = fj1 . In state-of-art SDRs, one-stage tuning takes

up to 3ms [17], while low-power radios for mobile can

take longer. The division by 2 ensures that SUa can hop

to both the left and right sides of the current frequency.

• Otherwise, the new channel cj is outside of the maximum

CH range (i.e., see Fig. 2(a) when fj = fj2 ) and SUa

needs to perform a two-stage tuning [17]. Specifically,

SUa’ local oscillator (LO) frequency must be tuned to

near the target fj and digital shifting is applied to bring

the carrier frequency to fj . As a result, two-stage tuning

involves re-setting and waiting for the LO to stabilize.

This can take up to 31ms [11], which is way beyond the

δ = 10ms time slot period.1

To keep the frequency tuning within δ = 10ms, it is

desirable to do a one-stage tuning.

2) Limited channel sensing capability: Before hopping to a

new channel cj , an IoT node must ensure that cj is unoccupied

to avoid interference with an ongoing PU transmission. Under

the lack of spectrum database [16], especially when the DSA

network operates over unlicensed bands [10], channel occu-

pancy status must be checked via sensing. To ensure a quick

sensing, IoT nodes with limited SDR bandwidth may only

perform a one-time partial-band Nyquist sampling (PBNS)

[12], which senses a part of the spectrum but ignores the

remaining parts.

To capture how PBNS limits CH pattern, we denote

L := ⌊BWSDR/2B0⌋ (2)

as the number of senseable channels. The factor 2 in the

denominator is because a perfect reconstruction of a signal

with bandwidth B0 needs to be sampled at a Nyquist rate of

at least 2B0. An example of the set of channels available to

node SUa after a PBNS with L = 7 is depicted in Fig. 2(b).

The available channels (i.e., {c4, c5, c6, c8}) then serve as the

candidates for the next hop.

3) Combined Channel Hopping Capability Limits: The

frequency tuning delay and channel sensing capacity not only

co-exist, but also impose a combined CH range of

Rch := min (R, ⌊(L− 1)/2⌋) . (3)

To be specific, an IoT node that currently visits channel ci
may hop to another channel cj if and only if the CH range

restriction |i−j| ≤ Rch is satisfied. In this paper, all IoT nodes

are assumed to have identical CH ranges, and we refer the

nodes with such a restriction to have a limited CH capability.

D. Graph-Based Rendezvous Under Channel Hopping Limits

Limited CH capability reduces the set of available channels

for the next hop, a key ingredient that determines when and

where rendezvous between SUa and SUb occurs. To describe

the reduced set of next-hop channels, we define the notion of

spectrum slice graphs as follows.

Definition 1 (Spectrum slice graphs). Let x ∈ {a, b} be an

index and vertices Cx represent the set of channels available

to node SUx. Let Ex be the set of edges, where edge e(ci, cj)
is in Ex if ci, cj ∈ Cx and |i − j| ≤ Rch. Then, the spectrum

slice graph of node SUx is defined as Gx := (Cx, Ex).

An example of a spectrum slice graph Ga for node SUa

is depicted in Fig. 1(a). The set of vertices and edges in

Fig. 1(a) capture the set of possible next-hop channels in

relation to the currently-visited channels, which is described

by the combined CH range in (3). For instance, SUa that is

currently at channel c5 may only choose the neighbors c4, c5,

c6, or c8 for the next time slot.3 In addition to Ga, node SUb

also has a corresponding spectrum slice graph Gb (see Fig. 1(b)

for an example), which generally have different vertices and

edges due to the heterogeneous channel assumption [4], [8].

The spectrum slice graphs are then used by the SUs to

determine their respective CH patterns.

Definition 2 (CH pattern). Let cit := Xx(t) ∈ Cx be the

channel visited by node SUx (x ∈ {a, b}) at time t and

Nx(cit) := {c : e(cit , c) ∈ Ex} be the neighbors of vertex

ct in the spectrum slice graph Gx. Given cit and the CH

capability limit of SUx, the next-hop channel cit+1
must be

selected among Nx(cit) ∪ {cit}. Then, CH pattern of SUx is

defined as a collection Wx := {Xx(t) : t ∈ N0}.

In Fig. 2(c), we illustrate a CH pattern of node SUb that

starts by visiting channel Xb(0) = c8. Channel (vertex) c8 is

connected via edges to vertices Nb(c8) = {c5, c9, c10} and the

3Without loss of generality, we allow the node to re-choose the existing
channel c5 for the next hop.
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Fig. 2. Illustration of limited channel chopping capability in DSA networks.

next-hop channel must be selected among Nb(c8) ∪ {c8}. In

this example, SUb decides to hop to Xb(1) = c9 at the next

time slot, t = 1. By repeating the aforementioned process,

we obtain a CH sequence of Wb = {c8, c9, c10, c8, c8, . . .}, as

depicted by the red arrows in Fig. 2(c).

The path formed by the CH sequence in Fig. 2(c) is

essentially a walk on graph Gb. We assume that the next-hop

channel is selected randomly according to a pre-determined

probability distribution, such that the CH sequence becomes a

random walk [18] over a spectrum slice graph.

With Definition 2, the rendezvous problem between nodes

with limited CH capability can be formulated as follows.

Definition 3. A rendezvous is achieved if there exists c∗ ∈
Ca ∩ Cb and t∗ ∈ N0 such that Xa(t) = Xb(t) = c∗.

In other words, rendezvous occurs when the random walks

performed by SUa and SUb over their respective spectrum

slice graphs both visit the same channel (vertex).

E. Problem Formulation

The primary goal behind rendezvous is to quickly find

a common control channel between two DSA nodes in a

distributive manner. Thus, delay performance is of critical im-

portance, and we aim to minimize the delay until rendezvous.

To achieve our minimization goal, we employ the notion of

time-to-rendezvous

TTR := min
t≥0

{t : Xa(t) = Xb(t) = c∗, c∗ ∈ Ca ∩ Cb} (4)

from [4], and then use TTR to define the following metric.

Definition 4. The maximum expected time-to-rendezvous

(MTTR) with respect to all possible initial channel hops,

Xa(0) and Xb(0), is defined as

TTRmax := sup
Xa(0),Xb(0)

E(TTR). (5)

When MTTR is minimized, nodes can establish a control

channel and start data transmission immediately, which leads

to short medium access delay and high user satisfaction.

Unlike existing CH schemes for nodes with ideal capabilities

[4]–[9], minimizing MTTR between IoT nodes with limited

CH ability remains a wide-open problem. Hence, we ask:

How to design the CH patterns of IoT nodes with limited CH

capability for achieving a fast MTTR?

III. SYMMETRIC RANDOM CHANNEL HOPPING (S-RCH)

In this section, we first outline a graph-based symmetric

random channel hopping (S-RCH) scheme and then show how

to configure S-RCH for quick rendezvous. Further, we leverage

channel sensing to achieve a quicker rendezvous.

A. Preliminaries on Graph-Based S-RCH Scheme

IoT-based DSA networks are envisioned to support many

types of applications, including wireless sensor networking,

vehicle-to-vehicle communications, and mesh-based online

messaging [19]. In these applications, IoT nodes communi-

cate with each other in a peer-to-peer manner, without pre-

determined hierarchical (i.e., master-slave) roles. Thus, it is

desirable that the nodes have totally symmetric schemes,

including for rendezvous [4]–[9]. Unfortunately, the existing

symmetric rendezvous schemes ideally assume that nodes are

able to hop to any arbitrary channel, instead of taking into

account their limited CH capability.

To facilitate rendezvous between a pair of nodes SUa and

SUb with limited CH capability, we apply a graph-based

approach. Specifically, we let SUa and SUb apply the CH

pattern in Definition 2, which result in walks Wa and Wb,

respectively. Given the current channel Xa(t) = ci, node

SUa randomly selects the next-hop channel Xa(t + 1) = cj
according to a matrix Pa, whose (i, j)-th element is equal to

the transition probability

Pa(ci, cj) := Pr{Xa(t+ 1) = cj |Xa(t) = ci}. (6)

Similar denotations also exist for SUb by exchanging ()a with

subscript ()b. Although the elements of Pa and Pb are not

necessarily equal, in Section III-B we will apply an identical

(symmetric) policy for calculating their values. As a result,

matrices Pa and Pb and their corresponding CH patterns are

statistically symmetric. The resulting scheme is referred as a

symmetric random channel hopping (S-RCH).

Fig. 3 exemplifies an S-RCH corresponding to the spectrum

slice graphs in Figs. 1(a) and 1(b). The dotted lines in Fig. 3(a)

illustrates walk Wa, the solid lines in Fig. 3(b) represents Wb,

while their resulting CH patterns are depicted in Fig. 3(c).

As indicated by the figure, Wa and Wb are continued until

rendezvous is achieved on channel c5 at t = 6.

B. Achieving Quick Rendezvous

An immediate question is how to achieve our main goal of

minimizing MTTR. According to the illustration in Fig. 3,
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the TTR (equivalently, MTTR) of S-RCH scheme is fully

determined by walks Wa and Wb. Moreover, the vertices

(channels) are selected at every hop by the walks according

to their transition probability matrices. As a result, the walks

are random and their characteristics, including the resulting

MTTR, are controllable by setting the transition probabilities.

In the following, we assign the transition probabilities of

random walks Wa and Wb to minimize MTTR. Our approach

is to first show that MTTR is an increasing function of the

transition probability matrices’ eigenvalues. Then, we use the

eigenvalues and formulate a convex optimization problem to

obtain the optimal transition probabilities. The main result of

our approach is outlined as follows.

Theorem 1. The transition probabilities of walks Wa and Wb

that achieve the smallest MTTR satisfy

Pa(ci, cj)=

{

1
da(ci)+1 , if e(ci, cj) ∈ Ea or ci = cj ,

0, otherwise,
(7)

Pb(c
′
i, c

′
j)=

{

1
db(c′i)+1 , if e(c′i, c

′
j) ∈ Ea or c′i = c′j,

0, otherwise,
(8)

∀ci, cj ∈ Ca and ∀c′i, c
′
j ∈ Cb, where da(ci) := |Na(ci)| and

db(c
′
i) := |Nb(c

′
i)| are the degrees of vertices ci and c′i.

Before proving Theorem 1, we present several denotations.

Let πa := {πa(ci)}ci∈Ca
be a stationary distribution vector

that satisfies πaPa = πa and πa1 = 1. To this end,

πa(ci) ∈ (0, 1) is the unconditional likelihood that Wa will

be at channel ci after a sufficiently large number of hops. We

assume that similar denotations exist for random walk Wb.

Moreover, let P t(ci, cj) be the (i, j)-th element of matrix

Pt, where Pt = Pt−1 ·P is the tth power of matrix P. Then,

we have some general properties of random walks as follows.

Definition 5. A random walk W over graph G = (C, E) with

transition probability matrix P and stationary distribution

vector π is

1) reversible if πciP (ci, cj) = πcjP (cj , ci), ∀ci, cj ∈ C,

2) irreducible if ∃t < ∞ such that P t(ci, cj) > 0 for any

ci, cj ∈ C, and

3) aperiodic if ∃N < ∞ such that ∀ci ∈ C, Pn(ci, ci) > 0
for all n ≥ N .

Definition 5 can be applied to our walks-of-interest, Wa

and Wb, by adding subscripts ()a and ()b, respectively. To

this end, the second and third conditions in Definition 5 are

satisfied by Wa and Wb since their respective spectrum slice

graphs are connected and non-bipartite.4 On the other hand,

many variants of random walk over graph can be designed to

satisfy the first condition. In fact, we can show that Wa and

Wb employing the transition probabilities in (7)-(8) have the

stationary distributions of

πa(ci) =
da(ci) + 1

2|Ea|+ |Ca|
and πb(c

′
i) =

db(c
′
i) + 1

2|Eb|+ |Cb|
. (9)

Thus, it is reasonable to assume that Wa and Wb satisfy all

the three conditions in Definition 5.

To proceed, we consider Wa and Wb as two parallel but

independent walks and state their current locations as a two-

dimensional state (ci, c
′
i) := (Xa(t) = ci, Xb(t) = c′i).

Furthermore, by denoting (cj , c
′
j) as the state at the next

time slot, the transition probabilities of Wa and Wb can be

combined into a two-variate transition probability

Pab((ci, c
′
i), (cj , c

′
j)) = Pa(ci, cj)× Pb(c

′
i, c

′
j). (10)

Subscript ()ab indicates that Pab corresponds to the parallel

walks. Let na := |Ca| and nb := |Cb| be the number of

available channels at nodes SUa and SUb, respectively. Then,

we can state the (nanb)× (nanb) transition probability matrix

of the parallel walks as Pab = Pa⊗Pb, where ⊗ denotes the

Kronecker matrix product operator.

Further, we study several properties regarding the parallel

walks, which for simplicity is denoted as Wab. Denote πab as

the (nanb)× 1 stationary distribution vector corresponding to

the transition probability matrix Pab. Let the mixing time of

the parallel walks Wab be denoted as

τabmix(ǫ) := inf

{

t : max
ci∈Ca,c

′

i
∈Cb

∣

∣(P t((ci, c
′
i), (·)) − π(·))

∣

∣ ≤ ǫ

}

.

The mixing time is the amount of steps required until the

transition probability of the walk Wab is close enough (within

a factor ǫ) to its stationary distribution. Then, we have the

following lemma.

Lemma 1. The S-RCH scheme has an MTTR that satisfies

TTRmax ≥ 1/2××τabmix(1/4)− 1/2. (11)

Proof: We start by finding the upper bound of the right-

hand side. Specifically, we adopt the maximum hitting time

tHit := maxci,cj∈Ca,c
′

i
,c′

j
∈Cb

E(ci,c′i)
[τ(cj ,c′j)] from [18], where

the first hitting time

τ(cj ,c′j) := min{t ≥ 0 : Xa(t) = cj , Xb(t) = c′j} (12)

4A graph is bipartite if the vertices can be divided into two disjoint sets
and no two vertices in the same set are adjacent.



denotes the first time state (Xa(t), Xb(t)) = (cj , c
′
j) is visited

by the walk. We know from [18, Theorem 10.14] that the

maximum hitting time is bounded by

tHit ≥ 1/2× τabmix(1/4)− 1/2. (13)

With (13) obtained, the remaining task is to relate tHit

with MTTR. Let the largest first hitting time be denoted as

τmax
(cj ,c′j)

:= maxcj∈Ca,c
′

j
∈Cb

τ{cj ,c′j}. Then, we observe that

MTTR is lower-bounded by

TTRmax ≥ τmax
(cj ,c′j)

≥ tHit. (14)

The first inequality on the left side holds because MTTR

requires an additional condition Xa(t) = Xb(t) = c∗ to be

satisfied (see (4)-(5)) and is more restricted that the largest first

hitting time. The second inequality in (14), on the other hand,

holds by the relation between the maximum and expected

values. Finally, combining (14) with (13) completes the proof

of Lemma 1.

Lemma 1 reveals that MTTR is lower-bounded by a factor

proportional to the mixing time τabmix(ǫ), while minimizing the

best-case MTTR is equivalent to minimizing τabmix(ǫ). Thus,

we will optimize τabmix(ǫ) to design the transition probability

matrix Pab. Before proceeding, we outline several useful

properties as follows (proofs omitted due to page limit).

Lemma 2. Parallel walks Wab is reversible, irreducible, and

aperiodic. Moreover, Wab has a unique stationary distribution

vector of πab = πa ⊗ πb.

Now we are ready to derive the mixing time upper and

lower bounds that will be used for minimizing the MTTR in

Lemma 1. Let

λ∗
a := max{λa

2 ,−λa
n} (15)

be the second largest eigenvalue magnitude (SLEM) [20] asso-

ciated with walk Wa, where λa
i is the i-th largest eigenvalues

of Pa. Moreover, let π∗
a := minci∈Ca

πa
ci

be the smallest ele-

ment of the stationary distribution vector πa. Similar notations

also exist for walk Wb by substituting a with symbol b.

Proposition 1. The mixing time of parallel walks Wab is lower

and upper bounded by
(

1

1− λ∗
aλ

∗
b

− 1

)

log

(

1

2ǫ

)

≤ τabmix(ǫ)

≤
1

1− λ∗
aλ

∗
b

log

(

1

ǫ× π∗
aπ

∗
b

)

. (16)

Proof: From Lemma 2, we know that parallel walks Wab

is reversible, irreducible, and periodic. Thus, according to [18],

Wab has the mixing time bounded by
(

1

1− λ∗(Pab)
− 1

)

× log(
1

2ǫ
) ≤ τabmix(ǫ)

≤
1

1− λ∗(Pab)
× log

(

1

ǫ× πmin(Pab)

)

, (17)

where λ∗(Pab) and πmin(Pab) are respectively the SLEM and

the smallest entry of πab. First, we focus on the common term,

1
1−λ∗(Pab)

. According to [21, Theorem 4.2.12], we know that

λa
i×λb

j for any i ≤ na and j ≤ nb is also an eigenvalue of Pab,

such that the denominator can be re-stated as 1− λ∗(Pab) =
inf2≤i≤na,2≤j≤nb

1− |λa
i ||λ

b
j |.

Next, we consider the 1
ǫ×πaπb

term in the upper bound.

According to Lemma 2, πa
ci
× πb

c′
i

for any ci ∈ Ca and c′i ∈
Cb is also a stationary distribution corresponding to Pab, and

πab = πa ⊗ πb is unique. Thus, the logarithm term in the

upper bound can be obtained by taking the minimum over all

possible ci ∈ Ca and c′i ∈ Cb, completing the proof.

With Proposition 1 and Lemma 1 at hand, we are now ready

to prove Theorem 1 as follows.

Proof of Theorem 1: Lemma 1 reveals that minimizing

MTTR is equivalent to minimizing the mixing time τabmix(1/4),
which according to Proposition 1 is proportional to λ∗

a × λ∗
b .

Note that λ∗
a and λ∗

b are the SLEMs contributed by walks Wa

and Wb, respectively, while the walks are operated indepen-

dently to each other. As a result, minimizing λ∗
a × λ∗

b can be

done by minimizing λ∗
a and λ∗

b separately.

We start by minimizing the SLEM λ∗
a of random walk

Wa, which has a transition probability matrix of Pa. Since

Pa is a stochastic matrix, it has a largest eigenvalue of

λ1 = 1 [18, Sec. 12.2]. This implies the other eigenvalues

are smaller or equal to one, so that the SLEM becomes

λ∗
a ≤ 1. Let I be an identity matrix. When Pa is projected

to the null space of 1, that is, by using a projection function

(I− 1
na

11T )Pa(I−
1
na

11T ), the largest eigenvalue magnitude

is equal to the SLEM. Moreover, since the spectral norm

||A||2 := sup||x||≥0
||Ax||2
||x||2

is equal to the largest eigenvalue

magnitude of A, then the projection ||(I − 1
na

11T )Pa(I −
1
na

11T )||2 = ||Pa − 1
na

11T ||2 becomes equal to the SLEM.

As a result, the problem of minimizing the mixing time of

Wa, which is equivalent to minimizing λ∗
a, can be re-stated as

min
Pa

∣

∣

∣

∣

∣

∣

∣

∣

Pa −
1

na

11T

∣

∣

∣

∣

∣

∣

∣

∣

2

s.t. Pa1 = 1, Pa ≥ 0, (18)

and Pa(ci, cj) = 0, ∀ci, cj : e(ci, cj) /∈ Ea and ci 6= cj.

The inequality Pa ≥ 0 indicates that the transition probability

matrix has non-negative elements, while the last constraint

ensures that the random walk is only performed over the edges

of the spectrum slice graph Ga.

Solving (18) requires the full knowledge regarding the set

of edges Ea for assigning the elements of Pa all at once [20],

which is not available due to the limited sensing capacity of

the employed PBNS algorithm. When SUa is at channel ci,
however, it knows the immediate neighbors of ci, which can be

used for determining the ith row of Pa. Let pj := Pa(ci, cj)
and pa(ci) := {pj}cj∈Ca

for notation simplicity. Notice that

the spectral norm is upper-bounded by the Frobenius norm

||A||F := (
∑

i,j A
2
i,j)

1
2 , where Ai,j denotes the (i, j)-th

element of matrix A. As a result, (18) can be restated into

the problem of assigning the uth row of Pa as follows.

min

∣

∣

∣

∣

∣

∣

∣

∣

pa(ci)−
1

na

1

∣

∣

∣

∣

∣

∣

∣

∣

F

s.t. pa(ci)1 = 1, (19)



and Pa(ci, cj)

{

= 0, if e(ci, cj) /∈ Ea and ci 6= cj ,

≥ 0, otherwise.

The optimal solution to (19) can be found as follows. Let

γ be the Lagrange multiplier [22] and N̂a(ci) = Na(ci) ∪
{ci}. Due to constraint pj = 0 for all cj ∈ Cb \ N̂a(ci), the

Lagrangian of (19) becomes L(pa, γ) =
∑

cj∈N̂a(ci)
(pj −

1
na

)2 +
∑

cj∈C\N̂a(ci)
(0 − 1

na
)2 − γ(

∑

cj∈N̂a(ci)
pj − 1). To

proceed, we take the partial derivatives of the Lagrangian with

respect to γ and pj for all cj ∈ Na(ci), to obtain

Lγ(pa, γ) =
∑

cj∈N̂a(ci)

pj − 1 = 0, and (20)

Lpj
(pa, γ) = 2

(

pj −
1

na

)

− γ = 0, ∀cj ∈ N̂a(ci). (21)

By plugging (21) into (20), we get γ
2 + 1

na
= 1

da(ci)+1 .

Substituting this back to (21) obtains the result in (7).

Finally, by repeating the steps above to walk Wb, we can

also get (8), which completes the proof.

C. PBNS-Assisted S-RCH for Quicker Rendezvous

According to Definition 3, rendezvous occurs if walks Wa

and Wb both visit the same vertex (channel). In this subsection,

we show that the nodes can still achieve rendezvous even if

they hop to two different, but neighboring vertices.

Consider an S-RCH scheme whose CH patterns in Fig. 3

is re-drawn into Fig. 4(b). We focus on time slot t = 3 when

SUa visits channel c5 in its spectrum slice graph. Instead of

checking SUb’s arrival on vertex c5 only, SUa may “query” the

neighboring vertices Na(c5) (see the shaded area with dotted

boundary in Fig. 4(b)). Vertex c8 that senses the presence

of SUb “tells” SUa; then, SUa directly switch to c5 for

rendezvous. With SU nodes’ ability to “query” neighboring

channels, rendezvous can be achieved at time t∗ if

Xa(t
∗) = cia , Xb(t

∗) = cib , and cia ∈ Na(cib). (22)

The question is, how to “query” the neighboring vertices?

Consider node SUa. As depicted in Fig. 4(b), our approach is

to apply PBNS with range L centered at SUa’s current chan-

nel, Xa(t) = c5. PBNS is able to listen to the occupation of

nearby channels, including a rendezvous pilot signal from SUb

at channel c8, which is equivalent to querying and obtaining

feedback from the neighboring vertices. The aforementioned

approach can be implemented if SUb’s time slot begins earlier

than that of SUa; otherwise, SUa must transmit pilot signal

while SUb listens. The SU nodes, however, cannot tell whether

their respective slot is earlier or later. In face of such an

uncertain beginning of time slot, we apply the following listen

before transmit (LBT) strategy.

1) Listen phase: Each SU (i.e., SUa) applies PBNS. Sup-

pose there is a pilot signal detected at the current or

neighboring channels. Then the SU immediately switches

to that channel, decodes the signal, waits until the signal

ends, and transmits an acknowledgment (ACK) to indi-

cate a successful rendezvous
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Fig. 4. An illustration of PBNS-assisted S-RCH scheme.

2) Transmit phase: Otherwise, the SU hops to a new

channel (i.e., Xa(t+1)) selected according to Theorem 1,

transmits a pilot signal, and waits for an ACK from

SUb. If an ACK is received, then the SU stops because

rendezvous had occurred. If not, increment time t and go

to the listen phase to attempt another rendezvous.

In this paper, the aforementioned approach is simply re-

ferred as a PBNS-assisted S-RCH scheme.

IV. PERFORMANCE EVALUATION

After outlining and discussing how to achieve quick ren-

dezvous using S-RCH scheme, we evaluate its performance

via numerical and trace-based evaluations.

A. Parameter Setup

We consider an IoT-based DSA network using LTE-U over

the 5GHz spectrum, with a total bandwidth of 500MHz [10].

To facilitate future high-density applications, we assume an

SU (IoT) bandwidth of B0 = 100kHz,2 which results in

N = 5000 channels. In accordance to LTE-U frame length,

each time slot has length δ = 10ms.1 Each IoT node uses an

embedded SDR—such as Ettus E310 USRP—with a digital

bandwidth of BWSDR = 56MHz, which corresponds to a

combined CH range of Rch = 139.

In the 5GHz unlicensed spectrum, PUs mainly consist of

IEEE 802.11 WiFi devices with 20MHz channel bandwidth. In

other words, each PU occupies 200 SU channels. We assume

moderate PU activities, which results in the following pro-

portions of available channels. Overlap ratio pab := |Ca∩Cb|
N

is the fraction of channels available to IoT nodes SUa and

SUb. Unless specified otherwise, pab is set to 0.2. Moreover,

pa := |Ca\(Ca∩Cb)|
N

and pb :=
|Cb\(Ca∩Cb)|

N
denote the fractions

of non-overlap channels available to SUa and SUb, respec-

tively. These fractions have a default value of pa = pb = 0.2.
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Fig. 5. Expected TTR performance with respect to various network parameters.

B. Time-to-Rendezvous Evaluation

We compare the proposed S-RCH scheme applying the opti-

mal probabilities in Theorem 1, denoted as S-RCH (opt), to

a similar scheme applying the transition probabilities of simple

random walk (S-RCH (SRW)). We also compare the pro-

posed S-RCH scheme to the existing Modular Modified Clock

(MMC) [13] scheme. Finally, we evaluate the performance

improvement provided by the PBNS-assisted S-RCH scheme

in Section III-C. Our evaluation is implemented in Python and

all results are averaged over 104 network realizations.
1) Effect of the fraction of overlap channels (pab): We

consider the effect of increasing pab to the expected TTR in

Fig. 5(a). As pab becomes higher, rendezvous is more likely

to occur early since there are more commonly-available SU

channels. Our hypothesis is verified by the decreasing expected

TTR of the S-RCH (SRW) scheme. Compared to S-RCH

(SRW), the proposed S-RCH (opt) scheme provides an

improved expected TTR since it attempts to minimize the

MTTR bound in Lemma 1, by applying Theorem 1.

According to the triangle-marked plot in Fig. 5(a), the

PBNS-assisted S-RCH scheme can further reduce the TTR

since it allows SU nodes to detect rendezvous signals outside

their current channels, as long as (22) is satisfied. Thus, despite

causing the CH range limit Rch in (2)-(3), PBNS sensing can

actually be leveraged to improve rendezvous performance.

When SU nodes employ MMC, their SDR must be able to

hop to any arbitrary frequency, by applying a two-stage tuning

that takes up to 31ms at each hop [11]. To provide additional

time for transmitting and decoding rendezvous signals, we set

the MMC scheme’s time slot to 4δ = 40ms. Fig. 5(a) indicates

that MMC has an expected TTR that outperforms the proposed

schemes when pab is low. Otherwise, S-RCH with and without

PBNS assistance outperform MMC, by up to 70.2%.
2) Effect of the fraction of non-overlap channels (pa and

pb): We consider the effect of the fraction of non-overlap

channels by setting pa = pb and increasing their values from

0.1 to 0.3 in Fig. 5(b). As pa and pb increase, the random

walks performed in S-RCH effectively spend more time in

the non-overlap channels than in the common channels, Ca ∩
Cb. Since rendezvous in these schemes only happen in the

common channels, rendezvous is less likely to occur and the

expected TTR is increased. Then, the expected TTR becomes

an increasing function of pa and pb, as indicated in Fig. 5(b).

3) Effect of SDR’s bandwidth (BWSDR): We increase

BWSDR from 20MHz up to 160MHz and plot the resulting

expected TTR in Fig. 5(c). According to (1)-(3), BWSDR is

proportional to the maximum CH range Rch. Moreover, higher

Rch is helpful when the SU nodes start in channels with vastly

different indexes (e.g., Xa(0) = c0 and Xb(0) = cN−1).

Specifically, under the best-case policy, SUa and SUb may

respectively increment and decrease their channel indices by

Rch, which results in a TTR lower bounded by ⌈ N
2Rch

⌉. In

Fig. 5(c), we observe that the inversely-proportional scaling of

TTR versus Rch (equivalently, BWSDR) can also be observed

by the proposed schemes. The expected delay of MMC, on the

other hand, does not depend on Rch and remains constant.

C. Time-to-Rendezvous in Mobile Traces

Among the use cases of IoT-based networks is for efficient

information exchange among co-located nodes via mesh-based

mobile application. Modern mesh-based app [19], consists of

mobile nodes with momentary inter-node contacts as their

SUs. One major concern is whether the delay for achieving

pairwise rendezvous is sufficiently small so that the opportu-

nities provided by momentary contacts can be exploited.

To examine the proposed CH schemes’ capability to fa-

cilitate rendezvous, we employ the cambridge/haggle

data set [14] that records the pairwise Bluetooth sightings by

groups of nodes carrying small devices (iMotes) in indoor

environments. Specifically, we consider the Exp6 trace that

collected the time and duration of contacts between iMotes

distributed to 78 students attending the Infocom’06 conference

between April 23 to 26, 2006. The Exp6 trace is employed to

portray future conference settings, in which there are many

international participants carrying 5G handsets with SDR

capability but not equipped with data roaming access, due to

expensive roaming fee. In this case, the participants can use the

SDR to access unused spectrum via DSA for communications.

We assume that the Bluetooth sightings provided by the

Exp6 data trace captures all the possible short-range phys-

ical contacts between mobile SUs. We collect contact times

{CT }, which quantifies the duration from when a pair of
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Fig. 6. Rendezvous performance in mobile indoor environment [14].

nodes come into contact until they move out of each others’

contacts, and discard the results when the contact time is zero.

The corresponding cumulative distribution function (CDF),

P{CT < x}, is plotted in Fig. 6(a).

To proceed, we present Fig. 6(b) that plots the CDF of

TTR corresponding to the schemes evaluated in Fig. 5. Then,

we relate the TTR plots to the CDF of contact times in

Fig. 6(a). To be successful, a rendezvous must occur within

a contact period, i.e., when TTR < CT . Consider the CDF

of the contact times in Fig. 6(a) when most (80%) of the

contact times have not ended, that is, CT > 112 (see the

red plot in the inset of Fig. 6(a)). Then, Fig. 6(b) indicates

that the proposed S-RCH (opt) and PBNS-assisted

S-RCH schemes achieve successful rendezvous with proba-

bilities 0.706 and 0.927, respectively.

Although possible, comparing Figs. 6(a) and 6(b) for each

possible contact time and TTR—as in the example above—is

cumbersome. To provide a more concise way for evaluating a

rendezvous scheme’s ability to overcome the node mobility, we

denote a successful rendezvous probability metric as follows.

Ps = P{TTR < CT } =

∞
∑

x=0

P{TTR < x}P{CT = x}.

Successful rendezvous probability quantifies the likelihood

that a successful rendezvous can be achieved, over all the

possible contact times, CT . From the resulting Ps plots in

Fig. 6(c), we observe that the optimal transition probabilities

applied by the proposed S-RCH (opt) scheme provide

0.24% higher success rate than the naive S-RCH (SRW)

scheme and a 2.81% lower Ps than the existing MMC schemes.

Moreover, the proposed PBNS-assisted S-RCH provides

Ps = 83.8% of successful rendezvous, which is a 5.45%

improvement over existing MMC scheme.

V. CONCLUSION

We proposed a symmetric random channel hopping (S-

RCH) scheme to achieve quick rendezvous between nodes

with limited channel hopping capability. We modeled S-RCH

as random walks over spectrum slice graphs, and assign

the walks with optimal transition probabilities that minimize

time-to-rendezvous. We show that S-RCH outperforms the

existing Modular Modified Clock scheme, while achieving

83.8% successful rendezvous in indoor mobile environment.

Our findings in this paper not only open a new research avenue

towards rendezvous for low-cost, low-complexity IoT nodes,

but also provide guidelines for real-world implementation.
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