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Abstract—Spectrum monitoring, run-time usage acquisition,
and regulation enforcement, in general can be referred to as
spectrum activity surveillance (SAS). It is essential to dynamic
spectrum access with a two-fold impact: it is a primitive mecha-
nism to continuously scan spectrum usage for system optimization
purposes; it is also a prime widget to obtain spectrum footprints
of legitimate users, and record misuse by unauthorized or
malicious users. Seemingly trivial, large-scale SAS in wireless
overlay networks is actually an open yet challenging problem.
This is because on one hand, such a system is time and energy-
sensitive and hence unlikely (or not necessary) to implement in
practice, due to constraints of radio spectrum license and system
deployment. On the other hand, it is not clear how to characterize
the efficacy and performance of spectrum monitoring strategies
in surveillance over a large geographical region, and detection of
spectrum culprits, that is, unauthorized spectrum occupants. To
address such a challenge, we consider SAS in a 3-dimensional
space that is composed of spectrum, time, and geographical
region, and then formulate monitoring strategies as graph walks
by accounting for the locality of spectrum activities. In particular,
our approach transforms the SAS problem from a globally
collective activity to a set of localized, distributed actions, and
strategy objectives from qualitative attributes to quantitative
measures. We find that randomized strategies with m monitors
can achieve a sweep-coverage over a space of n assignment
points in Θ( n

m
lnn) time, and detect an oblivious or adversarial

spectrum culprit in Θ( n
m
) time for SAS systems.

I. INTRODUCTION

Dynamic spectrum access (DSA) has been envisioned as a
key technology for future high-speed wireless overlay systems
[1], e.g., 5G networks, that enables various radio access
technologies (RAT) to co-exist over a geographical region. By
allowing wireless devices to temporally operate beyond their
designated spectrum bands, DSA is expected to mitigate the
gap between the increasing spectrum demand and the already
crowded wireless spectrum, boosting the spectrum efficiency
of such overlay systems. Despite its potential, the open nature
of DSA-enabled systems bears an intrinsic demand for spec-
trum activity surveillance (SAS), as both a prerequisite and a
supplement to such spectrum-agile systems.

SAS refers to a continuous scan of spectrum activities on
the frequencies of interest, which serves two roles in an DSA-
enabled system. As the spectrum-police, it determines the
legitimacy of instanueous spectrum usages, so that spectrum
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culprits, which refers to overly-aggressive or malicious users
that obsctruct the ‘right-of-way’ of legitimate users, can be
identified, and spectrum policies can be enforced. This is
especially meaningful since application of machine learning
in cognitive radio [2] permits ‘smart’ culprits to exploit the
system in an adversarial way [3], which strengthens the need
for SAS to guard the right of legitimate users. On the other
hand, SAS also serves as a data-collector in the long term,
collecting spectrum occupancy statuses, such that a variety of
usage data can be collected, including temporal and spatial
patterns of spectrum occupancy, user mobility, as well as
traffic patterns. On a systematic level, surveillance logs reflect
spectrum usage for wireless communications, and can hence be
used for system management purposes, e.g., in the construction
of the radio environment map (REM) [4]; on an individual
level, real-time spectrum occupancy measurements can serve
as a crude input to reveal and predict the spectrum sensing
range [5] for opportunistic access. Therefore, SAS becomes
both a premise to leverage spectrum efficiency in compliance
to policy enforcement, and a proactive approach to detect
spectrum culprits in wireless overlay networks.

Unlike spectrum sensing, which is a quick, individual, and
passive action carried out by every wireless device to access
spectrum opportunistically, SAS is a system-level, large-scale,
and active process by dedicated/crowdsource monitors in a
commercial DSA-enabled system. On the avenue of SAS,
existing literature can be broadly summarized into two cate-
gories: single-monitor technique and multiple-monitor orches-
tration. The former develops prototypes [5], [6] and algorithms
for single monitors, that can differentiate spectrum misuse
from legitimate occupancy, e.g., statistical significance testing
[7], and spectrum permit mechanism [8]. In contrast, the
latter focuses on efficient deployment of multiple monitors for
the purpose of better surveillance coverage (space/spectrum
scanned by monitors) [9], lower cost [10], and faster detection
of culprits [3]. To this end, interference map construction
from measurement data is studied [4] with dedicated monitors,
while a crowdsource paradigm is also proposed for cost and
flexibility improvement, taking advantage of collaboration [10]
and distributed data decoding [11].

In prior studies of multiple-monitor deployment strategies
[3], [9], [10], an implicit assumption is that spectrum monitors
are sufficiently powerful, such that they can watch over the
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entire geographical region of interest and tune/move without
any limit. The fact, however, is that most spectrum activi-
ties, including communications, attacks/jamming and monitor-
ing/sniffing, are local in space/time/frequency, i.e., as noted
in spectrum occupancy measurements [4]. This discrepancy
is especially pronounced in wide-band wide-area surveillance,
e.g., REM construction in wireless overlay networks, which
leads to an open question: how to model, design and analyze
Spectrum Activity Surveillance (SAS) processes?

Seemingly intuitive and trivial, the above question is ac-
tually a challenge to SAS systems. First and foremost, high
deployment expenses prevent studying of this problem via
field tests, especially at the early stage when prototypes [6]
are still being developed. Second, objectives of SAS, i.e.,
occupancy measurement and culprits detection, are by-and-
large global and collective, lacking a consolidated measure,
through which a monitoring strategy can be evaluated. Third,
if spectrum is considered as a 1-D domain, the surveillance
problem over a geographical region is naturally extended to
a 3-D space, in which tracking surveillance coverage and
dynamically deploying monitors are both non-trivial questions.

To address these challenges, we introduce a system model
in a 3-D space that incorporates spectra, temporal and geo-
graphical domains, and then formulates an SAS process as
graph walks, while the underlying graph captures locality of
spectrum activities, e.g., monitoring power, band-switching
and moving capabilities. By this model, design and analysis
of SAS strategies become viable, since: (i) the collective
surveillance activity of multiple monitors is transformed into
localized (even distributed) actions of single monitors; and (ii)
the qualitative SAS objectives are translated to clear quantita-
tive metrics in the time domain, i.e., the coverage time and de-
tection time. Our model is also versatile to illustrate dedicated
and crowd-source monitors with various capability settings, so
that performance of a certain strategy with specific monitors
can be analyzed before implementation. As an application
of the proposed model, we present randomized strategies to
effectively detect adversarial spectrum culprits. Our analysis
and simulations show that, despite the switching capacity limit,
randomized strategies of m monitors can achieve a full sweep-
coverage over a space of n assignment points in Θ( n

m lnn)
time, and detect a persistent/adversarial culprit in Θ( n

m ) time.
Our work focuses on modeling and analyzing the efficacy

of spectrum monitoring strategies from the perspectives of
coverage and detection. The rest of this paper is organized as
follows. We introduce the system model, define performance
metrics, and formulate the SAS problem in Sec. II. Then we
transform the surveillance process into a tractable graph walk
problem in Sec. III. Based on this model, randomized monitor
deployment strategies without and with switching capacity
limit are examined in Sec. IV and Sec. V respectively. Finally,
this paper is concluded in Sec. VI.

II. PROBLEM FORMULATION

In this section, we formally define the monitoring and
exploiting model in the 3-dimensional spectra-location space,

Fig. 1. Two spectrum monitors M1 and M2 (blue and red boxs) watch over
spectrum block S = [sL, sH ]. Each spectrum slice can be in idle (in white),
or occupied (in color) state, as a result of different spectrum activities.

and propose metrics to formulate the SAS problem.

A. System Model

Let S = [sLΔf , sHΔf ] ⊂ R denote a spectra block in
a DSA-enabled wireless overlay network. Block S can be
divided into sH − sL spectrum slices of width Δf , which
is the resolution bandwidth1 of monitors, as shown in Fig.1.
Since spectra block S is accessed through a variety of RAT’s,
that may not comply to the same channel assignment scheme,
a channel in RAT scheme i contains ki ∈ N

+ spectrum slices.
Considering that the width of spectrum block S is much larger
than the resolution bandwidth Δf in a wireless overlay system,
Δf is omitted for the ease of notation, and spectra block S is
denoted as a continuous interval [sL, sH ].

To spectrum monitors, the observable status of a spectrum
slice at a time instant can be: idle, rightfully occupied, or
illegitimately occupied, as a result of spectrum activities
illustrated in Fig.1. Slice si is rightfully occupied if it is
(i) accessed by an authenticated and authorized primary user
(PU), e.g., the blue slices close to sH at time t = 2, or (ii) op-
portunistically accessed by an authorized secondary user (SU)
abiding DSA regulations, e.g., green slices with � markers.
Slice sj is illegitimately occupied when (i) the occupant is
unauthorized to access sj , e.g., purple slices at t = 3 occupied
by an aggressive PU, and red slices (with restriction sign) used
by an unauthorized SU; or (ii) the occupant is transmitting in
a prohibited manner, e.g., emitting high-power jamming signal
(yellow slices at t = 2). Such entities that conduct illegitimate
occupancy are called spectrum culprits.

Rightful or illegitimate, all spectrum activities take place
in a space that spans over both the 1-D spectrum domain S
and the 2-D geographical space domain A, i.e., a 3-D product
space S×A, referred to as the spectra-location space X in our
prior work [12]. As a product space, X is equipped with metric
spectra-location distance dSA, that is, the product metric of
Euclidean distance metrics dS and dA in domain S and A

1The recommended resolution is typically 1% to 3% the channel bandwidth
[4]. An overly high resolution will consume significantly more resources [4],
while a low resolution will obtain inaccurate occupancy measurements. So
commercial devices generally set resolution bandwidth to be greater than 1
KHz, e.g., the R&S FSH spectrum analyzer and the SDR prototype in [6].
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Fig. 2. q(δ)-Monitoring power of a monitor is described as a δ-ball in space
X = S × A. Based on the monitoring power, space X can be divided into
disjoint cells (see Sec. III) whose centers are shown on the right.

respectively. In this sense, the example illustrated in Fig. 1 is
a special case when region A shrinks to a point, i.e., A = {a}.

Consider a set M = {M1,M2, · · · ,Mm} of m monitors.
Let time t proceed in discrete steps T = {1, 2, · · · }.

1) Monitoring Model: At time step t, every monitor is
assigned to tune to a center frequency in S , and relocate to
a spot in A. During one time step, any monitor can scan,
examine and/or record ‘nearby’ spectrum activities, e.g., the
‘box’ of adjacent slices in Fig. 1, formally define as follows.

DEFINITION 1. For a monitor M ∈ M assigned at
fm
t (M) = stM×atM ∈ X at time t, the q(δ)-monitoring power

of monitor M is defined as a δ-ball centered at stM ×atM , i.e.,

Ballδ(s
t
M × atM ) := {x ∈ X|dSA(s

t
M × atM , x) ≤ δ}, (1)

inside which any spectrum activity can be identified and
recorded by monitor M with probability q.

The ball-shaped monitoring power2, as shown in Fig. 2
(left), captures local and probabilistic monitoring actions, as
a result of the limited sampling rates of hardwares [6], [13].
Probability function q : R → [0, 1] captures reliability of mon-
itoring results with respective to distance dSA. For instance,
δ∗ = infδ>0{q(δ) = 1} corresponds to the surveillance range
for fully reliable detections, i.e., the q(δ∗)|q=1-monitoring
power. If a point x ∈ X is covered by two or more (e.g.,
n) monitors, illegitimate occupancy at x can be detected with
a higher probability, that is, 1 − [1 − q(δ)]n. If not explicitly
specified, we consider q(δ) = 1 hereafter.

The surveillance coverage of all monitors in M at time
t is the union of the m monitoring power, i.e., C(fm

t ) =⋃
Mi∈M Ballδ(f

m
t (Mi)). Allowing time t to proceed in T ,

assignments construct a strategy3 {fm
t }t, and the sweep-

coverage of the strategy is then CT (fm) =
⋃

t∈[1,T ] C(fm
t ).

2) Exploiting Model: Illegitimate spectrum activities come
in various forms, ranging from spectrum misuse by unautho-
rized or aggressive users to malicious jamming by attackers.
Despite the form, a spectrum culprit R ∈ R located at aR ∈ A,

2For a commercial monitor, parameters δ and q can be determined by the
sensitivity, noise floor, and input range of the hardware.

3Superscript m in fm
t denotes the number of monitors. A second subscript

may be added to differentiate strategy types. Any of the three denotations
(number of monitors, time and type) may be omitted if no confusion is raised.

illegitimately occupies a portion4 SR of the spectrum block S
at time t, and is detectable, if Rt = aR × SR overlaps with
the monitoring power of some monitor, i.e., ∃Mi ∈ M such
that Rt ∩ Ballδ(ft(Mi)) �= φ. Over a period of time, the
exploit sequence {Rt}t∈T captures spectrum exploit activities
of culprit R. The exploit pattern of spectrum culprits, i.e., how
a spectrum culprit R ∈ R assigns its exploit sequence, can
be either oblivious or adversarial, depending on its learning
capability, and will be discussed in Sec. III. A.

3) Switching Model: A switching swY
t of a wireless device

Y ∈ M∪R is defined as a relocation of Y from point Yt−1 ∈
X to point Yt ∈ X , e.g., switching action swM

2 of monitor
M in Fig. 2 left. Considering the fixed-length time steps, this
common action of monitors and culprits is also local, as it is
constrained by time, energy or other kind of cost. A switching
capacities metric is introduced and discussed in Sec. III. B to
address this locality from both range and rate perspectives.

B. Spectrum Activity Surveillance Problem

Recall SAS aims for occupancy measurements and culprit
detection. So efficacy of a monitoring strategy can be quantita-
tively evaluated and fairly compared through temporal metrics
with respective to the coverage and detection goals.

DEFINITION 2. Under strategy {fm
t }t∈T , the coverage time

Tm
f is defined as the first time that its sweep-coverage CT (fm)

contains every point in space X = S ×A, that is,

Tm
f := min{T ∈ T | x ∈ CT (fm), ∀x ∈ X}. (2)

The detection time τR(f
m) of a culprit R with exploit

sequence {R(t)}t∈T , is defined as the first time that culprit R
can be identified by any of the m monitors, that is,

τR(f
m) := min{t ∈ T |

m∑
i=1

1Rt∈Ballδ(fm
t (Mi))Di ≥ 1},

(3)
where detection outcome Di is a Bernoulli r.v. with mean q.

For δ = δ∗ such that monitoring result is fully reliable, i.e.,
q(δ∗) = 1, the detection time can be further simplified to

τR(f
m) := min{t ∈ T | R(t) ∈ C(fm

t )}. (4)

From perspectives of coverage and detection, this paper
studies the SAS process of space X = S × A with a set
of m monitors. Specifically, we intend to design monitor
deployment strategies {fm

t }t∈T ∈ {Xm}T , and examine their
efficacy by answering the following questions:

1) What is the the coverage time Tf of the designed
strategy fm, by which time spectra-location space X
is sweep-covered, i.e., X ⊂ CT (fm)?

2) Under the monitor deployment strategy fm, what is the
detection time τR(f

m) of a spectrum culprit R ∈ R
with exploit sequence {Rt}t∈[1,T ]?

4Without loss of generality, we consider culprits with a narrow SR, such
that SR can be viewed as a point sR ∈ S, because they are the most difficult
to detect. In addition, letting SR = {sR} is also a reasonable simplification
when S is wide. Then Rt shrinks to one point, and we write Rt ∈ X .
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III. FROM MONITORING STRATEGY TO GRAPH WALK

Given the limited power (closed δ-balls) of monitors, de-
signing an efficient monitoring strategy to watch over the
entire spectra-location space X is a challenging problem,
due to the infinite size of the strategy space {Xm}T . To
make the strategy design tractable, we reduce the continuous
strategy space {Xm}T to a discrete space through space-
tessellation in our prior work [12]. By considering cells of
radius δc, sweep-coverage can be guaranteed as long as the
assignment maps {fm

t }t are jointly surjective on the finite
assignment space V composed of cell centers illustrated in
Fig. 2 right. For culprit detection, we first identify different
exploiting patterns in terms of assignment space V . Then
impact of limited switching capacity is discussed from both
range and rate aspects. Consequently, any monitoring strategy
is then mapped to a walk on a composite graph (GM , GR).
Through this process, SAS as a global activity is transformed
into a chain of individual actions, i.e., switching (walking) of
monitors and culprits, enabling design of distributed strategy.

A. Persistent and Adversarial Spectrum Culprits

We consider persistent culprits (Rp) and adversarial culprits
(Ra), whose exploit sequence {Rt}t∈T takes value5 in V T .

DEFINITION 3. A persistent culprit Rp ∈ R refers to
a spectrum culprit whose exploit sequence {Rt}t does not
change over time, that is, {Rt}t is composed of i.i.d. r.v.’s Rp

t ,
all distributed with PMF gRp

(v), where v ∈ V .

Persistent culprit Rp can represent a variety of simple
exploiting strategies with different PMF gRp(v). In contrast,
applying machine learning techniques in radio access tech-
nology [2] enables sophisticated culprits to steer the game
toward their benefit [3]. For example, they can actively dodge
monitors by switching to points that are less probable to be
monitored, after knowing the monitoring strategy6.

DEFINITION 4. An adversarial culprit Ra ∈ R is a
spectrum culprit with prior knowledge of current strategy
{fm

t }t∈T , that is, Ra knows the set of probabilities {v ∈
∪Mi

fm
t (Mi)}v∈V ahead, and determines its current exploit

point Ra
t with PMF gtRa

(v) = 1
|Void(t)| for point v ∈ Void(t),

where Void(t) = argminv∈V P

(
v ∈ ⋃

Mi∈M ft(Mi)
)

.

B. Limited Switching Actions

Recall that a switching is a relocation of a device (monitor
or culprit) in X (or equivalently V ). For monitors, while
switching was assumed to incur no cost (and is hence not
constrained) in prior works [3], [6], switching cost is indeed
a design concern in both dedicated and crowd-source SAS

5Actually any exploit point Rt takes value in the continuous space X . But
when Rt ∈ Ballδ(ft(Mi)), the detection probability q(δ) is the same in
this cell (δ-ball centered at ft(Mi)), so we write Rt = ft(Mi) ∈ V instead.

6We consider the most powerful culprit (with full knowledge of a strategy)
as an extreme case to illustrate the robustness of a system against compromised
strategies. A weaker culprit can at least observe the long-term visiting
probability of any point v ∈ V as knowledge. In some cases, SAS strategies
are required to be disclosed, e.g., crowd-source SAS systems.

scenarios, especially when region A is large. For a dedicated
monitor, switching is composed of physical movement and/or
tuning, and is restricted by the induced switching cost con-
straints, including time, energy, budget etc. For instance, it is
recommended to wait for 1 s for the local oscillator to stabilize
after tuning the central frequency of a monitor. In contrast,
switching by participants in crowd-source SAS is merely a
change of surrogate devices. If immediate communication
among all participants is guaranteed, or there exists a central
control capable of timely coordination, switching will not
be limited; otherwise for distributed crowd-source SAS that
relies on local communication, switching is constrained by the
communication range of surrogate monitors. In addition, any
spectrum culprit is also subject to its own hardware constraint.
So in this subsection, we discuss switching actions from the
range (how far) and the time (how fast) aspect.

1) Range Aspect (Switching Capacity): Switching range
refers to the distance in both spectrum domain A and space
domain S . It is constrained by the following capacity limit,
capturing another aspect of locality of spectrum activities.

DEFINITION 5. Suppose Yt = xY ∈ X denote the location
(in X) of device Y at time t, the switching capacity αY of Y
is defined as the maximum distance in X , that device Y can
switch over by one action in a time step, that is,

αY := sup
Yt+1∈X

{dSA (xY , Yt+1)} . (5)

Device Y is referred to as an αY -monitor or αY -culprit.

2) Time Aspect (Switching Rates): In addition to switching
range, the rate of switching, that is, how many switching
actions can be done in one time step, is also limited by
hardware constraints. It seems problematic in culprit detection
when monitors and culprits switch at different rates. Counter-
intuitively, a more ‘capable’ culprit that switches faster than
the monitors will be detected in an even shorter period of time.

Consider monitors with q(δ)-monitoring power, that is,
when a culprit shows up where a monitor is assigned (referred
to as co-location in the assignment space V ), the probability
that it is detected by that monitor during one time step is q.
Let qp(s) (s ∈ [0, 1]) denote the detecting probability when
the co-location time s is less than one full time slot, where the
non-decreasing function 0 ≤ p(s) ≤ 1 captures the attenuated
detection probability due to a reduced transmission time of
culprits, and has the property of p(0) = 0, p(1) = 1.

LEMMA 1. Suppose culprit R1 differs from R2 only in
switching rates: R1 can switch k ∈ N

+ times during one
time step, while R2 and the monitors can switch once. The
detection time of R1 is stochastically dominated by that of

R2, that is, τR1
(f)

d
≤ τR2

(f) for any f , when the following
criterion is satisfied:

p(
1

k
) ≥ 1− [1− qP

(
R2(t) ∈ C(fm

t )
)
]
1
k

qP
(
R2(t) ∈ C(fm

t )
) . (6)

Proof. Without loss of generality, assume the strategy f is
carried out by one monitor M . Lemma 1 holds trivially for

2146



a deterministic strategy fS , when both R1 and R2 are adver-
sarial. In fact, the detection time τR1(fS) = τR2(fS) = ∞,
which is the ‘wandering hole’ problem analyzed in Sec. IV.A.

If f is a randomized strategy, or R1 and R2 are persistent
culprits, during a time step t, R1 generates an exploit sequence
{R1

1(t), R
1
2(t), · · · , R1

k(t)}, and R2 switches to R2(t), while
monitor M stays at a fixed assignment point ft(M) ∈ V . The
probability that R2 is identified during t can be written as
Q2 = q

(
1− P

(
R2(t) �= ft(m)

))
, while for R1, the probabil-

ity of being identified by monitor M is

Q1 = 1−Πk
i=1

(
1− qp(

1

k
)P
(
R1

i (t) = ft(m)
))

. (7)

Given that R1 and R2 only differ in switching rates, that is,
P
(
R1

i (t) = v
)
= P

(
R2(t) = v

)
, for any v ∈ V and i ∈

{1, 2, · · · , k}, the probability Q1 = 1− (1−p( 1k )Q2)
k. When

criterion Eq. (6) holds, we have Q1 ≥ Q2, which means that
R1 is more probable to be detected during any given time
step t. Equivalently, the CCDF of detection time R1(f) and
R2(f) satisfy P(τR1(f) > l) ≤ P(τR2(f) > l), for any integer
l ≥ 1.

Even if Eq. (6) is not satisfied, quantity |Q2 −Q1| will be
very small, since P

(
R2(t) ∈ C(fm

t )
)

is small. Based on this
observation, we assume both the culprit and monitors switch
once every time step hereafter. Then for a persistent culprit
Rp with PMF gRp(v), the probability that it is detected by
strategy f in time step k is pk = q

∑
v∈fk(M) gRp

(v). Denote
p0 = 0, and the expected detection time can be calculated by

E
(
τp(f)

)
=

∞∑
k=1

k
k−1∏
i=1

(1− pi)pk. (8)

C. Graph Walk on (GM , GR): A Chain of Switching Actions

Accounting the switching capacity in deployment strategy
design, the assignment space V is a subspace that inherits dSA

metric from X . This gives rise to a structure that incorporates
possibility of switching actions for monitors, that is, a graph
GM = (V,EM ), where an edge (u, v) ∈ EM exists, if and
only if dSA(u, v) ≤ αM . Consequently, an arbitrary strategy
{fm

t }t∈[1,T ] can be seen as a walk by m = |M| walkers on
the monitoring (sub)graph GM , and coverage time Tf becomes
the time that every assignment point in V is visited.

Meanwhile, spectrum culprit R is also subject to its own
switching capacity limit αR, so the exploiting activity of R is
also a walk, but on the exploiting (sub)graph GR = (V,ER).
Note that the two sub-graph GR and GM have the same vertex
set V , and are both sub-graphs of the complete graph Kn,
which corresponds to αM = αR = ∞. Consequently, any
culprit detection is a composite walk {fm

t , Rt}t∈T on the
composite graph G = (GM , GR), as illustrated in Fig. 3.

Formulating a monitoring process into a graph walk makes
the strategy design more tractable. However, mathematical
results on graph walks (e.g. [14]–[16]) will not directly apply
to the SAS problem, that incorporates different scenarios and
design concerns. For these purposes, adaptation, solution and

Fig. 3. An example of culprit detection: Two monitors (blue dots) and one
culprit (red dot) walk on overlapping graphs. The monitoring subgraph GM =
(V,EM ) (blue dashed edges) is sparser than the exploiting subgraph GR =
(V,EM ) (red dotted edges) due to monitors’ weaker switching capacity.

analysis are discussed for the unlimited (αM = ∞) and limited
(αM < ∞) capacity cases, in Sec. IV and Sec. V respectively.

IV. OVERCOMING THE ‘WANDERING HOLE’ PROBLEM:
RANDOMIZED STRATEGIES

We start from the easier SAS scenario with powerful
monitors that are not constrained in switching, and focus on
tackling adversarial spectrum culprits. Such culprits pose as
great challenges to monitoring strategy design, because they
can exploit deterministic strategies in which every monitor’s
assignments are pre-determined, creating a ‘wandering hole’
problem. This motivates us to propose independent and dis-
tributed randomized strategies, that are easy to implement, and
can achieve a guaranteed coverage and detection performance.

A. The ‘Wandering Hole’ Problem and Its Root Cause

Deterministic strategy fS , e.g., the one proposed in [12],
usually repeats after TS =  n

m� time, to maintain a low
switching cost. Consequently it is possible for adversarial
culprit Ra to observe visiting probabilities, and predict where
monitors will most likely not be in the next time step. Then
culprit Ra can continue chasing the void, as if hiding in a
‘wandering hole’ of the dynamically changing coverage.

An example of ‘wandering hole’ is shown in Fig. 4, where
spectrum activities over region A = [0, 4]2 are monitored by
m = 5 monitors. Red dots indicate the assignment points in
V , while space enclosed by shaded spheres corresponds to
the monitoring power of monitors. The white space outside of
these spheres corresponds to space that a culprit can exploit
without being detected, i.e. a spectrum hole in the coverage.

The root cause of this problem is that, culprit Ra is able to
take advantage of the difference among visiting probabilities
of assignment points, and determines the spectrum ‘hole’, i.e.,
Void(t). The sharper the difference, the clearer the boundary
of the ‘hole’, and the larger the chance to dodge monitors.
For instance, under the deterministic strategy shown in Fig.
4(a-b), a culprit Ra located at (3, 2) can easily identify
Void(2) ⊂ S × {a} (Fig. 4 (c) left) due to the prominent
difference in probability density. A targeting counter-measure
is to nullify the prior knowledge by eliminating the difference
among visiting probabilities. In other words, fully randomize
the deployment, such that every assignment point is visited
with the same probability during any time step. Then the whole
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Fig. 4. Illustration of a wandering hole: 5 monitors are deployed in region A = [0, 4]2 with δ =
√
5
2

. Their coverage Ct at each time step t, is the union
of the enclosed space of the blue (partial) balls and the boundary, while the outter space corresponds to the spectrum ‘hole’, that is ‘wandering’ in X over
time. Root cause of the wandering hole problem is the difference in probability density across X . For example, an adversarial culprit located at (3, 2) in (a)
can infer the spectrum hole Void(2) with clear boundary, due to the sharp probability density difference, which is not the case for randomized strategies.

spectrum S at location (3, 2) will be included in Void(2) in
culprit Ra’s view (Fig. 4(c) right). Consequently, probability
that Ra is not detected during t+ 1 becomes much smaller.

As we will show in this section, both the coverage and
detection time of such randomized strategies (i) are bounded,
indicating the efficacy for both the sweep-coverage and the
detection goals; and (ii) scale as O( 1

m ) with respect to the
number of monitors m, revealing their efficiency.

B. Randomized Monitor Deployment Strategies
We consider two randomized strategies that require different

levels of coordination and switching capacities: the indepen-
dent I-strategy fI and the distributed D-strategy fD.

Under the I-strategy fI , during each time step, each monitor
Mi ∈ M switches to an assignment point vi ∈ V uniformly
at random, and independently of others. This strategy requires
the switching capacity of monitors to include the entire as-
signment space V . The monitoring process is then equivalent
to a composite random walk of m = |M| walkers, each
independently generating a sequence {fm

t,I(M)}t∈T , on the
monitoring subgraph GM = Kn. The uniform transition prob-
ability leads to a convergence-guaranteed stationary visiting
probability distribution πv = 1

n , ∀v ∈ V .
Under the D-strategy fD, assignment space V is evenly

divided into m disjoint subsets {Vi}Mi∈M, that composes a
partition of V . During time step t, each monitor Mi ∈ M
switches to point fm

t,D(Mi), chosen uniformly at random from
its own subset Vi, that contains nm =  n

m� assignment points.
Thus, the D-strategy is equivalent to m independent single-
walker random walks, each on a smaller complete graph Knm

.
Note that D-strategy only requires the monitoring power to
include a subset Vi of the entire assignment space V , and the
resulting stationary distribution is also uniform.

C. Coverage Time Tm
I and Tm

D

By our model that maps the randomized I- and D-strategy
to random walks, the coverage time become well-defined r.v.’s
taking value in [1,∞), and their expected value E(T∗) are
referred to as the cover time in [14]. For the single monitor
case, the I- and D-strategy are exactly the same. For this
special case, the expected coverage time can be calculated as
E(T 1

I ) =
∑n

i=1
n

n−i+1 = nHn. For the case of multiple (m)
monitors, both expected coverage times can be upper-bounded.

THEOREM 1. For a set of m = |M| monitors that follow
the I-strategy {Tm

I,t}t∈T in an assignment space V of size n,

E(Tm
I ) ≤ e(n− 1)

[
0.562 + 0.768

Hn

m

]
. (9)

If monitors in M follow the D-strategy {fm
D,t}t∈T ,

E(Tm
D ) ≤ nm

⎡
⎣Hnm +

√
m− 1

[
7(nm)2 − 11nm + 2

] 1
2

2(nm − 1)

⎤
⎦ ,

(10)
where nm =  n

m�.

Proof. First we prove the bound for E(Tm
I ). Let T 1

I,i denote
the coverage time of a single monitor Mi ∈ M. Then
{T 1

I,i}mi=1 is a set of i.i.d. random variables with T 1
I,i

d
= T 1

I

for any monitor Mi ∈ M. So

E(Tm
I ) ≤ E( min

1≤i≤m
T 1
I,i) ≤ E(T 1

I,i) = E(T 1
I ). (11)

Let H(x, y) := mint>0{fm
t (Mi) = y | fm

0 (Mi) = x}
denote the hitting time of monitor Mi ∈ M on point y ∈ V ,
given that Mi started its monitoring from x ∈ V . Note that Mi

is inter-changeable with Mj , so the notation of monitor can
be suppressed. Each monitor walks/switches independently, so
E(H(x, y)) = n− 1, for any x, y ∈ V . With the construction
technique in [14], we have the probability that the m random
walkers have not covered every assignment points in V by
time er(n−1), or equivalently the coverage time Tm

I is greater
than er(n−1), as P

(
Tm
I > er(n−1)

)
≤ e−mr ≤ e−γ , where

integer r =  lnn+γ
m �, and γ = limn→∞(Hn − lnn) is the

Euler-Mascheroni constant.
Also, notice that E(Tm

I ) ≤ E(T 1
I ) = nHn from Eq. (11).

Therefore, the expected coverage time

E(Tm
I ) ≤ er(n− 1) · (1− e−γ) + E(T 1

I ) · e−γ (12)

≤ e(n− 1)

m

[
(Hn +m)(1− e−γ) +Hne

−(1+γ)
]
,

and plugging in values of γ and e yields the result.
Now we prove Eq. (10) for the D-strategy.
Let r.v. TMi

denote the coverage time of monitor Mi on
its own subset Vi ⊂ V , where |Vi| = nm =  n

m�. Under
the D-strategy fm

D , monitoring sequence of each monitor
is a random walk on a separate complete graph Knm

, so
E(TMi) = nmHnm for all Mi ∈ M. Further, r.v. TMi =
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∑nm−1
k=1 Tk, where each Tk is geometrically distributed with

parameter nm−k+1
nm

. Hence E(Tk) =
nm

nm−k+1 and V ar(Tk) =
nm(k−1)

(nm−k+1)2 . Then the variance of r.v. TMi can be obtained as

V ar(TMi) =

nm∑
k=1

V ar(Tk) ≤ (nm)2
(
7

4
− 2nm + 1

2(nm − 1)nm

)
.

(13)
The coverage time of strategy fm

D is the maximum of m
i.i.d. r.v.s, that is, Tm

D = maxMi∈M{TMi
}, so it can be upper-

bounded through a an inequality in [17, Eq.(3)], that is,

E(TD) ≤ E(TMi) +
√
(m− 1)V ar(TMi). (14)

Plugging Eq. (13) into Eq. (14) yields the upper-bound.

Theorem 1 upper-bounds the coverage time under the two
proposed randomized strategies, and it is validated by nu-
merical simulations. Fig. 5(a) and (b) illustrate the expected
coverage time of I-strategy (E(Tm

I ), blue ‘�’ markers) and D-
strategy (E(Tm

D ), red ‘×’ markers),and their scaling behavior
over m = M and n = |V | respectively. Zooming in, the case
of four monitors (m = 4) is shown in the inner box of Fig.
5 (a), from which it can be seen that even the sliding average
of coverage time (‘�’ and ‘×’ markers) are upper bounded.
We have the following observations by comparing simulation
and bounds. (i) Eq. (10) (red dashed line) is a tight bound
on the coverage time of D-strategy. (ii) Eq (9) (blue dotted
line), though not tight, accurately describes its O( n

m lnn)
scaling behavior. (iii) I-strategy and D-strategy have very close
coverage time performances, not only in the mean sense, but
also in distribution, as shown in the inner boxes of Fig. 5 (b).
An implication is the more demanding I-strategy (in terms
of level of coordination and switching capability of monitors)
can be safely substituted by the distributed D-strategy, with
the same coverage performance. (iv) Both expected coverage
times are O( n

m lnn) (blue dotted line in (b)), which can be
used to predict the number of monitors needed to reach the
coverage goal of a given space with a certain resolution.

D. Bounded Detection Time of Adversarial Culprits

As can be seen from the example shown in Fig. 4 (c) (right),
the advantage of prior knowledge to adversarial culprits is
compromised, as evidenced by the bounded detection time.
This is possible due to the uniform visiting probability distri-
bution of both randomized strategies.

THEOREM 2. Under strategy fm
I and fm

D , the expected de-
tection time E(τR(f∗)) of an adversarial culprit Ra is upper-
bounded, if the detection probability q is lower-bounded.

Proof. Consider m monitors over V , each has q(δ)-monitoring
power. To I-strategy fm

I and D-strategy fm
D , an adversarial

culprit Ra is equivalent to a persistent culprit Rmd with uni-
form PMF, in terms of detection time, because both strategies
achieve a uniform visiting probability over V .

First we consider the I-strategy fm
I . The detection time

τR(fI) is the meeting time between the culprit and any of the
m monitors on the complete graph Kn. By Eq. (8), τR(fm

I ) is
geometrically distributed with parameter pI = 1− (1− q

n )
m,

the probability that the culprit is caught by at least one of
the m monitors in a single time step. Therefore, given that the
detecting probability q is lower-bounded by a positive constant
q∗ > 0, E

(
τa(f

m
I )

)
can be upper-bounded as

E
(
τa(f

m
I )

)
=

1

pI
=

[
1− (1− q

n
)m

]−1

(15)

≤
{
1−

[
(1− q∗

n
)

n
q∗

] q∗m
n

}−1 n
q∗ >1

≤ 1

1− e−
q∗m
n

.

Under the D-strategy fm
D , each monitor walks indepen-

dently, and occupies a different point in V during each time
step t. Therefore, the probability that culprit Ra is identified
by any of the m monitors is pD = qm

n , and the corresponding
expected detection time is also upper-bounded:

E(τa(f
m
D )) =

1

pD
=

n

qm
≤ n

q∗m
, (16)

where q∗ > 0 is a positive constant such that q ≥ q∗.

Theoretically, the detection probability q can be very small
(<< 1) and consequently E(τa(f

m
I )) and E(τa(f

m
D )) go to

infinity. But it is highly unlikely in practice, because in that
case, parameter δ can be adjusted in the space-tessellation step
(discussed in [12]), so that q is boosted to an acceptable level.

Theorem 2 reveals a compelling advantage of randomized
strategies other than simpleness, that is, resistance to adversar-
ial culprits. To validate these analysis, numerical simulation
is conducted in an assignment space of size n ≤ 500 and
detection probability q is set to 1, as shown in light-blue (I-
strategy) and light-red (D-strategy) dots of Fig. 6 (a) and (b).
From the bounds and simulation results, we can see first and
foremost, not only are the detection time of I-strategy and D-
strategy bounded, they can be calculated with Eq. (15) and
(16). Moreover, even when the detection is imperfect, that is,
the reliability of surveillance result q < 1, Eq. (15) and (16)
are still valid, so result is not shown due to space limit. This
predictability gives random strategies extra edge in the design
stage. Secondly, similarly as the coverage time, D-strategy
proves to be a good distributed alternative to I-strategy. For
both the coverage time and detection time, we can observe a
linear ‘speed-up’ when multiple monitors are employed, that
is, O( 1

m ). An implication is that increasing the number of
monitors is an efficient performance-boosting measure.

V. SAS WITH LIMITED SWITCHING CAPACITIES

Recall in Sec. III.B, the switching capacity αY is defined as
the maximum distance that a device (monitor or culprit) Y can
switch over in one time step. Consider the SAS problem of m
independent αM -monitors (with full reliability q = 1) and an
αR-culprit on the assignment space V . Let rαM

(v) denote the
degree of point v ∈ V in the monitoring subgraph GM , under
the switching constraint αM , and rαR

(v) denote the degree
of v in the exploiting subgraph GR, under the the switching
constraint αR. Then GM and GR are both subgraphs of the
complete graph Kn, which corresponds to the unlimited case
discussed in Sec. IV. Further, if monitors are more ‘powerful’
than the culprit (αM > αR), then ER ⊂ EM , and vise versa.
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Fig. 5. The expected coverage time of both the I- (E(TI)) and D-strategy (E(TD)) is O( n
m

lnn), with or without limited switching capacity.
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Fig. 6. The expected detection time of an adversarial culprit is O( n
m
), under both the I and the D-strategy with unlimited or limited switching capacities.

A. Regular Graph Approximation

Observe that assignment points (cell centers) in V are quite
‘structured’, as shown in Fig. 2 (right). So most vertices in
GM and GR have similar degrees, except for the few around
the boundary. Therefore, we first approximate GM and GR as
rM - and rR-regular graphs (GrM and GrR) respectively, on
which mathematical tools [14], [15], [18] come in handy. Here
rM = 1

n

∑n
i=1 rαM

(vi) is the average degree of monitoring
subgraph GM , and rR is that of exploiting subgraph GR.

1) Coverage Time: Let Tm
rM denote the coverage time of m

independent monitors on rM -regular graph GrM , to differen-
tiate from Tm

I on the monitoring subgraph GM . Asymptotic
bounds for E(Tm

rM ) have been studied by multiple researchers,
e.g., Alon et.al. [14] proved the cover time to be Θ(n lnn

m ). It is
shown in [16] that a randomly chosen r−regular (r ≥ 3) graph
Gr is “nice” with high probability, so the expected coverage
time E(Tm

rM ) follows from [18, Theorem 2],

E(Tm
rM ) ∼ rM − 1

rM − 2

n lnn

m
. (17)

2) Detection Time: Let τR(rR, rM ) denote the detection
time of a culprit R (walking on the rR-regular graph GrR ),
by m-monitors (walking on the rM -regular graph GrM ).

Case 1. rR = rM = r such that both monitors and culprit R
walk on the r-regular graph Gr. Applying the predictor-and-

prey model [18, Theorem 3] we can asymptotically bound the
expected detection time of culprit R, that is,

E(τR(r, r)) ∼
r − 1

r − 2
· n

m
. (18)

Case 2. rR �= rM . An upper-bound of E (τR(rR, rM )) can
be obtained by considering a composite random walk and then
follow an inequality in [15, Proposition 6.16].

PROPOSITION 1. Let q = (n−1)!
(n−m−1)! , then,

E (τR(rR, rM )) ≤ 1 +
q

nm
(4q2 − 1). (19)

Unlike Eq. (17) and Eq. (18), Proposition 1 holds for finite
n. When n is large, asymptotic results in [14] and [16] apply,
except that in the SAS problem, monitors and the culprit walk
on different subgraphs (GrM �= GrR ). Addressing this issue,
we have a corollary by considering min{rR, rM}.

COROLLARY 1. The expected detection time of a monitor-
ing process on (GrR , GrM ) is E (τR(rR, rM )) = Θ( n

m ).

Note that compared to performance of unlimited switching
capacity, the scaling law provided by the average-degree
approximate (Eq. (17) and Eq. (18)) differs only by a degree-
determined constant, which is no larger than 2. This indicates
that the scaling law of both coverage and detection time on
regular graph (GrM , GrR) remains unchanged over m and n.
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B. Gap between (GM , GR) and (GrM , GrR)

For Eq. (17) and Eq. (18) to hold, a regular graph needs
to be “nice” [16, pp. 733]. It is also shown [16] that a large
(n large) r-regular graph Gr randomly selected from all r-
regular graphs Gr, is almost-Ramanujan with high probability,
that is, the largest eigenvalue λ0(Gr) and the second largest
eigenvalue λ1(Gr) of graph Gr’s adjacency matrix satisfy

λ1(Gr) ≤ 2
√
λ0(Gr)− 1 + ε, (20)

where λ0(Gr) = r, as Gr is r-regular. However, this is
not necessarily true for the real exploiting and monitoring
subgraphs (GR, GM ). This gap in graph expansion properties
does not allow direct application of the scaling law (Eq. (17)
and Eq. (18)) to the composite graph (GM , GR), induced
by switching capacity limit αM and αR. Nonetheless, with
extensive simulation, we found that E(Tm

I ) and E(τR(f
m
I ))

on the real composite graph (GM , GR) actually follow the
Θ(n lnn

m ) and Θ( n
m ) scaling law described in Eq. (17) and

Eq. (18), as shown in Fig. 5 (c) and 6 (c). Simulations (dots)
and bounds (dashed and dotted lines) are compared in an
assignment space V that has n = 394 points.

As anticipated, the expected coverage time of a weaker
monitor set (red ‘×’ markers, with switching capacity limit
rM = 19) is slightly longer than that of a more powerful
monitor set (blue ‘�’ markers) in Fig. 5 (c). The lower bound
(black dotted line) is obtained by setting rM = ∞, while the
regular graph approximation E(Tm

rM )|rM = 86 is shown in
green dashed line. From both cases the scaling of the expected
coverage time E(Tm

I ) over m is well-captured.
For the expected coverage time in Fig. 6 (c), both the upper

and lower bound (black dashed and dotted lines respectively)
are tight, if not precise, for m ∈ [1, 10], i.e., E(τR(fM

I )) �
E(τR(rR, rM )). Similar results are also observed for different
n settings and are omitted due to space limit.

Comparing the unlimited switching capacity (Fig. 5 (a) and
6 (a)) with the limited case (Fig. 5 (c) and 6 (c)), we observe
that the capability limit αM (or rM ) becomes less influential
as m increases, and does not change the scaling behavior,
because αM is sufficiently large so that the quantity rM−1

rM−2
in Eq. (17) comes close to 1. Another interesting observation
is that, even though the switching capacity of the monitors
and that of the culprit differ considerably in value for the two
simulation cases, the mean coverage and detection time (‘�’
and ‘×’ markers in Fig. 5 (c) and 6 (c)) are close. The reason
behind this is similar to that stated in Lemma 1, i.e., the more
‘mobile’ (either monitors or culprits), the more ‘visible’.

VI. CONCLUSION

In this paper, we study the spectrum activity surveillance
problem, particularly deployment strategies of multiple moni-
tors, for the purpose of sweep-coverage and spectrum culprits
detection. We introduce a model that captures the locality of
spectrum activities, based on which any deployment strategy
can be formulated as a graph walk, and evaluated with cover-
age and detection metrics. As an application of the proposed
model, we present randomized strategies against adversarial

spectrum culprits, whose efficacy is theoretically analyzed and
validated through simulations. We hope these results could
contribute to the knowledge of SAS, and benefit the design
and management of dynamic spectrum access systems.
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