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Abstract—The mainstay of current spectrum access grants
exclusive rights to proprietary occupants who exhibit tidal traffic
patterns, leading to low usage of valuable spectrum resources.
To remedy this situation, Dynamic Spectrum Access (DSA) is
proposed to allow Secondary Users (SUs) to opportunistically
exploit idle spectrum slices left by Primary Users (PUs). The key
to the success of DSA lies in SUs’ knowledge on radio activities
of PUs. To enhance the understanding of PU spectrum tenancy
patterns, various mathematical models have been proposed to
describe spectrum occupancy dynamics. However, there are still
two overlooked aspects in existing studies on spectrum tenancy
modeling, i.e., time-varying spectrum tenancy patterns and multi-
ple channels within the same Radio Access Technology (RAT). To
address the two issues, we apply a change detection algorithm to
discover time points where spectrum tenancy patterns vary, and
propose to characterize spectrum usage in a multi-channel RAT
by the Vector Autoregressive (VAR) model. Through analyzing
LTE spectrum tenancy data with the algorithm and the model,
we validate that the segment size discovered by the online change
detection method coincides with the one obtained by brute force,
and VAR outperforms the widely adopted on/off model.

I. INTRODUCTION

Driven by increasing demands on mobile data rates in
various applications and network topologies [1]–[3], tremen-
dous efforts have been made to improve spectral efficiency,
such as high-order modulation and assorted MIMO (Multiple-
Input and Multiple-Output) technologies [4]. Though wireless
spectrum has been painstakingly sought and loaded with as
much data as possible, the mainstay of current spectrum access
mechanism has been proved to keep spectrum utilization low.
Spectrum bands auctioned for exclusive access may have
staggeringly low utilization of below 50% [5]. The unoccupied
spectrum resources, or spectrum holes which are caused
by tidal traffic of Primary Users (PUs), can be utilized by
Secondary Users (SUs) in Dynamic Spectrum Access (DSA)
systems where SUs are allowed to opportunistically access
idle PU spectrum slices [6].

DSA is a fundamental improvement to current spectrum
access paradigm, and the key to its success lies in SUs’
knowledge on spectrum tenancy of PUs. To gain insight
into PU spectrum occupancy characteristics, a plenitude of
modeling studies have been conducted [7]–[9]. The statistics
of occupancy time and transition time are studied based on
measurements of spectrum tenancy in a large frequency span
[7]. Another wide-range spectrum study proposes to model

duty cycle lengths with beta distributions [10]. Besides works
on measuring spectrum occupancy and analyzing distributions
of time statistics, the underlying stochastic processes of spec-
trum tenancy have also been investigated. Channel occupancy
of multiple PUs is characterized as a discrete time Markov
chain to assess link qualities in heterogeneous networks [11].
An autoregressive (AR) model is adopted to describe and
predict spectrum tenancy in multiple bands and locations
based on three days’ measurement results [12].

The aforementioned spectrum tenancy models enhance our
understanding of PU radio activities, but they do not consider
how spectrum occupancy models should change with time-
varying spectrum usage patterns. When modeling a time
series, such as spectrum occupancy data, we need to consider
the time-varying nature of the data-generating process, which
is especially true when measurements last for a long time [13].
Initial efforts in this regard have been shown in [14], where
the occupancy model of a WiFi spectrum band considers the
changes of radio activity patterns, namely data transmissions,
short interframe space waits, acknowledgement transmissions,
and idle periods. Since WiFi contains only one data channel
that can be occupied by a single device at a time, the channel
usage states underlying different spectrum tenancy patterns
can be enumerated and captured by a tractable Markov chain.
In frequency bands with complex tenancy, however, it still
remains unanswered that what is the way to identify and
model changing spectrum occupancy patterns. Additionally,
existing spectrum tenancy models mostly treat each radio
channel independently, apart from some studies on occupancy
correlations of channels in the same Radio Access Technology
(RAT) at different locations [15]. Thus, it is worth studying
what spectrum tenancy model is able to characterize the
correlations of multiple co-located channels.

To showcase our solutions to these research questions, we
target PU spectrum tenancy in LTE systems where versatile
assignments of spectrum resources in multiple channels are
conducted. For a PU system with complex scheduling of
multiple channels whose state space is too large for Markovian
models that described WiFi channel activities [14], we adopt
a change detection method to identify data points where
variations of occupancy patterns occur [16]. Since spectrum
tenancy prediction is one of the most important applications
of occupancy modeling, the adopted change detection method
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Fig. 1. An overview of the analysis process.

identifies variations of spectrum activity patterns based on
parameter changes of prediction models. Having identified the
data points where spectrum occupancy patterns change, we
then segment the time series of spectrum tenancy into shorter
lengths, each of which is governed by a stable occupancy
pattern. The segment length distribution and its impact on
spectrum tenancy analysis are investigated. After the segmen-
tation, Vector Autoregression (VAR) is proposed to model
the spectrum tenancy of multiple channels in an LTE cell.
To demonstrate the superiority of VAR over single-channel
models, we compare the fitting performance of VAR with that
of the widely adopted on/off model. The comparisons consider
how well the models characterize time lengths of channel
occupancy, such as distributions of idle and busy periods. The
overall work-flow of this paper is also illustrated in Fig. 1, and
the major findings are listed below.

• The fitting accuracy of both on/off and VAR models are
sensitive to the choice of the segment size of spectrum
occupancy. Both the change detection algorithm and the
brute force method suggest the segment size of around
100 millisecond (ms) for LTE spectrum tenancy.

• Judging from three aspects of fitting accuracy, corre-
lations among adjacent channels, and the correlation
between adjacent idle and busy period lengths, VAR out-
performs on/off model in LTE spectrum tenancy analysis.

II. SEGMENTATION OF SPECTRUM OCCUPANCY

As the spectrum tenancy is decided by highly volatile radio
activities in LTE systems, we first segment time series of
spectrum occupancy to avoid fitting one model to tenancy
data with time-varying channel usage patterns. Martingale Test
(MT) algorithm is adopted, because it is a one-pass method
with validated change detection accuracy [16].

A. The adopted segmentation method

For self-containment purpose, MT algorithm is briefly ex-
plained. To detect changes in time series using MT, first the
features xi to predict spectrum tenancy yi should be identified,
so a data set T = {(x1, y1), · · · , (xn, yn)} is constructed
by pairing the prediction inputs and the occupancy labels

yi. Then, a strangeness measure si is computed for the ith
prediction input. The strangeness measure is

si =

∑k
j=1 d

y
ij∑k

j=1 d
¬y
ij

, (1)

where dyij is the jth shortest distance of input i to other
inputs with the same occupancy label, and d¬y

ij is the jth
shortest distance of xi to others with a different tenancy. The
strangeness measure is then applied to compute two other
statistics, p̂i and M

(ϵ)
n , where p̂i is

p̂i({(x1, y1), . . . , (xi, yi)}, θi)

=
#{j : sj > si}+ θi#{j : sj = si}

i
, (2)

and M
(ϵ)
n is

M (ϵ)
n =

n∏
i=1

(
ϵp̂ϵ−1

i

)
. (3)

The tune parameter ϵ is in range [0, 1], and θi is a uniform
random variable in [0, 1]. The number of elements in a set
is denoted by #{·}. Finally, decisions on occupancy pattern
changes are made based on M

(ϵ)
n . The null hypothesis H0

that no occupancy pattern change happens at time instance
n is accepted if M

(ϵ)
n < λ, where λ is chosen based on an

acceptable false alarm rate 1/λ.

B. Chosen features for spectrum prediction

To drive the aforementioned segmentation method, we pro-
pose to predict LTE spectrum tenancy using k-nearest neigh-
bor (k-NN) algorithm, and choose the features to compute the
distances for strangeness in (1). Consider a training data set T
and an input x0 for which the corresponding output y0 needs
to be predicted. K-NN prediction algorithm is essentially a
majority vote, meaning that the forecast ŷ0 is the arithmetic
mean of the occupancy of k nearest neighbors in the training
set.

ŷ0 =
1

k

∑
xi∈Nk(x0)

yi, (4)

where Nk(x0) = {xj|
∑

i∈{1,··· ,n} 1{||xj−x0||≥||xi−x0||} ≤
k}. The indicator function is written as 1{·}, and || · || stands
for the Euclidean distance.

According to existing works on spectrum prediction, the
inputs have been unanimously chosen as history tenancy [17].
For example, the inputs to predict channel occupancy are
considered as the history tenancy in last 15 time steps in [18],
and occupancy in 4 previous time slots in [19]. We choose
the features for the k-NN algorithm through trial and error to
obtain the inputs that achieve the most accurate predictions.
Since there are multiple channels in an LTE system, history
occupancy in adjacent channels are also considered.

The spectrum tenancy data to train the prediction algorithm
is a subset of the downlink spectrum occupancy measurement
of a commercial LTE cell in 24 hours. The cell works
in Frequency Division Duplex (FDD) mode with 10 MHz
bandwidth, so there are 50 data channels and each of them is



scheduled every millisecond [20]. Correspondingly, the entire
data set comprises the binary tenancy of the 50 channels in
all the 8.64× 107 ms of a day, where idle and busy slots are
represented by zero and one, respectively.

To choose the features for the strangeness computation in
(1), we compare the prediction accuracies of 30 groups of
inputs, considering three choices of history lengths, 4, 8,
and 12 ms, and two options for channels, single channel
or 3 adjacent channels, and five choices for the number of
neighbors, ranging from 1 to 5. The training and validation
data sets are the occupancy of the first 104 ms in each hour of
3 channels in the center, i.e., channel 24, 25, and 26. The first
8000 ms of the tenancy data in each hour is used for model
training, while the rest 2000 ms is reserved for validation.

For most of the hours, the prediction accuracies of the
30 groups of features are very similar, and all of them are
over 90%. Hour 9 is the only hour when relatively inaccurate
predictions and large accuracy differences are observed for
different groups of inputs, so the features are selected based
on the accuracy in this hour. The prediction accuracy in
hour 9 is listed in Table I. The first row shows the number
of channels and the history length, while the number of
neighbors are presented in the first column. The other cells
contain the prediction accuracy of k-NN algorithms with the
corresponding features and the number of neighbors. Thus, the
chosen features are the occupancy of the 3 closest channels
in the past 4 ms, and the number of nearest neighbors who
vote the prediction result is 4, because the accuracy achieved
by this combination of parameters c = 3, h = 4, k = 4 is the
highest in hour 9, which is highlighted in the table.

Then, the changing points of spectrum occupancy of chan-
nel 25 are detected based on M values computed from (3),
where λ = 100, and ϵ = 0.9 as recommended in [16]. The
distribution of segment lengths is illustrated in Fig. 2. Because
long segments are scarce, the horizontal axis is plotted in log
scale. As shown in the figure, most of the segment lengths
fall in the range of 80 to 120 ms, and the mean time of a
segment discovered by MT change detection algorithm is 105
ms. The impact of segment length on analysis accuracy will
be further explained in section IV.

TABLE I
PREDICTION ACCURACIES OF DIFFERENT FEATURES IN HOUR 9

c,h 1,4 1,8 1,12 3,4 3,8 3,12
k=1 0.5040 0.6255 0.5020 0.5235 0.6250 0.5130
k=2 0.5040 0.6255 0.6045 0.5220 0.6350 0.6120
k=3 0.5040 0.6255 0.6045 0.5220 0.6450 0.6120
k=4 0.6495 0.6255 0.6045 0.6565 0.6355 0.6120
k=5 0.5040 0.6255 0.6045 0.5220 0.6345 0.6120

III. SPECTRUM OCCUPANCY MODELS

In this section, the ways to fit on/off and VAR models to
measurement results are explained. Since there are multiple
channels in LTE, we propose to model the multi-channel
spectrum occupancy with VAR. As reviewed earlier, the state-
of-the-art spectrum occupancy models are mostly targeting a
single channel [21], so we choose the widely used on/off
model as a representative for performance comparison. The

way to compare on/off and VAR models is described, and
three metrics are proposed for performance comparisons.

A. Single-channel spectrum occupancy model

Among the single-channel occupancy models surveyed in
[21], we choose the on/off model due to its wide usage. Our
occupancy data comprises 0 and 1 to indicate whether an LTE
channel is idle or occupied. Assume the time lengths of idle or
busy periods of one channel to be independent and identically
distributed (i.i.d.). Define the vectors (Yn, Zn), n ∈ N+

where Yn and Zn are samples of i.i.d. random variables
representing time lengths of idle or busy periods. We fit five
widely used distributions, exponential, Weibull, Lognormal,
Generalized Pareto, and Gamma distributions to the observed
samples, and the parameters are estimated using Maximum
Likelihood Estimation (MLE). The goodness-of-fit is obtained
by conducting Kolmogorov Smirnov (K-S) test, also used in
[14] for the same purpose. K-S test is a tool for comparing
the closeness of two distributions. We employ K-S test to
compare the empirical distributions of the time statistics of
measurement data with the distributions obtained by the on/off
model fitting. The empirical distribution Fe(x) of a random
variable X that has n observed samples Xi is

Fe(x) = P(X < x) =
1

n

n∑
i=1

1{Xi<x}. (5)

The upper bound of the difference between the empirical
distribution and the fitting model distribution is D,

D = sup|Fe(x)− F0(x)|. (6)

If empirical distribution Fe and fitting model distribution F0

are identical, the distribution of the random variable D in this
case, denoted as D∗, is independent of the fitting distribution.
Let G be the cumulative distribution function of D∗. The p
value is defined as p = 1 −G(D), so the larger the p value,
the more likely D obeys the distribution of D∗, meaning that
Fe(x) and F0(x) are more likely to be the same. A threshold
value p = 0.05 is chosen, so the null hypothesis that the
samples follow the distribution F0 is accepted when p ≥ 0.05.

B. Multi-channel spectrum occupancy model

VAR extends the AR model for single-channel occupancy to
multiple channels [12]. VAR model treats spectrum occupancy
of multiple channels at each time slot as a sample of a
multivariate normal random variable that results from the sum
of a constant, white noise, and multivariate normal random
variables representing the data in previous time slots. To model
the spectrum usage of multiple channels, we fit VAR models
with different time lags to spectrum usage measurements,
and the parameters are estimated using MLE. The spectrum
occupancy at time slot n are random vectors, denoted as Vn,

Vn = c+

k∑
i=1

ϕiVn−i + εn. (7)

The constant vector is c, and εn is the noise term. Vn−i,
where 1 ≤ i ≤ k, is the channel usage in a previous time slot



Fig. 2. The distribution of segment lengths in
channel 25.

Fig. 3. Off time D value comparisons of on/off
models fitted to different segment sizes.

Fig. 4. Off time D value comparisons of VAR
models fitted to different segment sizes.

no earlier than the time lag k, and its linear relations with Vn

are described by the matrix ϕi.
In VAR model, the time lag k is a design parameter. In order

to compare the performance of VAR models with different
time lags, we adopt the Akaike Information Criterion (AIC),
defined as

AIC = 2np − 2 log(L), (8)

where L is the optimized scalar value of log-likelihood
objective function, and np is the number of parameters that are
estimated for the model. AIC measures the relative qualities
of statistical models fitted to a data set, and models with small
AIC values are preferred because they better capture statistical
features of the data and have fewer parameters to estimate.

C. Comparisons between on/off and VAR models

We compare on/off model with VAR from three aspects.
They are the D value of K-S test, the correlation coefficients
of spectrum occupancy among adjacent channels, and the
correlation coefficient between adjacent off time and on time.
Specifically, we extract the spectrum occupancy in 104 time
slots of 10 LTE channels from each hour of the day, and
then fit the single-channel and the multi-channel models to the
data. For the VAR model, fitting multiple channels requires
only adjusting the number of elements in the vectors Vn, c,
ε, and the matrices ϕ in (7). For the on/off model, we fit 10
on/off models to each of the 10 channels independently, and
obtain 10 sets of parameters. Using two types of models, we
produce synthetic spectrum occupancy of the same size with
the measurement data. To compare how close the synthetic
data resembles the measurements, the D values are calculated
between the measurement data and the two sets of synthetic
data using (5) and (6), where F0(x) becomes the empirical
distribution of synthetic data. As indicated in previous studies,
spectrum occupancy of the same radio access technology
are correlated even in different locations [15], we study
how the different channels in the same cell are correlated
and whether the correlations are captured by the models.
The correlation coefficient is Pearson correlation coefficient.
Moreover, since the correlations between adjacent off time and
on time are suggested in previous studies [8], we investigate
this correlation reflected by measurement and synthetic data
for LTE channels. The results of the comparisons in the three
aspects are presented in Subsection IV-C.

IV. FITTING MODELS TO MEASUREMENT RESULTS

We fit on/off and VAR models to the measurement data,
and provide the results in three perspectives. First, the impact

of segment lengths on fitting accuracy is investigated, and
we show that the change detection method is able to find
the segment length that coincides with the one obtained by
brute force. Then, fitting results of on/off model are presented,
and we observe the preferred distribution for three occupancy
time metrics. Guidelines for fitting on/off models to spectrum
tenancy data are proposed. Lastly, we identify the time lag
parameter for the VAR model, and compare the performance
of VAR and on/off models in three aspects introduced earlier,
i.e. the D value of K-S test, correlation coefficients of spec-
trum occupancy among adjacent channels, and the correlation
coefficient between adjacent off time and on time. Based on
the comparisons, we conclude that VAR outperforms on/off
model in characterizing LTE spectrum occupancy.

A. The impact of segment length

To demonstrate the impact of segment lengths on goodness-
of-fit, we fit on/off and VAR models to spectrum occupancy
of channel 25. The spectrum tenancy data in each hour is
segmented into groups for analysis in two different ways.
In one way, the segments are obtained by cutting the time
series of spectrum occupancy before data points where pattern
changes are discovered by MT change detection algorithm.
In the other way, the segments are obtained by cutting the
binary channel occupancy series into groups of the constant
size of 500 ms. The two models are fitted to the segmented
occupancy, and the D values between the distributions of
measured idle periods and those of synthetic data are presented
in Fig. 3 to 4. As shown by the lower blue lines, both models
have smaller D values, i.e. better goodness-of-fit, when fitted
to tenancy segments discovered by MT change detection.

The segment size obtained by change detection is further
validated by brute force method. To rediscover the segment
length through trial and error, we fit on/off models to time
metrics of channel occupancy in various segment sizes. We fit
five different distributions, exponential, Weibull, Lognormal,
Generalized Pareto, and Gamma, to the time length of idle
and busy periods, and intervals which are the sum of idle and
the following busy periods. The fitting rate is the number of
fittings accepted by K-S tests over the total number of fittings
attempted. The fitting rates for segment lengths of 10, 30, 50,
100, 200, 500, 1000, and 2000 ms are illustrated in Fig. 5.
For each segment length value, the tenancy of channel 25 in
3.6× 106 ms of each hour are first partitioned into segments
of the designated length, and the three occupancy time metrics
in every segment are fitted by the five distributions. According
to Fig. 5, all the five distributions can fit the time lengths well



Fig. 5. Fitting rates of on/off models fitted to
different segment lengths.

Fig. 6. Off time fitting rates achieved by on/off
models with different distributions.

Fig. 7. On time fitting rates achieved by on/off
models with different distributions.

Fig. 8. Interval length fitting rates achieved by
on/off models with different distributions.

Fig. 9. D values between off time distributions of
synthetic data and measurements.

Fig. 10. D values between on time distributions
of synthetic data and measurements.

Fig. 11. D values between interval length distri-
butions of synthetic data and measurements.

Fig. 12. Spectrum tenancy correlations among
adjacent channels.

Fig. 13. Correlations between on time and the
following off time.

when segments are short, e.g. 10 or 30 ms. In such cases, the
distributions do not reflect the statistical features of the time
lengths due to small numbers of samples. When the segments
are long, such as 1000 or 2000 ms, fitting the time lengths
using on/off model is impossible due to low fitting rates close
to zero. Since five distributions are employed, the reasonable
choice is the segment length of 100 ms whose fitting rate
is around 0.5, meaning that the idle, busy, and interval time
lengths can be fitted by two or three of the five distributions
on average. According to the distribution shown in Fig. 2, the
mean size of segments obtained by MT algorithm is 105 ms,
which is close to the 100 ms segment length achieved by brute
force. As the segment size of 100 ms is suggested by both the
change detection algorithm and brute force trials, the segment
length considered in later analysis is 100 ms.

B. Fit on/off model to measurement

With the chosen segment size of 100 ms, the single-channel
fitting rates of the five distributions are compared in Fig. 6 to
8 in terms of the three metrics, idle, busy, and interval lengths,
respectively. We observe from Fig. 6 that generalized Pareto
distribution has the highest fitting rates for off time in most
hours. The off time cannot be well fitted by any of the five
distributions from the 9th hour to the last. The on time can be
best fitted by generalized Pareto distribution with fitting rates
over 90% all day, as shown in Fig. 7. Fig. 8 illustrates that
the interval length suffers from poor fitting rates during hours
23 to 8. Generalized Pareto also achieves the most top fitting
hours for interval lengths. Thus, we conclude that analyzing
LTE downlink spectrum occupancy with on/off models should

use different strategies based on the hours. In daytime, on time
and interval lengths are fitted accurately by the generalized
Pareto distribution. In the night, on time and off time should
be fitted with generalized Pareto distribution.

C. Comparisons between on/off and VAR models

To obtain the time lag parameter k, we fit VAR models with
different k values, 1, 2, 3, 4, 8, and 12, to the measurement
data, and the AIC values are calculated for the fitted models.
Because the differences among AIC values for the six models
with various time lags are negligible, the time lag is chosen
to be 1, which has the fewest parameters to estimate. Other
parameters of VAR are obtained by fitting the model to
measurement results in the way described in Subsection III-B.

After achieving the segment length, the on/off model fitting
strategy, and the time lag of VAR, we set out to compare
on/off and VAR models from the aspects of D values of K-S
tests, correlations among adjacent channels, and correlations
between adjacent off time and on time. Specifically, the D
values are the statistics of K-S test, and they are calculated
according to (5) and (6). To compare D values, on/off and
VAR models are fitted to occupancy data of channel 25,
and synthetic data is generated by the models. The D values
between the distributions of measurement and synthetic spec-
trum occupancy are analyzed and presented in Fig. 9 to 11.
Fig. 9 compares the differences between idle time distributions
of synthetic data and that of the measurement data. In most
of the hours, VAR model produces synthetic data whose off
time distributions achieve smaller D values. In terms of the
similarity comparison of on time distributions, VAR model has



smaller D values in all hours, meaning that the busy periods of
synthetic occupancy generated by VAR models resemble those
in measurements, as revealed by Fig. 10. Fig. 11 exhibits that
the interval length distributions of the synthetic data produced
by on/off and VAR models have similar D values. Thus, the
synthetic data produced by VAR model has more similar
occupancy time distributions to those of measurement data
than the data synthesized by on/off model.

Obtaining the multi-channel fitting results as described in
Subsection III-C, we investigate the occupancy correlations
among adjacent LTE channels. Fig. 12 presents the pairwise
correlation coefficients between the spectrum tenancy of the
first channel and all the ten channels. The black line shows
the channel tenancy correlations of measurements versus
frequency-wise distance. The measured spectrum tenancy in
the first channel shows very high correlations with those of
the three nearest channels, and the correlations decrease as the
frequency distance grows. This trend is captured very well by
the data generated by the VAR model, though the correlations
in blue are lower than those of measurements. Since on/off
model is a single-channel model, its synthetic tenancy has zero
correlations among adjacent channels, plotted in red.

Though some previous studies suggest that off times and the
following on times are negatively correlated [8], LTE spectrum
tenancy does not show this phenomenon as demonstrated by
Fig. 13. In this figure, the correlations between idle periods
and the following busy periods are studied for measurements
and synthetic data. The correlations among adjacent idle and
busy periods in the three groups of data are very similar and
bounded within [−0.2, 0.1], meaning that off time and the
following on time are not correlated. The phenomenon is due
to the fact that LTE systems schedule spectrum resources
every 1 ms, so the off time and the next on time many
scheduling intervals away are unrelated.

In conclusion, VAR achieves better performance in LTE
spectrum tenancy modeling, due to its superior capabilities to
capture the statistical features of busy and idle time lengths,
and occupancy correlations among adjacent channels.

V. CONCLUSION

To model LTE spectrum occupancy accurately, data series
of channel tenancy are segmented by a change detection
algorithm to avoid fitting models to occupancy data produced
by radio activities of time-varying patterns. We observe the
impact of data series lengths on fitting accuracy, and verify
that the segment size discovered by the change detection
coincides with the one obtained by brute force. LTE spectrum
tenancy measurements are characterized by the existing on/off
model and the proposed VAR model. The guidelines for fitting
LTE spectrum tenancy with on/off models are introduced. The
performance of on/off and VAR models is compared from
three perspectives, and VAR captures the characteristics of
LTE spectrum occupancy more precisely overall.
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