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Abstract—Recent research on epidemic spreading in networks has uncovered the phenomena of metastable infection patterns, where
epidemics can be sustained in localized regions of activity, in contrast to the classical dichotomy between a quick extinction of infections
and a network-wide global infection. Our objective in this work is to leverage this localized infection state to achieve controlled spreading
in multilayer networks via intelligent design of the interlink structure between the network layers. Following the approach in recent works,
the dynamic contact process is approximated by studying the dynamics in local regions around the hubs of the network. This allows
us to approximately track the contact process in the near-threshold regime and estimate the mean metastable infection size over the
lifetime of the infection. Furthermore, interlinking strategies are devised that can achieve a desired infection size under certain conditions.
Theoretically optimal interlink structures can be derived under special cases, whereas greedy strategies are proposed for the general
case. We compare the interlinking strategies developed in this work to some popular heuristics and demonstrate their superiority by
extensive simulation experiments on both synthetic and real-world networks.

Index Terms—Interlink design, localized epidemics, multilayer networks, susceptible-infected-susceptible model.
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1 INTRODUCTION

The study of dynamic contact processes in complex net-
works has emerged as an area of broad and current interest
in network science, due to its wide applicability in many dis-
ciplines. Traditionally, the research in this area was limited
to studying infectious diseases spreading through contact
networks. In recent times, the scope has broadened signif-
icantly to include diverse topics, like the spread of virus
or malware through technological networks [1], adoption
of new technologies or products in recommender systems
[2], spread of news through social media [3], information
spreading through communication networks [4], and the
alignment of public emotion and opinion [5]. Here, we use
infection as the broad term denoting these different types of
information (contagious disease, malware, rumor, messages,
public opinion, etc.) that propagate through networks. The
Susceptible-infected-susceptible (SIS) [6, 7, 8, 9, 10] is one
of the simplest and most widely used model for studying
infection propagation in networks, where components of
the network can belong to either of two infection states:
healthy (susceptible) or infected. In this work, our focus
is to study the recently uncovered phenomena of localized
metastable infection patterns [11, 12, 13] and explore the
scope of controlling these patterns in multilayer networks
by appropriate design of the inter-layer connections.

1.1 Motivation
The majority of research on infection spreading focuses on
the determination of the critical infection rate λc [14, 15, 16,
17], indicating a phase transition between the healthy and
infected phases. λc specifies the infection rate separating
abrupt outbreak of contagion in the infected (super-critical)
phase, where an initial infection spreads throughout the

The authors are with North Carolina State University, Raleigh, NC.

network and affects a finite fraction of its constituents in the
steady state, from the healthy phase (sub-critical), where any
initial infection quickly converges to the all-healthy absorb-
ing state. Later works [12, 13] took a closer look into the epi-
demic dynamics near λc and discovered the phenomenon
of localized infection states, where localized epidemics can
be sustained in the neighborhood of large-degree nodes
(hubs). The infection patterns in this near-threshold regime
in fact constitute a new phase, where the infection neither
propagates globally nor dies out quickly. This infection state
is termed “metastable”, where the metastability refers to the
fact that the infections, while being restricted to a localized
region in the network, are maintained in quasi-stable states
[18], albeit dying out eventually in the steady state.

This near-threshold behavior of dynamical processes is
of great interest, as it is (empirically) observed that many
real-world complex systems from diverse fields operate near
the phase transition point, like gene expression patterns [19],
optimal cell growth [20], dynamics of flock of birds [21], and
also the neural connection structure of the human brain [22].
For the scenario considered here, working under the near-
threshold conditions gives us the rare capability to induce
and control the spread of infections in desired regions
of the multilayer network by leveraging these metastable
infection states. Note that this is in contrast to the classical
understanding of the dichotomy around λc, where in the
sub-critical regime no long lasting infection patterns are
observed, whereas in the super-critical regime the infection
diverges throughout the network, precluding any localized
control on the infection patterns.

By modeling the infection propagation in finite networks
as a discrete-time Markov chain, SIS infections are guaran-
teed to die out eventually, due to the presence of the unique
absorbing state: the all-healthy state. As a result, steady state
analysis of infection spreading processes on finite networks
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is not very meaningful, especially in the near-threshold
regime due to the existence of the metastable phase. This
highlights the importance of studying the transient proper-
ties of these dynamical processes on finite-sized networks in
the near-threshold regime. These transient properties have
been studied in several mathematical works like [11, 23,
24] albeit under different settings. Following these works,
our objective is to characterize the mean metastable infection
size, measuring the average number of infected nodes as
the epidemic progresses from the initial infection seeds to
eventual dying out in the steady state. Specifically, we show
that in the regime near the epidemic threshold λc, intelligent
design of the interlinking structure can allow us to achieve
a desired infection size, subject to certain constraints.

Under the classical notion of the spreading of a conta-
gious disease through a population, the target is to always
minimize the spread. For other domains, like characterizing
the impact of an advertisement campaign, the goal can be
to promote the propagation of infections, which in this case
refers to the knowledge of the advertised product. Here, we
pose our problem in a more sophisticated setting, where the
objective of the network designer is to induce a localized
infection pattern of a desired size by optimally interlinking
the network layers.

1.2 Related Works
Several mathematical works [11, 23, 24], investigating the
metastable infection patterns near the infection threshold λc
for SIS epidemics, have estimated the metastable infection
sizes for various theoretical graph topologies, such as scale-
free [11, 23] and random geometric graphs [24]. These works
are defined in the thermodynamic limit, where the infection
rate is close to zero and the network size is infinite. In this
setting, first order information about the network topology,
i.e. knowledge of the degrees of hub nodes and inter-hub
distances in the network, is enough to exactly predict the
infection patterns. These results are not applicable to our
problem as we consider finite-sized networks with arbitrary
topologies and additionally pose our problem in a multi-
layer setting. Nonetheless, we empirically show that this
first order information about the network geometry can
be utilized even in finite parameter ranges, as long as
the infection spread is localized in nature. Researchers in
Physics [25, 26] have also looked at the phenomena of
metastable epidemics from the perspective of characterizing
the infection threshold λc. However, they do not focus
on studying the size of the metastable infection patterns.
Although the results of these works in Mathematics and
Physics cannot be directly applied to our problem, we
show that the fundamental principle behind them is still
applicable – near λc, the global epidemic dynamics can be
approximated by studying the local dynamics around hubs
and characterizing the interaction among these localized
regions of activity.

For multilayer networks, several works [27, 28] have
studied epidemic dynamics, focusing on the determination
of the epidemic threshold. More recently, the localization
phenomenon of SIS epidemics has also been studied on mul-
tilayer networks [29, 30]. However, the numerical analysis in
[29, 30] involves the eigen-decomposition of the adjacency
matrix of the entire network, which becomes intractable

when the network is very large and global information
about the exact network topology is unavailable. Further-
more, these works focus on multiplex networks, which is
a special case of multi-layer networks where the interlink
structure trivially connects copies of the same node in the
different network layers. Thus, the notion of interlink design
is not valid in multiplex networks. Other works [31, 32] in
the domain of interlinking design in multilayer networks
have studied the impact of interlinking structures on the
steady state infections. Our work is different from these in
the sense that we focus on localized infection patterns in the
near-threshold regime, where although the infections will
die out in the steady state, they are maintained in metastable
infection states for a long time. Our goal here is to control
these metastable infection states in multi-layer networks by
intelligent design of the interlinks.

1.3 Our contribution
Due to the inherent complexity of studying epidemic dy-
namics on arbitrary multilayer network topologies, we
study the local (microscopic) characteristics of the dynam-
ics around hubs and approximate the global dynamics
(macroscopic) by the interaction between the different hubs.
Specifically, we prove three characteristics of the epidemic
dynamics on the local neighborhood around hubs, which
provide the crucial building blocks to design the interlink
structure to achieve controlled infection spreading. These
three characteristics are: i) quantifying the definition of
“hubs” in a multilayer setting as a function of the infec-
tion rate, where nodes capable of sustaining long lasting
epidemics in their neighborhood are referred to as hubs;
ii) approximating the mean metastable infection size in the
intra-layer neighborhood of hubs; and iii) characterizing
the probability of infection propagation between two inter-
linked hubs. We leverage this knowledge of the localized
dynamics to estimate the average size of the infection pat-
terns for a candidate interlink structure.

Our ultimate objective is to control the metastable infec-
tion size in a multi-layer network by appropriate design of
the interlink structure. We are interested in developing de-
sign principles for constructing the inter-layer link structure,
which can induce a metastable infection pattern of a desired
size in the network, while utilizing a minimum number of
interlinks. The interlink structure is obtained by repeated
iterations of a two-step process. In the first step, we obtain
the maximum achievable infection size for a small number
of available interlinks. Under certain homogeneous assump-
tions about the hub degrees, we mathematically derive the
optimal interlink structure maximizing the infection size for
any given number of interlinks. In the general case however,
the problem defies a possible analytical solution and we
instead develop a greedy approach for interlink design. In
the second step, we consider additional interlinks if the de-
sired infection size is not achieved. This is equivalent to ob-
taining the interlink strategy with the minimum number of
interlinks that is capable of sustaining the desired infection
size. This is because every additional interlink is optimally
utilized to maximize the resulting infection size. We present
some approximate bounds on the metastable infection size
that is achievable via this approach and also discuss some
techniques for speeding up the interlink design algorithm,
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where instead of starting with a single interlink we can
start from a conservative estimate of the number of required
interlinks.

Due to the lack of comparable interlink structures for
inducing localized metastable infection states in relevant
literature, the developed strategies are compared to popular
heuristic strategies. We present extensive simulation experi-
ments on several network topologies, including a real-world
scenario of multi-layer network design. Our work shows
that in the near-threshold regime, global metastable infec-
tion patterns can be reliably approximated by studying the
local characteristics of the dynamics. Additionally, through
extensive simulation experiments, we illustrate the superior
performance of our proposed interlink structures to popular
multi-layer network design heuristics.

The remainder of this paper is organized as follows.
Section 2 specifies the system model and defines the prob-
lem tackled in this work. In Section 3, we derive the local
properties of the epidemic dynamics and utilize them to
estimate the metastable infection size. The interlink struc-
ture is derived in Section 4 as a solution to a constrained
optimization problem maximizing the estimated infection
size. Section 5 combines these components to develop al-
gorithms for engineering the desired metastable infection
state. The relevant simulation experiments are presented in
Section 6. Finally, we conclude our work in Section 7 and
indicate future avenues of research.

2 SYSTEM MODEL AND PROBLEM STATEMENT

We represent a network layer by G = (V,E), where V and
E ⊆ V × V are the set of nodes and edges, respectively.
Given two isolated network layers Ga = (Va, Ea) and Gb =
(Vb, Eb), where |Va| = m and |Vb| = n, our aim is to design
the interlink structure Eab ∈ {0, 1}m×n between Ga and Gb,
with the objective of controlling the metastable infection size
on the multilayer network G = (Ga, Gb, Eab, Eba = ETab).
We consider epidemics following the SIS dynamics, where
the nodes can be susceptible (S) or infected (I). Infected
nodes recover spontaneously at a rate of µ, which can be
set to unity without loss of generality. Thus, the unit of time
is the average duration of the recovery event. Infections
propagate from infected nodes to their susceptible neigh-
bors via edges at rates represented by λ = {λa, λb, λ̃},
where the different rates specify the propagation through
the intra-layer edges of layer A and B, and the inter-layer
edges, respectively. Our objective is to design the interlink
structure Eab ⊆ Da × Db, so as to sustain a metastable
infection state in desired regions of G, represented by the
sub-graphs Da ⊆ Ga and Db ⊆ Gb, as depicted in Fig.
1. We assume that it is feasible to construct an interlink
between any two nodes in Da and Db. Our goal is to
induce a metastable infection pattern of a desired infection
density Γ = (γa, γb), which implies that the metastable
infection size inDa andDb should exceed ξdes

a , γa|Da| and
ξdes
b , γb|Db|, where |Dl| denotes the number of nodes in

the sub-graph Dl of network layer l. Our problem statement
can be mathematically stated as:

Problem 2.1. Given two isolated network layers {Ga, Gb}
and SIS epidemic dynamics with infection parameters λ =
{λa, λb, λ̃}, design an interlink structure to induce a metastable

Figure 1: Description of the problem – infection propagation
rates in Ga, Gb, and along the inter-layer links are λa, λb,
and λ̃, respectively. The objective of the network designer is
to designEab ⊆ Da×Db, the interlink structure that induces
a metastable infection pattern of size exceeding (ξdes

a , ξdes
b ).

infection state of density Γ = (γa, γb) in the desired subgraphs
Da ⊆ Ga and Db ⊆ Gb.

It should not be difficult to see that any Γ cannot be
achieved for an arbitrary network topology and arbitrary
λ. In fact, developing an understanding of the feasibility
regions for which Problem 2.1 can be solved is a key con-
tribution of this work. The fundamental concept behind our
work is the existence of metastable infection patterns in the
local neighborhood of hubs [11, 23]. For a specific infection
propagation rate (λ), a node that can sustain an infection
pattern in its local neighborhood for a sufficient amount
of time is defined as a hub. This definition becomes exact
in the thermodynamic limit (as network size approaches
∞ and infection propagation rate approaches 0), where a
hub can be defined as a node which can sustain infection
patterns in its local neighborhood for a time exponential in
the degree of the node, i.e. h is a hub if Eλ(τh) ≥ exp{c|h|},
where τh represents the extinction time of an infection in
the neighborhood of node h and |h| represents the degree
of h [23, 33]. Note that hubs are defined with respect to
(w.r.t.) the infection propagation rate λ. In the finite network
setting, such dependence is derived in the following section
in Lemma 3.1. This is a crucial idea in this work, where
the criteria for selecting hubs becomes more stringent as
the infection rate decreases. This is intuitive as infections
with lower λ are generally more quickly to die out and
consequently larger neighborhood sizes are necessary to
ensure exponential extinction times (τh). The metastable
infection patterns around hubs are mathematically tractable
in the near-threshold regime, thus allowing controlled epi-
demic spreading. Our key strategy is to design the interlink
structure to enforce interaction between different hubs in
Da andDb, so as to artificially create a composite metastable
infection state spanning the local neighborhoods of multiple
hubs.

3 ANALYSIS OF EPIDEMIC DYNAMICS

In this section, we develop the mathematical model for
tracking the epidemic dynamics. The infection state of a
node i in layer l at time t is specified by a Bernoulli
random variable X(l)

i (t), where X(l)
i (t) = 0 for a healthy
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node and X
(l)
i (t) = 1 for an infected node. We track the

epidemic dynamics in G using the node infection prob-
ability ρ

(l)
i (t), defined as the probability that node i is

infected at time t, i.e. ρ(l)i (t) , Pr[X(l)
i (t) = 1]. Let

ρt ≡ [ρ
(a)
1 (t) · · · ρ(a)m (t)ρ

(b)
1 (t) · · · ρ(b)n (t)]T be the vectorized

infection probability of all nodes in G. The time series
(ρt)t≥0, where ρt ∈ Rm+n, models the dynamics of the
infection spreading process. The initial seeds of infection are
represented by ρ0 and the progression of the time series is
governed by the SIS model.

Despite the simplicity of the SIS model, a general ana-
lytic treatment is not possible except for very special cases
[34]. Most works analyze the dynamics approximately by
using mean-field approaches; classical examples include
the heterogeneous mean field (HMF) model [6] and the
quenched mean field (QMF) model [34]. The HMF model
is agnostic to both dynamical and topological correlations
between the infection states of nodes. QMF presents an
improvement over HMF by considering the explicit network
topology, albeit neglecting the dynamical correlations. How-
ever, it has been shown in [8, 35] that the threshold predicted
by QMF is not very accurate for network topologies with
high heterogeneity. In this work, we approximate the global
epidemic dynamics by studying localized epidemics in the
neighborhoods of hubs. These local regions have a highly
heterogeneous topology since the degree of the central hub
is much larger than others. Due to this reason, we move
away from QMF model for tracking the infection propaga-
tion. In fact in Section 6, we present results depicting the
shortcomings of QMF for our scenario.

3.1 The coarse-grained model

In this work, we employ the modified SIS dynamics valid
over coarse-grained time scales introduced in [25] as it can
account for dynamical correlation in the infection states
of distant nodes. This model characterizes the epidemic
dynamics at a larger time-scale encompassing multiple in-
fection and recovery events. This allows us to efficiently cap-
ture the correlation in infection states among nearby nodes.
This model is particularly useful in studying the epidemic
dynamics near the critical threshold and has been utilized
in [25, 26] to uncover new results about the threshold in
complex networks. Here we extend the coarse-grained (CG)
model to multilayer networks, where the governing system
of differential equations can be written as:

dρ(t)

dt
= −∆ρ(t) + (1− ρ(t)) ◦Mρ(t), (1)

where ∆ ≡ diag[δ̄a(1) · · · δ̄a(m)δ̄b(1) · · · δ̄b(n)] represents
the diagonal matrix of the effective recovery rates, M ∈
R(m+n)×(m+n) represents the infection propagation matrix
comprising the effective infection rate between all pairs of
nodes, and ◦ denotes element-wise multiplication or the
Hadamard product operator. The elements of M are:

Mij=



0 if i = j,

λ̄aa(i, j) if i, j ∈ [1,m],

λ̄ab(i, j −m) if i ∈ [1,m] and j ∈ [m+ 1,m+ n],

λ̄ab(j, i−m) if i ∈ [m+ 1,m+ n] and j ∈ [1,m],

λ̄bb(i−m, j−m) if i, j ∈ [m+ 1,m+ n],

where λ̄pq(r, s) denotes the effective infection propagation
rate between node r in layer p and node s in layer q. (1)
is similar in structure to the standard QMF model with the
important difference that effective rates of recovery (δ̄) and
infection (λ̄) are considered in the CG model that quantifies
the impact of the local neighborhood on the infection and
the recovery process. Note that the CG model is just an
effective choice that enables us to satisfy the objectives
of this work: realizing controlled infection spreading in
multilayer networks.

Next, we briefly discuss the notion of the effective rates,
where we generalize the arguments in [25, 26] to the case
of multi-layer networks. The mathematical details of the
multi-layer CG model are presented in Appendix A of the
supplemental material. The coarse-grained recovery rate
δ̄(i) can be thought of as the effective recovery rate for
infection at a node i, accounting for the interaction in the
local neighborhood of i. For low infection rates, it can be
approximated as:

δ̄l(i) = exp(−kiλ2l − k̃iλ̃2), (2)

where ki and k̃i denote the intra-layer and inter-layer degree
of node i, respectively.

The coarse-grained infection rate λ̄(i, j) represents the
effective infection propagation rate between distinct nodes i
and j. It is defined as:

λ̄(i, j) = max
p∈P

λ̄p(i, j), (3)

where p denotes a particular path between i and j, P
denotes the set of all such paths, and λ̄p(i, j) is defined as
the effective infection propagation rate along p. For i ∈ Da,
if p is composed of da edges in layer A, d̃ intra-layer edges
and db edges in layer B, we have:

λ̄p(i, j) = λa

(
λa

λa + 1

)da−1( λ̃
˜λ+ 1

)d̃(
λb

λb + 1

)db
, (4)

where λ
λ+1 denotes the probability of an infection propa-

gation event to occur via a link. Recall that propagation
occurs at rate λwhile the recovery occurs at rate 1; interested
readers can refer to Lemma A.2 in the supplemental material
for the details.

Note that the vectorized system equation (1) is a nonlin-
ear differential equation of the first order for which closed
form solutions are not possible in the general case. This
showcases the main roadblock preventing an exact analysis
of global epidemic dynamics in networks. Most practical
problems involve large network sizes with arbitrary and
partially known topologies, which precludes both rigorous
theoretical analysis as well as numerical solutions. Due to
this reason, we approximate the global epidemic dynamics
by studying the local dynamics in the neighborhood of
hubs and characterize the interaction between local regions
following [25, 26, 23, 11].

3.2 Approximating global dynamics
We study the global epidemic dynamics by de-coupling the
role of the intra-layer and the inter-layer links as shown in
Fig. 2. Firstly, we study the epidemic dynamics in the local
neighborhood of interlinked hubs (Lemma 3.1). Our target is
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Figure 2: Global dynamics are approximated by studying
the epidemics in local regions: the local neighborhoods of
interlinked hubs i ∈ Va and j ∈ Vb, with (ki, kj) = (4, 6).
The arbitrary network topology (left) is approximated (exact
in the thermodynamic limit) by the extended star topology
(right). Infected nodes are colored dark. In the near thresh-
old regime, the (untractable) dynamics in the real network
are closely approximated by the (tractable) dynamics in the
simplified topology defined w.r.t. the effective propagation
rates λ̄aa(i, ·), λ̄ab(i, j) and λ̄bb(j, ·) and the effective recov-
ery rates δ̄a(i) and δ̄b(j).

to characterize the conditions under which two interlinked
nodes can function as “hubs”, where they can sustain a
metastable infection state in their local neighborhood. Sec-
ondly, we estimate the size of localized infection patterns
around each hub by simplifying the intra-layer topology
around a hub as an extended star, where all outgoing edges
from the hub form line graphs (Lemma 3.2). This simplifi-
cation makes sense in the low infection rate regime as the
infection is unable to propagate beyond a few hops of the
hub due to the exponential decrease in rate according to (4).
Thirdly, we characterize the re-infection between different
hubs through the inter-layer links (Lemma 3.3). Re-infection
between hubs is vital for maintaining the metastable infec-
tion patterns; when the localized infection patterns in the
neighborhood of a particular hub dies out, the hub can be
re-infected by an interlinked infected neighbor. In this way,
the set of interlinked hubs can sustain long lasting infection
patterns of the desired size.

Lemma 3.1. Consider SIS epidemics with parameters λ =
{λa, λb, λ̃} on the multi-layer network with interlinked hubs
i ∈ Va and j ∈ Vb. A sufficient condition for the existence of
a metastable infection state in this subgraph is:

δ̄a(i) · δ̄b(j) < λ̃2, (5)

where δ̄l(i) denotes the effective recovery rate for i in layer l.

Proof. The existence of a metastable infection state is contin-
gent on the instability of the system equations (1), linearized
around the absorbing state ρ = 0, which can be written as:

dρ

dt
= (M−∆)ρ = Sρ, (6)

where S represents the interaction matrix M − ∆. The
instability of this fixed point is guaranteed if S has a positive
spectral radius leading to the above condition; the details of

which can be obtained from Lemma B.1 of the supplemental
material. �

The above lemma characterizes the requirements for a
node to be classified as a hub. Referring to Fig. 2, the
condition (5) obtained in Lemma 3.1 can be understood as
follows: two interlinked nodes i and j can be classified as
hubs if the product of the (effective) recovery rates at both
nodes, given by δ̄a(i) · δ̄b(j), is lower than the product of
the (effective) propagation rates between them, given by
λ̄ab(i, j) · λ̄ba(j, i) = λ̃2. In other words, infection patterns
are sustained in the neighborhood of nodes (hubs) if the
infection propagates at a higher rate than it recovers. Let
us consider the simplification λa = λb = λ̃ = λ, for
which the effective recovery rate can be approximated as
δ̄l(i) ∼ exp(−(ki + 1)λ2), where i has ki intra-layer and
1 inter-layer link. Plugging this into (5) reveals that a
metastable infection state exists when:

ki + kj >
2

λ2
log

(
1

λ

)
− 2. (7)

The above expression presents a simplified mathematical
definition of hubs as a function of the infection propagation
rate based on the microscopic (localized) analysis of epi-
demics. This implies that metastable states can exist even for
arbitrarily small infection rates as long as the network con-
tains hubs of sufficiently high degrees. This insight allows us
to appreciate the results [11, 23], which state that metastable
states exist for any infection rate in infinite sized power
law graphs. For the finite sized networks considered in this
work, this condition calibrates the definition of “hubs” as a
function of the infection rate. Interested readers can refer to
Lemma 3.2 in [23] for the corresponding calibration of hubs
for the case of scale-free networks in the thermodynamic
limit.

Lemma 3.2. Consider a single-layer SIS dynamic with infection
rate λ on an extended star topology, where the hub is permanently
infected. The average number of infected nodes around the hub of
degree k is approximated by λk(1 + λ).

Proof. The probability of a node at a distance of d from
the hub to be infected is given by λ( λ

λ+1 )d−1. The number
of infected nodes at a distance d from the hub is just k
times this probability. Let us represent the length of the
paths attached to the hub by l. Thus, the total number of
infected nodes (T) in the local neighborhood of the hub can
be computed as:

T (l) =
l∑

d=1

λk

(
λ

1 + λ

)d−1
= λk

1− pl

1− p
, (8)

where p = λ
1+λ . As l → ∞, T (l) → λk(1 + λ). At low

infection rates near the epidemic threshold, the error of
approximating T (l) by λk(1+λ) is very small even for finite
values of l. �

The above result characterizes the extent of infection
propagation around an active hub. Note that in reality,
the estimated infection size around the hub can vary since
the different paths emanating from it can interact with
each other. However, under the low infection rate regime,
the interaction between different paths is minimal and the
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infection size estimated by Lemma 3.2 provides a good
approximation. We substantiate this argument via simula-
tion experiments in Section 6. Lemma 3.2 states that hubs
roughly infect λk(1 + λ) nodes in their vicinity, which will
not be sufficient to satisfy the infection density requirements
specified by Γ in Problem 2.1 for most practical problems.
Thus, it is clear that although a single interlink directly con-
necting two hubs is capable of inducing a metastable state,
the resulting infection size is quite small. For most practical
problems, we need to consider multiple hubs constituting a
composite metastable state; each hub infects a fraction of its
neighborhood, collectively satisfying the infection density
requirements of our problem.

Lemma 3.3. Consider SIS epidemic dynamics with parameters
λ = {λa, λb, λ̃} on the multi-layer network with interlinked
hubs i ∈ Va and j ∈ Vb with i infected initially. The probability
(ηi) of the infection propagating from hub i to the interlinked
neighbor j can be written as:

ηi =
p̃

p̃+ (1− p̃)(1− p2a)ki
, (9)

where p̃ ≡ 1− exp(−λ̃), pa ≡ 1− exp(−λa), and ki represents
the intra-layer degree of i.

Proof. An infected node propagates its infection to a fraction
of its neighborhood. Thus, it should be easy to see that
nodes of high intra-layer degrees are very likely to sustain
infection for a long time via multiple re-infection cycles,
where upon recovery, hub i is re-infected by one of its
infected neighbors. Node j interlinked to i can only be
infected via propagation along the interlink. On average,
i remain infected for unit time and thus, the probability
of infection propagation via the interlink is given by [36]
p̃ = 1 − exp(−λ̃). Node i can get multiple opportunities
of propagating infection to j, since every time it recovers,
i can get re-infected by its ki intra-layer neighbors. The
probability that i is re-infected once can be computed as
X , 1− (1− p2a)ki , where pa = 1− exp(−λa). This follows
from the characterization of δ̄(i) presented in Lemma A.1
in the supplemental material. The probability that j is not
infected at the end of m rounds of re-infection is given
by Xm(1 − p̃)m. As a result, the total probability that i
successfully propagates infection to j is given by:

ηi =
∞∑
m=0

p̃[1− (1− p2a)ki ]m(1− p̃)m, (10)

which yields the desired expression. �

Note that we ignore the presence of additional inter-
layer links of i in the computation of the re-infection prob-
ability. This is because the inherent assumption is that con-
struction of interlinks is a costly operation and the number
of interlinks associated with a hub node is expected to
be insignificant in comparison to the intra-layer links. In
the presence of additional inter-links, ηi represents a lower
bound to the actual probability.

3.3 Estimation of infection size

We represent the set of hubs by Ha ⊆ Da and Hb ⊆
Db, respectively, where cardinality of the two sets is

given by na and nb. Here, we estimate the average in-
fection size resulting for a candidate interlink structure
σ ≡ {σa(1), · · · , σa(na), σb(1), · · · , σb(nb)}, where σa(i) (or
σb(i)) represents the set of hubs in layer B (or A) interlinked
to the ith hub in layer A (or B). We focus on the intra-
layer and inter-layer neighborhood of a particular hub i in
network layer A. When the infection in the local intra-layer
neighborhood of i dies out, hub i can be re-infected by any
of its inter-layer neighbors, represented by the set σa(i). The
probability that a particular hub j ∈ σa(i) propagates its in-
fection to i is given by ηj , according to Lemma 3.3. Thus, the
total infection probability of i is given by: 1−

∏
j∈σ(i)(1−ηj).

This expression can be thought of as the lower bound for
the infection probability as only the contribution of hubs
directly interlinked to i is considered here. In most practical
cases, the effect of additional hubs is marginal since λ̄ij
decreases exponentially with the distance between i and j.
Combining this with Lemma 3.2, the average infection size
around i is given by:

f(σa(i)) = λaki(1 + λa)

[
1−

∏
j∈σa(i)

(1− ηj)
]
, (11)

where f(σa(i)) denotes the infection size around i. We
remind that our focus is on the low infection rate regime,
where the epidemics are localized around nodes of high
degrees. Consequentially, the total infection size around the
different hubs can be approximated by the sum of the indi-
vidual infection sizes. Note that this approximation is exact
[11, 23] in the thermodynamic limit. Although we focus on
finite sized networks in this work, we verify in Section 6
that the estimates of infection sizes remain largely consistent
with the simulations, for extended ranges of parameters. For
an interlink structure σ, the average infection size around
the hubs, denoted by f(σ), is given by:

f(σ) =
∑
i∈Ha

λaki(1 + λa)

[
1−

∏
j∈σa(i)

qj

]
+

∑
i∈Hb

λbki(1 + λb)

[
1−

∏
j∈σb(i)

qj

]
, (12)

where the summations index over the hub nodes in the
network layers, and qj , (1− ηj).

4 OPTIMIZING THE INTERLINK STRUCTURE

The fundamental purpose of the interlink structure is to
maintain interaction between different hubs so that if the
infection in the local neighborhood of a hub dies out, it can
get re-infected by other inter-linked hubs. Thus, it is easy
to see that the inter-layer links should form a connected
graph so that all hubs can re-infect each other. Since the
minimally connected graph spanning n vertices is a tree,
the minimum number of interlinks required to maintain
connectivity between na + nb hubs is na + nb − 1, where
na and nb represent the cardinalities of the set of hubs Ha

and Hb, respectively. The choice of Ha ⊂ Da and Hb ⊂ Db

is discussed in the next section. In this section, we impose
this minimum constraint on the interlink structure σ and
obtain σ? maximizing the average infection size f(σ) given
by (12). The maximization of the infection size guarantees
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optimal utilization of the interlinks. The optimal interlink
structure σ? is obtained by solving:

max
σ

f(σ) (13a)

subject to
∑
i∈Ha

|σa(i)| =
∑
i∈Hb

|σb(i)| = na + nb − 1, (13b)⋃
i∈Ha

σa(i) = Hb,
⋃
i∈Hb

σb(i) = Ha. (13c)

The first constraint enforces that the minimum number of
interlinks are used, while the second one ensures that all
hubs in Ha and Hb are supported via interlinks. In the gen-
eral case, (13) is a discrete set optimization problem which
is computationally prohibitive for solving for large number
of hubs. However, under the special case of homogeneous
hub degrees, the problem becomes mathematically tractable
and we can obtain the theoretically optimal σ?. Although
real-world problems are unlikely to exhibit identical hub
degrees, we show that the properties of this special case
solution can be leveraged to develop interlink design strate-
gies in the general case.

4.1 Interlink structure for identical hub degrees
Under the assumption of identical hub degrees, the interlink
structure σ can be simplified to the allocation of interlinks
b ≡ [b1 · · · bnabna+1 · · · bna+nb

], where bi specifies the num-
ber of interlinks allocated to hub i. The first na indices
of b define the interlink allocation for Ha, while the last
nb indices define the allocations for Hb. This simplification
results from the fact that the identical hub degree assump-
tion obfuscates the identity of the nodes in Ha and Hb. As
a result, the interlink structure σ is completely specified
by the number of interlinks allocated to each hub. This
simplification does not hold in the general case, where hubs
in Ha and Hb have distinct degrees. However, we show that
a similar interlink structure continues to be optimal even
in the general case except for some special scenarios. Thus,
although the identical hub assumption does not hold true
in practice, the resulting interlink structure has practical
importance. For identical hub degrees, the optimization
problem (13) is simplified as:

max
b

∑
i∈Ha

ξa

(
1− qabi

)
+
∑
i∈Hb

ξb

(
1− qbib

)
(14a)

subject to
∑
i∈Ha

bi =
∑
i∈Hb

bi = na + nb − 1, (14b)

bi ≥ 1, ∀i ∈ Ha ∪Hb, (14c)

where ξa , λaka(1 + λa) and ξb , λbkb(1 + λb) are defined
as the expected infection size around active hubs in both
layers, as specified by Lemma 3.2; qa (or qb) denotes the
probability of infection not propagating from a hub in Ha

(or Hb) to an inter-layer neighbor in Hb (or Ha); and bi ,
|σ(i)| denotes the number of inter-layer neighbors of hub i.

Let us separate the interlink allocation vector into two
components bHa and bHb

, representing interlink allocation
strategies for the hubs in Ha and Hb, respectively. It can
be observed that the maximization of the objective f(b)
over the space of interlink allocation b is equivalent to
independently maximizing the two summations in (14a)
over the layer-wise interlink allocation structures bHa and

bHb
. This is because the two summations in the objec-

tive function in (14) are only dependent on the layer-wise
interlink allocations, i.e. variation in bHa

does not affect
the second term in the objective function (14a) and vice
versa. Note that the independence of the two summations
only holds true for the identical hub degree case. We use
the following result in determining the optimal interlink
structure maximizing the objective in (14), whose proof is
presented in the supplemental material in Lemma B.2.

Lemma 4.1. The function f : Rd → R defined by f(x) =∑
i c1(1 − cxi

2 ) is Schur-concave for c1 ≥ 0 and 0 ≥ c2 ≥ 1,
where x = [x1 · · ·xd]T .

Definition 4.2. An interlink allocation strategy b ≡
[b1 · · · bna

bna+1 · · · bna+nb
] is defined to be maximally uniform,

if for both bHa
≡ [b1 · · · bna

] and bHb
≡ [bna+1 · · · bna+nb

], the
variance of the number of interlinks allocated to each hub in Ha

and Hb is minimum, i.e.,

max
i6=j
|bi − bj | ≤ 1, ∀i, j ∈ Ha(or Hb). (15)

With the Schur-concavity of f in Lemma 4.1 and the
definition of maximally uniform interlink allocation in hand,
we can state the result for the optimal interlink structure.

Theorem 4.3. Under a homogeneous assumption on the hub
degrees, the maximally uniform interlink allocation strategy max-
imizes the expected infection size in the network.

Proof. As discussed earlier, under the uniform degree as-
sumption of the hub nodes in Ha and Hb, the maximization
of the objective function in the optimization problem (14) is
equivalent to two independent optimization problems, for
each layer of the network, which for layer A can be written
as:

max
b

∑
i∈Ha

ξa

(
1− qabi

)
(16a)

subject to
∑
i∈Ha

bi = na + nb − 1, (16b)

bi ≥ 1, ∀i ∈ Ha. (16c)

Recall that qa , 1− ηa, where ηa is defined in Lemma 3.3 as
the probability of infection propagating from a hub node in
layer A to an interlinked hub in layer B. ξa is defined as the
average infection size in the local intra-layer neighborhood
of an active hub in layer A and it can be expressed as ξa =
λaki(1+λa), where ka is the intra-layer degree of the hubs in
layer A and λa is the intra-layer infection propagation rate
in layer A. It is easy to verify from Lemma 4.1 that (16) is
Schur-concave. As a consequence, for all interlink allocation
strategies bx, by ∈ Rna , where bx is majorized by by , the
value of the objective function corresponding to bx will be
greater. As the interlink allocation strategy becomes more
uniform, the value of the objective function progressively
increases.

We are interested in obtaining the allocation strategy for
(na + nb − 1) interlinks to na hubs in layer A. Certain
values of (na, nb), say (3, 5), preclude the existence of a
uniform solution. However, as an outcome of the Schur-
concavity of the objective function, we can conclude that
the maximally uniform allocation strategy maximizes the
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objective function. The same arguments can be made for the
allocation of (na + nb − 1) interlinks to the nb hubs in layer
B, thus proving the theorem. �

4.2 Interlink structure for the general case
In the general case with non-identical hub degrees, the
Schur-concavity of the objective function is lost and a the-
oretically optimal interlink structure cannot be obtained.
However, we present a conjecture about the interlink al-
location strategy which holds in most realistic cases. In
particular, we posit that the uniform allocation of interlinks
continues to be a good strategy even for the general case.
Thereafter, we propose a greedy strategy for the construc-
tion of the inter-layer links between Ha and Hb. Although
both the interlink allocation strategy and the greedy design
of the interlinks are not theoretically guaranteed to be opti-
mal, the superiority of these designs in comparison with the
randomized and heuristic strategies is clearly showcased via
extensive simulation experiments in Section 6.

Conjecture 4.4. Consider an interlink allocation strategy, where
two arbitrary hubs y and z in the same layer (say layer A) of
the network are interlinked to the set of hubs σa(y) and σa(z),
respectively, where by , |σa(y)| and bz , |σa(z)|. If by >
bz + 1, re-allocating an interlink from σa(y) to σa(z), to make
the interlink allocation more uniform, leads to an improvement in
the objective function f(σ) in (13) with high probability.

We focus on the limiting case, where by = bz + 2. For
a larger difference in the allocation of the interlinks, the
arguments can be applied repeatedly. Let the sets of nodes
interlinked to y and z before the exchange be given by
σa(y) = {h1, · · · , hby} and σa(z) = {hby+1, · · · , hby+bz}.
We are interested in examining the change in the value of
the objective function when the interlink allocation is made
more uniform, i.e. when any hub from σa(y) is moved to
σa(z). Let f(σa(y), σa(z)) and f(σ′a(y), σ′a(z)) denote the
average infection sizes around the two hubs y and z before
and after the exchange of the interlinks. Thus, we can write:

f(σa(y), σa(z)) = ξy

(
1−

by∏
j=1

qj

)
+ ξz

(
1−

by+bz∏
j=by+1

qj

)
, (17)

f(σ′a(y), σ
′
a(z)) = ξy

(
1−

by−1∏
j=1

qj

)
+ ξz

(
1−

by+bz∏
j=by

qj

)
, (18)

where we assume that the hub hby (arbitrary choice) is
interlinked to z after the exchange. The difference between
the infection sizes after the exchange, ∆f , f(σ′) − f(σ)
can be written as:

∆f = (1− qby )

(
ξz

by+bz∏
j=by+1

qj − ξy
by−1∏
j=1

qj

)
. (19)

The two products in the second parenthesis contain bz and
bz + 1 elements, respectively. Recall that qj defines the
probability that an infection from hub hj does not propagate
to an interlinked hub. For nodes of high intra-layer degrees
(hubs), qj ≡ 1 − ηj is expected to be a small value near
0, as ηj is close to 1 according to Lemma 3.3. As a result,
the product of bz terms is significantly higher than the
product of bz + 1 terms. In comparison, the variation in the

ξ , λk(1 + λ) values for different hubs is expected to be
much lower since only nodes of high intra-layer degrees
qualify as hubs. In most realistic cases, the hub degrees
do not vary by orders of magnitude. Thus, ∆f in (19) is
positive in most cases, satisfying our conjecture. However,
it is possible to design counter-examples with one super-
hub, i.e. ky � kz , where ∆f can be negative due to the
huge discrepancy between ξz and ξy . Since such cases will
rarely exist in practice, our conjecture is expected to hold in
most practical problems.

The above discussion pertains to the case of interlink
allocation among the two sets of hubs. It is important to
note that under the general case of non-identical intra-layer
degrees of the hubs in Ha and Hb, the interlink allocation
strategy cannot solely determine the structure. Unlike the
previous case, here we need to devise an interlinking pattern
in addition to the allocation strategy. Thus, we are inter-
ested in the problem of optimizing the interlink structure
given the maximally uniform interlink allocation, which was
shown to be a good strategy in Conjecture 4.4. Unfortu-
nately, even for this case a mathematically rigorous optimal
structure cannot be obtained. Interestingly, for a maximally
uniform allocation we can rigorously obtain the interlink
structure minimizing the objective function in (13) but a
strategy for maximizing the objective cannot be obtained.
This stems from the peculiar result arising from the Gener-
alized Rearrangement Inequality, which we developed in
a previous work [37] and present as Lemma B.3 in the
supplemental material. As a consequence, we can show that
the monotonic arrangement of interlinks, where the hubs
in Ha and Hb are interlinked in the order of their intra-
layer degrees, is the worst; however, the arrangement that
maximizes the average infection size, remains open. In this
work, we propose the construction of the interlinks based
on the anti-monotonic arrangement, wherein the hubs with
the highest intra-layer degree in layer A are coupled to the
hubs with the lowest intra-layer degree in layerB. Although
this strategy is sub-optimal, simulation results show that it
outperforms other randomized strategies. Interestingly, our
simulation experiments reveal that if the uniform interlink
allocation is followed, variation of the interlink structure
does not have a major impact on the infection size. Thus,
we can infer that for the general case of non-identical hub
degrees, the interlink allocation strategy plays a more im-
portant role than the specific arrangement and the uniform
allocation continues to be a good strategy.

5 ENGINEERING THE METASTABLE STATE

In this section, we describe the methodology for construct-
ing the composite metastable infection state, Ha ⊂ Da

and Hb ⊂ Db, which can satisfy the infection density
requirements of Problem 2.1.

5.1 The core and supplementary groups
We start our discussion by defining two groups of nodes:
the core group and the supplementary group. The core and
the supplementary groups define the set of nodes in Da and
Db which can support a metastable infection state by using
a single interlink. A core group is defined as a set of nodes
χ0
a ∪ χ0

b , where an interlink between any a ∈ χ0
a and any

b ∈ χ0
b satisfies Lemma 3.1 and can sustain a metastable
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infection state in the neighborhood of its endpoints. On
the other hand, the supplementary group, represented by
χ1
a ∪ χ1

b , is defined as the set of nodes in Da and Db which
need the support of specific nodes from the core group. As
a consequence, any interlink between χ0

a and χ0
b can induce

metastable infection states, whereas hubs in χ1
a (or χ1

b ) can
sustain infections only by interlinking to specific hubs in χ0

b

(or χ0
a). The core group provides us with increased flexibility

in designing the interlink structure since by definition, any
interlink between the constituents is valid, whereas the
supplementary group puts additional constraints on the
interlink design.

Let us represent the nodes with the highest intra-layer
degree in Da and Db by a1 and b1, respectively. Let φa (or
φb) denote the set of nodes in Da (or Db), which satisfy the
constraints in Lemma 3.1 when interlinked to b1 ∈ Db (or
a1 ∈ Da). Mathematically, this can be written as:

φa = {v ∈ Da|δ̄a(v) · δ̄b(b1) < λ̃2}, (20)

φb = {v ∈ Db|δ̄b(v) · δ̄a(a1) < λ̃2}. (21)

where δ̄l(i) denotes the effective recovery rate for node i in
layer l. Since φa and φb are defined w.r.t. the highest degree
nodes in the other layer, these two sets constitute all nodes
in Da and Db which can possibly sustain a metastable infec-
tion state in their neighborhood by using a single interlink.
Recall that the effective recovery rate δ̄(i) decreases with the
hub degree following (2). Thus, for a low enough infection
parameter λ = (λa, λb, λ̃), the sets φa and φb can be empty.
φa and φb can also be empty if the desired subgraphs Da

and Db comprises nodes of low intra-layer degrees. The
emptiness of the φ’s imply that the specifications in Problem
2.1 are not sufficient to sustain metastable infection states.
However, in the supplementary material we discuss some
techniques for augmenting the metastable infection state
beyond the core and the supplementary hubs. Adopting
those approaches can induce metastable infection states
even for empty φ’s in some cases albeit using a very large
number of interlinks. In the following discussion, we focus
on scenarios with non-empty φa and φb, which constitutes
the feasible region for solving Problem 2.1. The core hub
group can be defined as:

χ0
a = {v ∈ Da|δ̄a(v) < λ̃}, (22)

χ0
b = {v ∈ Db|δ̄b(v) < λ̃}. (23)

It can be easily verified that an interlink between any two
nodes, i ∈ χ0

a and j ∈ χ0
b , satisfies Lemma 3.1. Additionally,

φa and φb defined in (20)-(21) comprise the set of hubs
which can possibly sustain a metastable infection state by
interlinking to a hub in the other layer. Thus the set of nodes
defined by χ1

a = φa − χ0
a and χ1

b = φb − χ0
b comprise hubs

which can satisfy the constraints in Lemma 3.1 for specific
inter-layer connections. We refer to these set of nodes, i.e.
χ1
a and χ1

b as the supplementary group of hubs. The hubs
in the core group can induce a metastable infection state by
interlinking to any hub in the core group in the other layer,
whereas the hubs in the supplementary group can do so by
interlinking to specific hubs in the core group. For each node
i ∈ χ1

a, we can define the candidate set:

κa(i) = {j ∈ χ0
b |δ̄a(i)δ̄b(j) < λ̃2}. (24)

The candidate set for i ∈ χ1
b can be obtained similarly. By

Lemma 3.1, we know that any interlink between i and an
element of the candidate set is able to sustain a metastable
infection state. The candidate set for the core group is
nothing but the entire core group in the other layer. The
construction of the interlink structures among these two
group of hubs follows the two principles put forward in the
previous section: i) uniform allocation of interlinks, and ii)
anti-monotonic pattern of interlinks. For brevity, the details
of the algorithms are presented in the Appendix D of the
supplemental material.

5.2 Constructing the hub sets

The scheme of achieving controlled infection spreading
in the network is to incrementally assemble a composite
metastable infection state (Ha, Hb) in the desired region
of the network, comprising multiple interlinked hubs. Each
hub is capable of sustaining a metastable infection in its
local neighborhood. The interlink structure between these
hubs maintains a reliable interaction between them so that a
long lasting infection pattern is induced around these hubs.

In order to construct Ha and Hb, we formulate a sub-
routine called GENOPTINTER that constructs the interlink
structure between two given sets of hubs, the details of
which is presented in Appendix D of the supplemental ma-
terial. It is important to note that the problem of estimating

Algorithm 1 Constructing the metastable infection state

1: procedure CONSTRUCTMETA(ξades, ξ
b
des,λ)

2: Compute χ0
a, χ

1
a, χ

0
b , χ

1
b for λ

3: H∞a ← {χ0
a, χ

1
a} indexed by degrees.

4: H∞b ← {χ0
b , χ

1
b} indexed by degrees.

5: (ia, ib)← (1, 1).
6: Ha ← {χ0

a[ia]}, Hb ← {χ0
b [ib]}.

7: σ ←GENOPTINTER(Ha, Hb,λ)
8: (ξacurr, ξ

b
curr) = f(σ) computed using (12).

9: while ξacurr < ξades or ξbcurr < ξbdes do
10: if ξacurr < ξades then
11: if Ha == H∞a then
12: return False
13: Ha = Ha ∪H∞a [ia]
14: σ = GETOPTINTER(Ha, Hb)
15: ξacurr = fa(σ) computed using (12)
16: ia = ia + 1

17: if ξbcurr < ξbdes then
18: if Hb == H∞b then
19: return False
20: Hb = Hb ∪H∞b [ib]
21: σ = GETOPTINTER(Ha, Hb)
22: ξbcurr = fb(σ) computed using (12)
23: ib = ib + 1

24: return σ

the number of hubs cannot be decoupled from the problem
of designing of the interlink structure. Due to this reason,
one effective way to ensure the use of a minimum number
of interlinks is to sequentially grow the metastable infection
state by adding hubs to Ha and Hb, until the infection
density requirements are achieved. Following this principle,
the hub selection and interlinking strategy is presented in
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Algorithm 1. The input to Algorithm 1 is the topology of
the desired regions Da and Db, the desired infection sizes
ξades , γa|Da| and ξbdes , γb|Db|, and the infection propa-
gation parameters λ. The algorithm first computes the core
and the supplementary node groups and then constructs
the ordered sets H∞a ⊂ Da and H∞b ⊂ Db, comprising the
core and supplementary hubs arranged in the decreasing
order of the intra-layer degrees. H∞a and H∞b describe the
order of the nodes from the desired region which are used
to construct the required composite metastable infection
state. The algorithm proceeds by incrementally allocating
new hubs to Ha and Hb from H∞a and H∞b , respectively,
until either the desired infection sizes is achieved or all
candidate hubs in H∞a or H∞b are used up. In the former
case, the algorithm outputs the resulting interlink structure
σ. The latter case falls in the domain of infeasible region,
where the problem settings (Da, Db,λ) are inadequate to
induce the desired infection size. The intermediate infection
sizes corresponding to the current choices of Ha and Hb

are denoted by ξacurr and ξbcurr in Algorithm 1; these are
computed following (12).

Thus, we can see that Algorithm 1 essentially achieves
the controlled infection spreading parameterized by γa
and γb in the desired region Da and Db; it returns False
when the problem settings are infeasible and returns the
required interlink structure if the desired infection sizes
can be achieved via the core and supplementary group
of hubs. Note that the control of the infection density is
discrete in nature. As additional nodes are interlinked to
the metastable infection state, a discrete increment in the
infection size occurs. Furthermore, the optimal interlink
structure is recomputed every time additional hubs are
included. Interestingly, simulation experiments in Section
6 reveal that the dependence of the infection size on the
interlink structure is not pronounced as long as the interlink
allocation is maximally uniform. For future extensions to
this work, we are exploring the possibility of utilizing this
idea to optimize the algorithm so as to update the interlink
structure only in intermediate steps. Such optimizations are
beyond the scope of the current work.

5.3 Limits of achievable infection densities

We end this section by discussing the limits of the achievable
infection densities in the desired subgraphs Da ⊆ Ga
and Db ⊆ Gb. It should be intuitive that the entire range
0 ≤ γa, γb ≤ 1 is not achievable for any infection parameter
λ. The exact computation of the infection size achievable by
these two groups of hubs is given by (12), which is depen-
dent on the interlink structure σ. To avoid the dependence
on σ, a simple upper bound can be obtained by neglecting
the qj terms:

γcs
a = λa(1 + λa)

∑
i∈χ0

a∪χ1
a

ki, (25)

γcs
b = λb(1 + λb)

∑
i∈χ0

b∪χ1
b

ki. (26)

The above thresholds serve as rough upper bounds and
are not achievable in practice owing to the non-zero qj
terms. However, in practice qj terms are very small for hubs
with high degree and thus Γcs = (γcs

a , γ
cs
b ) provides a crude

and easily to compute upper bound of the achievable infec-
tion size. Although we discuss techniques for augmenting
the metastable infection state in Appendix C in the sup-
plemental material, these techniques are not very reliable
in pushing the achievable infection density far beyond Γcs.
Thus, for cases where the desired infection density (Γ) is
much higher than Γcs, a sensible strategy is to strive for
increasing λ = (λa, λb, λ̃) so as to include more nodes in
φa and φb, which can lead to an increment in the achievable
infection density Γcs.

6 SIMULATION RESULTS

In this section, we discuss the simulation experiments val-
idating our theoretical results on both synthetic and real-
world networks. We simulate the SIS epidemics on networks
following the popularly used Gillespie algorithm [38], the
details of which are presented in the supplemental material
in Appendix E. We use Python and its associated libraries
(NetworkX, NumPy) to build our simulation framework.
Due to the stochastic nature of the epidemics, we plot the
averaged results over multiple independent Monte Carlo
(MC) runs. We start this section by verifying the theoret-
ical results presented in the Lemmas by testing them on
complex network topologies. Thereafter, we compare our
interlink design strategy with other heuristics to observe the
variation in the resulting metastable infection size. Finally,
we apply the principles developed in this work to a real
world network design problem.

6.1 Verification of the Lemmas

For the verification of Lemma 3.1, we simulate the infection
times of epidemics on multilayer networks with a single
interlink, as shown in the left subfigures in Fig. 2, where
two hubs (i, j) with intra-layer degrees (ki, kj) are coupled
to each other. The infection time is defined as the time
duration between the initial infection configuration with
{i, j} infected and the final all-healthy state, averaged over
500 MC runs. The infection recovery rate is taken to be 1
and thus, the time in our simulations can be understood
as the number of rounds of an average infection-recovery
event. We generate Ga and Gb as Barabasi-Albert (BA)
graphs with parameter m = 1 of size n = 5000. A node
of degree 100 from Gb is taken to be the fixed end-point
j. For different choices of i from Ga, the infection time of
the epidemics with propagation rates λ = {0.1, 0.1, 0.1}
is plotted w.r.t. the hub degree ki in Fig. 3a. The vertical
lines in Figure 3a represent the thresholds predicted by the
coarse-grained (CG) model [25] and the quenched mean
field (QMF) model [34]. We observe that the infection time
increases exponentially when the hub degree (x axis) goes
beyond the CG threshold, computed using (5). This verifies
Lemma 3.1, which derives the condition for the existence
of long lasting (varying exponentially with hub degree)
infection patterns in the neighborhood of an interlink. The
corresponding QMF threshold, computed as the inverse of
the spectral radius of the multilayer topology comprising
Ga, Gb and the interlink i ↔ j, is also indicated in Figure
3a.

In Figure 3b, we verify the predictions in Lemma 3.3 by
simulating epidemics in the same multi-layer structure as
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(a)

(b)

(c)

Figure 3: Verifying the epidemic properties on interlink
subgraphs: a) variation of extinction time of the infections
with hub degrees, b) variation of probability of propagation
via interlink with hub degrees, and c) variation of mean
infection size with propagation rates. All figures compare
our theoretical predictions to the simulated epidemics on
multilayer networks with a single interlink.

above but with the initial infection configuration {i}, i.e.
only one of the hubs is infected. We want to characterize
the probability that an infection from hub i propagates to
hub j via the interlink. We consider the same setting as
above, with fixed kj and variable ki. We perform 10000
MC runs and the propagation probability is computed as
the fraction of runs leading to successful propagation to
j. It can be observed from Figure 3b that the simulated
probabilities closely follow the theoretical predictions for
the three cases, corresponding to different choices of the
inter-layer infection propagation rate λ̃ = 0.05, 0.1, 0.15,
corresponding to the black, red and blue plots, respectively.

Finally, in Figure 3c, we compare the theoretical es-
timation of the infection size presented in (12) with the
simulations. Recall that the network topology considered
for the verification of the lemmas comprises two hubs, one
in each layer. As a consequence of Lemma 3.2 and Lemma
3.3, the metastable infection size in Ga can be approxi-
mated by λaki(1 + λa)ηj , where ηj denotes the probability
of the infection propagating to i from j. The epidemic
dynamics are simulated on the multi-layer structure with
ki = kj = 100 and the metastable infection size in Ga with
varying infection rate (λa=λb=λ̃=λ) is plotted. This figure
illustrates the basic idea behind our claim of controlled
infection spreading in networks. Figure 3c shows that the
infection sizes closely follow the theoretical predictions for
an extended range of λ. At high infection propagation rates,
the simulated infection size blows up due to the divergent
epidemic dynamics that spreads throughout the network
instead of being localized. This illustrates the fact that the
controlled infection spreading cannot be achieved at high
propagation rates due to the onset of global epidemics
affecting a finite fraction of the entire network.

6.2 Comparison of interlink strategies
To the best of our knowledge, ours is one of the first works in
optimizing the network structure to achieve a desired infec-
tion size. Most relevant works [31, 32, 39] in the domain of
multi-layer interlink design focus on extremizing (maximize
or minimize) the spread of epidemics. Interlinking w.r.t. dif-
ferent centrality measures, like degree centrality, eigenvector
centrality or other sophisticated measures like Katz central-
ity [31], are commonly suggested in these works. Note that
our focus here is to control the metastable infection size as
opposed to these works which focus on the steady state
infection size. Nonetheless, due to lack of relevant inter-
linking algorithms in literature focusing on the metastable
infection patterns, we compare our proposed strategy with
these popular approaches defined w.r.t. the degree and
eigenvector centralities. Note that sophisticated measures
like eigenvector centralities are computationally expensive
for large network sizes and require the exact knowledge
of the network topology, which might not be available
in many practical scenarios. This further demonstrates the
effectiveness of our algorithms, which only require degree
information of the hub nodes and the relative distance be-
tween these hubs. We consider two isolated network layers
(Ga, Gb), generated as BA graphs of size 10000 with m = 1.
The desired regions in these layers (Da, Db) are specified by
the three hop neighborhood around two randomly chosen
points ardn and brdn. We construct the interlink structure
between Da and Db following different strategies discussed
below and plot the average infection size over 500 MC runs
in Ga as a function of the intra-layer infection propagation
rate λa = λb = λ; λ̃ is fixed at 0.2.

In Figure 4a, we generate the interlinks using the follow-
ing six strategies: i) one-to-one interlinking w.r.t. degrees,
where the nodes in Da are coupled to nodes in Db in
the decreasing order of their intra-layer degrees, ii) one-to-
many interlinking w.r.t. degrees, where the highest degree
nodes in Da are coupled to four random nodes in Db, iii)
one-to-one interlinking w.r.t. eigenvectors [32], iv) one-to-
many interlinking w.r.t. eigenvectors, v) skewed interlink
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allocation, where a randomized collection of non-uniform
interlink allocation strategies are used with the four highest
degree hubs in Da (Ha) and the six highest degree hubs
in Db (Hb) and the average performance is plotted, and
vi) uniform interlink allocation, where the same number of
hubs as v), i.e. four and six, respectively, are interlinked fol-
lowing the maximally uniform allocation strategy described
in Theorem 4.3 with the randomized interlink structure.
The first four strategies are baseline algorithms proposed
in the relevant literature and the last two are variations of
our algorithms for interlink design in multi-layer networks.
Degree centrality based interlinking strategies like i) and ii)
are by far the most popular heuristic. Eigenvector centrality
based interlinking has been shown in recent works [31, 32]
to maximize the steady state prevalence of the infection
patterns. Note that this is different from the objective con-
sidered in this work, where we study the metastable and
localized infection patterns which eventually die out in the
steady state. Steady state infection patterns are observed
for larger infection propagation rates beyond the critical
infection threshold λc, whereas our focus is on metastable
infection patterns which are observed in the neighborhood
of λc. The specific strategy iii) is proposed in [32] where the
nodes ranked by the eigenvector centralites are interlinked
to each other in a one-to-one fashion. iv) is a modified
version of this strategy in the same line as ii), where nodes
with the highest eigenvector centralities in Da are coupled
to four random nodes in Db.

In our simulations, the baseline strategies are con-
structed with orders of magnitude more interlinks than our
proposed methods; specifically, more than 100 interlinks (in
a network region spanning around 3500 nodes) are used
in i) through iv) whereas our algorithms v) and vi) use
less than 10 interlinks. The number of interlinks used in
the last two strategies are (4 + 6 − 1) = 9, due to the
number of hubs (|Ha| = 4, |Hb| = 6) and the minimally
connected graph spanning these hubs. The maximally uni-
form interlink allocation w.r.t. the four (or six) hubs in layer
A (or B) is given by {3, 2, 2, 2} (or {2, 2, 2, 1, 1, 1}) or any
permutation of this set. Any other allocation of the 9 in-
terlinks constitutes the skewed interlink allocation strategy.
Following Conjecture 4.4, the anti-monotonic arrangement
is adopted as the interlink strategy for both v) and vi), where
the highest degree hubs in Ha are interlinked to the lowest
degree hubs in Hb. The initial infection configuration of the
network is taken to be the set of interlinked nodes, i.e. the
infection seeds of the epidemic are the nodes in Da and
Db that are interlinked to the other network layer. It can be
observed from Figure 4a that the resulting infection sizes
of the last two strategies is much higher than the first four
strategies, even though only a fraction of the interlinks are
used. Among the baseline interlinking structures i) through
iv), one-to-one interlinking w.r.t. the eigenvector centrality
performs marginally better than the other strategies. It is
important to note that at low infection rates near the critical
threshold, which is the regime we are interested in, it is
known [31] that interlinking strategies defined w.r.t. various
centrality measures have comparable performances. Our
simulations largely verify this phenomenon, while estab-
lishing the superiority of the proposed strategies over the
baseline approaches. This clearly shows that enforcing col-

(a)

(b)

Figure 4: Comparing infection sizes under different inter-
link strategies: a) significant difference between strategies
with uniform and skewed allocation, b) limited difference
between anti-monotonic and monotonic interlink structures.

lective interaction between different hubs is a good strategy
and centrality based interlink designs popular in literature
can perform extremely poorly in the context of localized
metastable infection states. Furthermore, the difference be-
tween the uniform and the non-uniform allocation of the
interlinks is also significant, which illustrates the fact that a
uniform allocation is clearly superior to skewed allocation
of interlinks. Under certain constraints, we prove that this
maximally uniform interlink allocation is optimal. Figure 4a
provides empirical evidence for Conjecture 4.4, which states
that uniform allocation continues to perform well in the
general case.

Next, we want to observe the impact of different designs
of the interlink structure, while adhering to the maximally
uniform allocation strategy. The monotonic arrangement
interlinks the best (highest degree) hubs in Ha with the best
hubs in Hb till a maximally uniform allocation is obtained.
The anti-monotonic arrangement interlinks the best hubs in
one layer to the worst ones in the other. In Figure 4b, the
baseline strategies are the same as Figure 4a, but v) and vi)
are replaced by the monotonic and anti-monotonic arrange-
ment of the maximally uniform allocation strategy. Recall
that we hypothesize the superiority of the anti-monotonic
arrangement, although we were not able to obtain a rigorous
proof in the general case. However, we can observe from
Figure 4b that the specific interlinking scheme has a limited
effect on the infection size, as long as maximally uniform
allocation is followed.
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These results validate our theoretical predictions show-
ing that the local properties of the epidemics derived in
Section 3 for the extended star topology hold true for
complex topologies in the regime we focus on. This confirms
that the global epidemic dynamics on complex networks can
be approximated by studying the local dynamics around
hubs and quantifying the inter-relationship between these
local regions of activity. Furthermore, the comparison of
infection sizes for different interlink strategies also shows
the superiority of the uniform allocation and the limited
impact of the specific interlink structure under a maximally
uniform allocation strategy.

6.3 Case Study
We consider the example of promoting inter-disciplinary
research among two groups of researchers, representing
the isolated network layers. It is important to note that
a rigorous modeling of the human interactive patterns in
the context of the spread of infectious diseases is an ac-
tive area of research in itself [40, 41], where significantly
complicated architectures are employed to emulate the in-
teraction between the disease-prone agents. For our case
study, we consider a simplified interaction model, where a
static multi-layer graph is taken to simulate the interaction
between the two groups of the disease-prone agents. We
consider the case where the two network layers represent
the collaboration network between researchers in the areas
of Condensed Matter Physics (Ga) and Astrophysics (Gb)
[42] , where |Ga| = 23312 and |Gb| = 18872. An intra-
layer link between two nodes (i, j) ∈ Ga or Gb indicates
that the two researchers (nodes) have co-authored a paper
in the past. The infection in this case can be thought of as
active participation in inter-disciplinary research in terms
of publications or submissions of research proposals. The
network designer can be imagined to be a funding agency
which is interested in devising strategies for allocating
funds to pairs of researchers from the two areas (Ga, Gb)
with the objective of sustaining inter-disciplinary research
activity in a desired region, say in North America (Da∪Db).
The allocation of funds to a node pair (i, j) ∈ (Ga, Gb)
is equivalent to the construction of an interlink between
these two nodes. Similar to the previous case of comparing
different interlinking strategies, the initial infection config-
uration of the network is taken to be all inter-linked nodes,
i.e., the infection seeds comprise the funded researchers
engaging in active research efforts in the inter-disciplinary
area. This activity of the interlinked nodes can influence
their neighbors to engage in this new inter-disciplinary
research area; we model this as the propagation of infection
from infected nodes to their susceptible neighbors. Thus, the
infection can be sustained in the neighborhood of the infec-
tion seeds via propagation of infection among inter-linked
and intra-linked neighbors. The specific goal of the network
designer in our case is to design the interlink structure to
realize metastable infection patterns of a desired infection
size in the multi-layer network, i.e., the funding agency
will give grants to researchers in the two areas with the
objective of inducing sustained inter-disciplinary research
activity of a desired metastable infection size utilizing a
minimum number of grants (interlinks) awarded to pairs of
researchers. It goes without saying that a practical model for

Figure 5: Predicted vs simulated infection size in the two
network layers, Da (top) and Db (bottom), with varying
infection propagation rate for Case 1.

this problem will involve much more intricate details than
those considered here. However, we feel that case studies
like these illustrate the wide applicability of the network
design problems considered here.

Defining the problem more specifically, the network
designer is interested in constructing the inter-layer links
between Da ⊆ Ga and Db ⊆ Gb so as to ensure that,
say, γa = 0.05 fraction of Condensed Matter physicists
and γb = 0.1 fraction of Astrophysicists in North Amer-
ica continue to publish interdisciplinary research. Let the
infection parameters be given by λ = {0.1, 0.1, 0.2}. We
specify the desired regions by the three hop neighborhood
around two random points apos ∈ Ga and bpos ∈ Gb
and obtain the desired regions Da and Db with sizes 3842
and 2799, respectively. The desired infection sizes yield:
ξades ≈ 193 and ξbdes ≈ 280. The required design of the
interlink structure can be obtained by Algorithm 1 by calling
the method CONSTRUCTMETA with the required arguments.
Algorithm 1 sequentially grows the metastable infection
state until the desired infection sizes are achieved. For
this case, we find out that the desired infection sizes are
satisfied by considering 5 hubs in Da and 7 hubs in Db,
all of which belong to the core group of hubs, requiring
11 (= 5 + 7 − 1) interlinks. In Fig. 5, we plot the aver-
age infection size corresponding to the proposed interlink
structure comprising 11 interlinks for different intra-layer
infection propagation rates (λa = λb = λ) and a fixed inter-
layer rate λ̃ = 0.2. The simulated average infection sizes
are (ξa, ξb) = (229.8, 304.4), which satisfies the infection
density requirements of this problem. Furthermore, it can
be clearly observed from the figure that the theoretically
predicted infection sizes agree very well with the simula-
tions for an extended range of λ. This clearly shows that
controlled infection spreading is realized here. Note that at
higher values of λ, the simulated dynamics do not follow
the predictions. This illustrates the limitation of our ap-
proach. Our mathematical model for tracking the epidemic
dynamics performs well in the near-threshold regime and
can accurately predict localized infection patterns. However,
the approach does not generalize to higher infection rates
characterized by global infection patterns.
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7 CONCLUSION AND FUTURE WORKS

Recent works [11, 23, 25, 26] study epidemic dynamics on
reduced network topologies, capturing the hubs and the
inter-relationship among them. We extend this approach to
multilayer networks and show that the interlink structure
can be designed to realized controlled infection spreading.
For a wide range of infection propagation rates, we show
that the metastable infection size can be theoretically ap-
proximated. It is important to remember that epidemics in
finite networks continue to exhibit metastability even at
higher infection propagation rates. However, as shown in
Fig. 3c, the approximations for the metastable infection size
developed in this work are not accurate for such cases and
novel approaches that can track the epidemic dynamics in
this regime are required. Additionally, note that the ideas
presented in this work can be applied with certain modi-
fications to single layer networks. However, we adhere to
the multi-layer model since it provides a clean distinction
between the existing network (intra-layer topology) and
the additional manipulations (inter-layer topology), thereby
allowing us to better unravel our contributions.

Possible extensions to this work include generalization
of the framework to a cost constrained setting similar to [39,
43], where differential costs are associated with the construc-
tion of different interlinks. This amounts to the inclusion of
additional constraints in the optimization problem (13) to
reflect the cost structure. Another important direction for
future work is to study interlink design problems in settings
with more than two layers, where significant increase in the
complexity of the mathematical models tracking the multi-
layer epidemic dynamics is expected. A fundamental yet
crucial idea that is verified through our study is that the
dynamics over finite multilayer networks can be reliably
approximated by the first order information about the net-
work topology in the near-threshold regime. Quantifying
the impact of higher order topological information is an-
other interesting research direction. Such studies will help
us to accurately characterize the error of studying epidemic
dynamics on approximate network topologies.
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