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Abstract—Recent advances in social media and information
technology have enabled much faster dissemination of informa-
tion, while at the same time raise concerns about privacy leakage
after various privacy breaches. Therefore, the privacy guarantees
of information dissemination protocols have attracted increasing
research interests, among which the gossip protocols assume
vital importance in various information exchange applications.
Very recently, the rigorous framework of differential privacy has
been introduced to measure the privacy guarantees of gossip
protocols in the simplified complete network scenario. In this
work, we extend the study to general networks. First, lower
bounds of the differential privacy guarantees are derived for
the gossip protocols in general networks in both synchronous
and asynchronous settings. The prediction uncertainty of the
source node given a uniform prior is also determined. It is found
that source anonymity is closely related to some key network
structure parameters in the general network setting. Then,
we investigate information spreading in wireless networks with
unreliable communications, and quantify the tradeoff between
differential privacy guarantees and information spreading effi-
ciency. Finally, considering that the attacker may not be present
in the beginning of the information dissemination process, the
scenario of delayed monitoring is studied and the corresponding
differential privacy guarantees are evaluated.

I. INTRODUCTION

It is well-known that most people are six or fewer social
connections away from each other. Recently, the explosive
development in the Internet and social networks makes it easy
for people to disseminate their information to the rest of the
world. Gossip protocols, in which networked nodes randomly
choose a neighbor to exchange information, have been widely
adopted in various applications for information dissemination
due to their simplicity and efficiency. For instance, they can
be used to spread and aggregate information in dynamic
networks like mobile networks, wireless sensor networks, and
unstructured P2P networks [1]–[3]. Combined with stochastic
gradient descent methods, gossip protocols are also adapted to
implement distributed machine learning [4], [5]. In particular,
the authors of [5] propose to transmit differentially private
gradient information through gossip protocols. Nonetheless,
they focus on the privacy of the shared gradient information
rather than the anonymity of the source.

With the arising concerns of privacy exposure, the infor-
mation sources often prefer to stay anonymous while dis-
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seminating some sensitive information. Gossip protocols are
believed to provide a certain form of source anonymity since
most nodes don’t get informed directly from the source, and
the origin of the information becomes increasing blurred as
the spreading proceeds. In this regard, source identification
and protection of gossip protocols have attracted significant
research interests (see [6], [7] and the references therein).
However, the existing approaches usually assume some spe-
cific network structures (e.g., tree graphs) and attacking tech-
niques (e.g., maximum likelihood estimator) and don’t easily
generalize.

To study the privacy of gossip protocols in a formal
and rigorous setting, the concept of differential privacy [8],
which was originally introduced in data science, is adapted
to measure the source anonymity of gossip protocols in [9].
However, their study is restricted to complete networks, which
may not be a good model in practice. For example, practical
networks often have a network diameter much larger than 1
(41 for the Facebook network [10]).

In this work, we extend the study of the fundamental
limits on the privacy of gossip-based information spreading
protocols to general networks. Our main contributions are
summarized as follows.

1) Lower bounds of the differential privacy guarantees of
general gossip protocols are derived for general net-
works in both synchronous and asynchronous settings.
The prediction uncertainty of the source node given a
uniform prior is also determined.

2) The differential privacy of standard gossip and private
gossip protocols is further studied in a wireless setting,
where communications are assumed to be unreliable.
It is found that wireless interference can enhance the
differential privacy while slowing down the spreading
process. Through analysis and simulations, the tradeoff
between the differential privacy guarantees and the
information spreading efficiency is revealed.

3) Finally, the effect of the additional uncertainty induced
by delayed monitoring on the differential privacy guar-
antees is shown.

II. SYSTEM MODEL

A. Gossip Protocol
In this work, we investigate the privacy of information source
in gossip-based information spreading. The goal is to measure
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the capability of gossip protocols in keeping the information
source anonymous. Specifically, given a connected network
G = (V,E) of arbitrary topology, where V = {0, 1, ..., n−1}
is the node set and E is the set of connecting edges, a
node (source) initially possesses a piece of information and
needs to deliver it to all the other nodes in the network.
All the nodes are assumed to share the same communication
protocol gossip. Each time an informed node i performs
gossip, it will contact one of its neighboring nodes j ∈ Ni
with probability 1/di, where di is the degree of node i.
The whole information dissemination process terminates after
all the nodes are informed. Same as [9], we focus on the
gossip protocols based on the “push” action1 in this work,
and consider the following two specific gossip protocols.

1) Standard Gossip: All informed nodes remain active (i.e.,
continuously performing gossip) during the spreading
process.

2) Private Gossip [9]: Once an active informed node (ini-
tially it is the source) performs gossip, it turns inactive
and the newly informed node takes over the source role.

B. Time Model

Both synchronous and asynchronous time models are consid-
ered. In the former, all nodes share a global discrete time
clock. Each time the clock ticks, all active informed nodes
perform the gossip action simultaneously, and the informed
node set is updated accordingly, counted as one round. In
the asynchronous time model, each node has its own internal
clock, which ticks according to a Poisson process, with the
mean interval between two ticks equivalent to that of one
round in the synchronous model. The gossip action and update
of the informed node set is performed each time the clock of
an active informed node ticks.

C. Threat Model

The goal of the attacker is to identify the source node
based on its observations (i.e., attack on confidentiality and
privacy). It is assumed that the attacker can monitor the
ongoing communications in the whole network, through, e.g.,
deploying a sufficient number of sensors throughout the field.
With a probability of 0 < α ≤ 1, the sensors can correctly
observe the identities of the active nodes at each gossip
step. Specifically, as shown in Fig. 1, the observed event
has the form of S = ((i, t)), i ∈ V, t ∈ {0, 1, 2, · · · } in
the synchronous setting, which indicates that the attacker
knows node i performs the gossip action at time slot t. In
the asynchronous setting, however, the attacker does not know
the exact time of each observed event, but only the relative
order of the nodes’ activities. The observed event in this case
is represented by S = ((i|t)), where the condition t stands for
the latent time information unknown to the attacker.

1In the corresponding “pull” action, uninformed nodes are active and try to
solicit the information from informed nodes. The “push” action is dominant
for information spreading in social and mobile networks. In addition, such a
study is also conservative in the sense that it gives the attacker an advantage
by only monitoring the “push” actions.

Uninformed and 

Informed Nodes

Sensor

Attacker

(i = 4, t = 0) Synchronous

(i = 2, t = 1) Observed Events

(i = 1, t = 3)

….

(i = 4|t = 0.5s) Asynchronous

(i = 2|t = 1.2s) Observed Events

(i = 1|t = 2.2s)

….

(i = 4, t = 0) Synchronous

(i = 4, t = 1) Actual Events

(i = 2, t = 1)

….

(i = 6|t = 0.2s) Asynchronous

(i = 4|t = 0.5s) Actual Events

(i = 2|t = 1.2s)

….

4
2

1
6

5

3

Fig. 1: Sensor Monitoring and Observations

D. Privacy Model

In this work, differential privacy is adopted to measure the in-
formation leakage of the gossip protocols. In particular, a ran-
domized algorithm R with domain N|χ| is (ε, δ)-differentially
private if for all S ⊆ Range(R ) and for any two databases
x, y that differ on a single element [8]:

Pr[R (x) ∈ S ] ≤ eεPr[R (y) ∈ S ] + δ, (1)
where parameter ε ≥ 0 is the privacy budget while δ ≥ 0 is the
tolerance level for the violation of the ε bound. Specifically,
given the privacy budget ε and the tolerance level δ, Eq.
(1) implies that the randomized algorithm guarantees that the
privacy loss is bounded by ε with a probability of at least
1 − δ. Consider a source indicator database of the format
D(i) = [0, ..., di = 1, ..., 0] with exactly one non-zero value
di = 1 if node i is the source. Given D , {D(i)}n−1i=0 and
the graph G as the input, a gossip protocol can be treated
as a randomized algorithm with the output set S (i.e., the
range) consisting of all possible observation sequences by the
attacker during the execution of the protocol.

Definition 1: Given a general network G, a gossip protocol
is (ε, δ)-differentially private in G if for all observations S ⊆ S
and for any two source indicator vectors D(i),D(j), i, j ∈ V :

p
(i)
G (S) ≤ eεp(j)G (S) + δ, (2)

where p(i)G (S) = Pr[S |G,D(i)] is the conditional probability
of an observation event S given the network graph G and the
source indicator vector D(i).

In this work, considering the fact that, due to the topological
and observation model constraints, there may exist some (rare)
events S such that p(j)G (S) = 0 (e.g., if Si,0 is the observed
event that node i performs gossip at time 0 in the synchronous
setting, then p

(j)
G (Si,0) = 0,∀j 6= i), additional tolerance

level is needed to ensure the privacy guarantees (i.e., the pure
version of the differential privacy with δ = 0 is infeasible).
Thus, this study will mainly focus on the tolerance level δ of
the privacy guarantees provided by the gossip protocols for
any given privacy budget ε. Clearly, δ ≤ 1 for any ε ≥ 0.

In addition to differential privacy, it is also desirable
to study privacy guarantees of information dissemination
protocols from a more pertinent perspective, i.e., source
identification through prediction or detection. Reusing the
above example, there always exist some events S such that
p
(i)
G (S) > 0 for some i but p(j)G (S) = 0,∀j 6= i ∈ V , which

satisfy an arbitrary privacy budget ε with a tolerance level of



δ (if p(i)G (S) ≤ δ). However, the identity of the source (i.e.,
node i) can still be easily inferred. Therefore, it is further
required that some prediction uncertainty be guaranteed for a
given differentially private protocol, which is defined as [9]:

Definition 2: Given a general network G, the prediction
uncertainty of a gossip protocol is defined for a uniform prior
pG(I0) on source nodes and any i ∈ {0, 1, ..., n− 1} as:

c = min
i,S⊆S

(
pG(I0 6= {i}|S)
pG(I0 = {i}|S)

)
,∀p(i)G (S) > 0, (3)

where I0 stands for the initial informed node set and its
element represents the source node.

Remark 1: The connection of prediction uncertainty and
differential privacy is illustrated below. If the attacker obtains
an observation S , differential privacy measures the probabili-
ties of it observing S given different sources while prediction
uncertainty considers the posterior probabilities of different
sources given S . Especially, because of the uniform prior

pG(I0),
pG(I0 6={i}|S)
pG(I0={i}|S) =

∑
j 6=i p

(j)
G (S)

p
(i)
G (S)

holds by the Bayes’
formula. Prediction uncertainty is an appealing metric in this
study as it measures the privacy guarantees from the source
prediction perspective with a much smaller cardinality than the
classic privacy budget (which requires the study of all pairs of
p
(i)
G (S) and p(j)G (S)). Moreover, given a prediction uncertainty
c, it can be shown that pG(I0 = {i}|S) ≤ 1

c+1 ,∀i, S ; therefore
a larger c indicates better source anonymity.

III. MAIN RESULTS

To facilitate our following analysis, we need the following
lemma and definition of decay centrality.

Lemma 1: Given any gossip protocol in a graph G, let
S ⊆ S and there are two constants w

(i)
G (S), w(j)

G (S) such
that p

(i)
G (S) ≥ w

(i)
G (S) and p

(j)
G (S) ≤ w

(j)
G (S). If the

gossip protocol satisfies (ε, δ)-differential privacy, then δ ≥
maxS,i,j(w

(i)
G (S)− eεw(j)

G (S)).
Lemma 1 readily follows from the definition of differential

privacy; its proof is omitted in the interest of space.
Definition 3: [11] Given a network G and a decay parameter

β, 0 < β < 1, the decay centrality of node i is defined as

Cβ(i) =
∑
j 6=i

βd(i,j), (4)

where d(i, j) is the length of the shortest path between node
i and j.

Remark 2: Decay centrality measures the ease of a node
reaching out to other nodes in the network. A large decay
centrality indicates the central positioning of a node and its
easiness to reach other nodes. The difficulty increases as β
decreases.

A. Privacy of Gossip Protocols in General Networks

Our main result concerning the privacy guarantees of general
gossip protocols in a general network is given below.

Theorem 1: Given a connected network G with n nodes
and diameter DG = maxi,j∈V,i6=j d(i, j), and considering the

observation model described in Section II-C with parameter
α, if a gossip protocol satisfies (ε, δ)-differential privacy for
any ε ≥ 0 and c-prediction uncertainty, then we have δ ≥ α
and c = 0 in the synchronous setting. In the asynchronous
setting,

δ ≥ max[α− eε(1− α)DG , α− eε 1− α
n− 1

] (5)

and

c ≤ min
i∈V

C1−α(i)

α
, (6)

where C1−α(i) is the decay centrality of node i with decay
parameter 1− α.

Sketch of proof: First, for the synchronous setting, let
Si,0 be the event that node i’s activity is observed by the
attacker’s sensors at time 0. Then, the probability that such
an event happens given the source node is i is p(i)G (Si,0) = α.
If the source node is any other node j 6= i, p(j)G (Si,0) = 0
since node i cannot initialize a communication if it is not a
source node at time 0. Therefore, δ ≥ α and c = 0.

In the asynchronous setting, let Si,0 be the event that
node i’s activity is observed by the attacker’s sensors
as its first observed event. It can be seen that, if the
source node is i, then p

(i)
G (Si,0) = p

(i)
G (Si,0|Ti,0)p(i)G (Ti,0) +

p
(i)
G (Si,0|T i,0)p(i)G (T i,0) ≥ α, where Ti,0 stands for the event

that the source node is detected during its first communication.
If the source node is j, we can consider the following event,
denoted as Od(i,j): there is no communication detected by the
sensors in the network after d(i, j) gossip actions have been
executed from the beginning. Then we have

p
(j)
G (Si,0) = p

(j)
G (Si,0

⋂
Od(i,j)) + p

(j)
G (Si,0

⋂
Od(i,j))

= p
(j)
G (Si,0

⋂
Od(i,j))

≤ p(j)G (Od(i,j)) = (1− α)d(i,j),

(7)

where the second equality is due to the fact that
Si,0

⋂
Od(i,j) = ∅, as it takes at least d(i, j) communications

for the information to be delivered to node i from node j.
Since p(i)G (Si,0) ≥ α, by applying Lemma 1, we have

δ ≥ max
i,j

(α− eε(1− α)d(i,j)) = α− eε(1− α)DG . (8)

On the other hand, since
∑
j∈V p

(i)
G (Sj,0) = 1, there exists

a node l ∈ V such that

p
(i)
G (Sl,0) ≤

1

n− 1

∑
j∈V,j 6=i

p
(i)
G (Sj,0)

=
1− p(i)G (Si,0)

n− 1
≤ 1− α
n− 1

.

(9)

This implies δ ≥ α− eε 1−αn−1 . By Eq. (8), we have

δ ≥ max[α− eε(1− α)DG , α− eε 1− α
n− 1

]. (10)
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(α = 0.3, n = 50, ε = 0.01).

Meanwhile, as we have p(j)G (Si,0) ≤ (1−α)d(i,j), the detection
uncertainty can be calculated as

c = min
i,S

(

∑
j 6=i p

(j)
G (S)

p
(i)
G (S)

) ≤ min
i

∑
j 6=i(1− α)d(i,j)

α

= min
i∈V

C1−α(i)

α
.

(11)

Remark 3: Some interpretations of the results of Theorem 1
are in order. It can be observed that the asynchronous setting
provides better privacy guarantees than the synchronous set-
ting, since the attacker has less information (i.e., the timing of
the events) in this case. Note that differential privacy considers
the worst case scenario. In the synchronous setting, when
the attacker detects the activity of a node at time 0, it can
infer that the corresponding node is the source immediately.
Therefore, the prediction uncertainty is 0 due to this worst-
case event, and the privacy guarantees are determined by the
attacker’s sensing capability α in the synchronous setting.
In the asynchronous setting, however, the attacker could not
directly infer the source solely based on the first-observed
event due to the lack of associated timing. A counter example
can be found in Fig. 1.

As a result, the structure of the network plays an important
role in the asynchronous setting. In the context of information
spreading, if two nodes are further apart, it takes more time
for the information to be spread from one to the other; this
duration gives the attacker more opportunities to differentiate
the detected events, which leads to potentially higher privacy
loss of the source node’s identity. For instance, in the left
network of Fig. 2, considering the event S1,0, i.e., node 1’s
activity being the first observed event by the attacker in the
asynchronous setting, the probability of this event given that
the source is 6 is p

(6)
G (S1,0) ≤ (1 − α) according to (7)

and the probability of this event given that the source is 1

is p(1)G (S1,0) ≥ α. But in the right network, the corresponding
probabilities are p(6)G (S1,0) ≤ (1 − α)5 and p

(1)
G (S1,0) ≥ α,

which makes S1,0 a more distinguishable event in the right
network. Therefore, the network diameter DG, as the distance
measure of the whole network, captures the potential privacy
loss and becomes a key factor of the differential privacy lower
bound in (5); an example of the relationship between the
differential privacy tolerance level and the network diameter
is shown in Fig. 3. The same logic is reflected on the
prediction uncertainty given in (6). The smaller the decay

centrality a network has (i.e., the nodes are more distant
from each other), the more likely the attacker can identify the
source node through its observations. Therefore, the inherent
network structure imposes certain limit on privacy preserving
concerning the source node identity, which applies to all
information spreading protocols and calls for other privacy
protection mechanisms, to be further explored in future work.

In addition, it can be seen that as the attacker’s sensing
capability α increases the privacy guarantees decrease (i.e., δ
increases and c decreases). In particular, for an omnipresent
attacker with α = 1, we have δ = 1 and c = 0 even in the
asynchronous setting.

B. Privacy-Spreading Tradeoff of Gossip Protocols in Wire-
less Networks
Considering that in many real world applications, the infor-
mation spreading between two nodes may be realized through
wireless communications [2], [12], the privacy guarantees of
gossip protocols in wireless networks are investigated in this
subsection. It is assumed that the communications between
the network nodes and between the attacker and its deployed
sensors are prone to errors due to various interferences. To
simplify the analysis, a failure probability is considered in
this setting: Due to interferences, the communications will fail
with a probability of f between two nodes during the gossip
step, and it is assumed that the attacker fails to receive a report
from any of its deployed sensors about the detected events
with the same probability f .2 Note that the failure probability
f , induced by detrimental effects in wireless channels, is
different from the detection probability α that is due to the
limitation in the eavesdropping capability (e.g., computation
power) of the sensors. In this case, the privacy guarantees of
gossip protocols are characterized in the following theorem.

Theorem 2: Considering the same setting as in Theorem
1, with the additional constraint that both the legitimate
communication and the adversarial reporting fail with a prob-
ability f , the gossip-based protocols can guarantee (ε, δ)-
differential privacy with δ ≥ α(1 − f) and c-prediction
uncertainty with c = 0 in the synchronous setting, and δ ≥
max[α(1−f)− eε(1−α(1−f))DG , α(1−f)− eε 1−α(1−f)n−1 ]

and c ≤ min
i∈V

C1−α(1−f)(i)

α(1−f) in the asynchronous setting.
Sketch of Proof: This follows from the previous results and

the details are omitted in the interest of space.
Adding artificial noise is a typical way to enhance privacy in

practical applications [14]. In wireless networks, interference
is a natural source for privacy enhancement as it hampers the
attacker’s observations of the network activities, which can
be further strengthened through approaches such as friendly
jamming [15]. However, the information spreading process is
impeded as well in such scenarios. The information spreading
time of the standard and the private gossip protocols in this
case is given below.

2As a first work in this area, this simplified assumption is adopted to
facilitate the characterization of the tradeoff between privacy and spreading
speed. More realistic assumption concerning two different but correlated
failure probabilities [13] warrants further study.
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Theorem 3: In a wireless network G in which the commu-
nications fail with a probability of f , we have

1) In the synchronous setting, the private gossip takes
CG/(1 − f) rounds on average to inform all nodes in
the network, where CG is the cover time of a random
walk in network G.

2) In the asynchronous setting, the private gossip takes
CG/(1− f) time on average, while the standard gossip
takes Tas/(1− f) time on average to finish spreading,
where Tas is the spreading time of standard gossip when
the communication is perfect.

Sketch of Proof: Private gossip is a single random walk on
the graph. The average time to inform all nodes is equal to
CG in both the synchronous and asynchronous settings. Given
a failure probability of f , the interstate time is amplified by a
factor of 1/(1−f). The same logic can be applied to standard
gossip in the asynchronous setting.

Remark 4: For standard gossip in the synchronous setting,
multiple random walks can exist during the spreading process,
which renders the analysis of unreliable spreading challenging
in general networks. But we conjecture that a similar result
as in the asynchronous setting may hold.

The above results indicate a trade-off between privacy
and spreading speed of gossip protocols, which is further
explored through simulations below. In particular, following
the existing literature in information spreading (e.g., [16],
[17]), Erdős Rényi (ER) networks and Geometric Random
(GR) Networks with a total number of n = 100000 nodes
and average node degree of 10 are considered. Each point
in the following figures is obtained through simulations with
5 network instances and 100 Monte Carlo runs for each
instance. The average 90% spreading time is considered [12].
The privacy-spreading tradeoffs for ER and GR networks
for standard gossip in the synchronous and asynchronous
settings are shown in Figs. 4 and 5, respectively. It is assumed
that α = 0.5 and privacy budget ε = 1 without loss of
generality. The corresponding privacy lower bounds δ in the
x-axis are calculated for the considered ER and GR networks
using Theorem 2 given the failure probability f (one-to-
one correspondence). Similar results are obtained for private
gossip and omitted here due to the space constraint.

Remark 5: Through analysis, it can be seen that the spread-
ing time is inversely proportional to 1− f while the privacy
lower bound δ is proportional to 1 − f . From Figs. 4 and
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5, it can be seen that when δ increases from 0.05 to 0.1,
for GR networks, the average spreading time decreases from
around 3600 and 2600 to 1800 and 1300 in the synchronous
and asynchronous settings, respectively. This means that we
can trade a small loss of privacy for dramatic improvement
in spreading time. On the other hand, for ER networks or
GR networks with large δ (small f ), the average spreading
time increases slowly as δ decreases. Therefore, the privacy
guarantees of gossip protocols can be strengthened with a
small loss of spreading time (e.g., the sweet operation points
in Figs. 4 and 5), which suggests that methods like adding
artificial noise can be useful in privacy-preserving information
spreading.

C. Privacy of Gossip Protocols in Delayed Monitoring

In reality, the attacker may not monitor the whole information
spreading process right from the beginning. In this section, we
try to quantify the differential privacy of general gossip proto-
cols when the monitoring is delayed. To avoid complication,
it is assumed that the communications between nodes and the
reception at the attacker are perfect. In addition, the attacker
knows the global time in the synchronous setting or the num-
ber of communication that has occurred in the asynchronous
setting since the beginning of information spreading.

Theorem 4: Considering the same setting as in Theorem
1, if the attacker starts monitoring the information spreading
process t rounds (or t steps of gossip communications in the
asynchronous case) after it begins and t < DG, the gossip-
based protocols can guarantee (ε, δ)-differential privacy with
δ ≥ 1

dtmax
α in the synchronous setting. In the asynchronous

setting

δ ≥max[
1

dtmax(t+ 1)!
α− eε(1− α)DG−t,

1

dtmax(t+ 1)!
α− eε

1− 1
dtmax(t+1)!α

n− 1
, 0],

(12)

in which dmax = maxi∈V di is the largest node degree.
Sketch of proof: In the synchronous setting, consider two

nodes i, j such that d(i, j) = DG, and the event that node
i’s activity is observed by the attacker at the moment when
it starts monitoring, which is denoted as Si,0. Considering



another node k such that d(k, i) = t, the probability that i
is informed at round t is

p
(k)
G (i ∈ It) ≥

∏
m∈pk→i

pk→i:L(pk→i)=t

1

dm
≥ (

1

dmax
)t, (13)

where pk→i is a path from node k to node i and L(pk→i)

is the length of this path. Then p
(k)
G (Si,0) ≥ ( 1

dmax
)tα. It is

clear that p(j)G (Si,0) = 0 since it takes at least DG > t rounds
for the information to be delivered to node i from node j.
Therefore, by Lemma 1, δ ≥ ( 1

dmax
)tα.

In the asynchronous setting, again, consider two nodes
i, j such d(i, j) = DG, and let Si,0 denote the event that
node i’s activity is the first one observed by the attacker.
If j is the source node, denote the set of informed and
active nodes after t steps of communications as INAt(j).
From this set, find the node k ∈ INAt(j) that has the
shortest path to node i. Clearly, it requires at least d(k, i)
(≥ (DG − t)) steps for the information to reach node i from
any node in INAt(j). Consider OINAt(j)→i as the event
that no communication is observed by the attacker during the
process that the information flows from INAt(j) to node i.
Then,
p
(j)
G (Si,0) = p

(j)
G (Si,0

⋂
OINAt(j)→i)

≤ p(j)G (OINAt(j)→i) ≤ (1− α)d(k,i) ≤ (1− α)DG−t.
(14)

Also, considering another node l such that d(l, i) = t, the
probability that node i is informed at the tth step from the
beginning of information spreading is

p
(l)
G (i ∈ It) ≥ (

∏
m∈pl→i

pl→i:L(pl→i)=t

1

dm
)
1

t!
≥ 1

dtmaxt!
, (15)

where 1
t! is the probability that all nodes in a path pl→i

are activated (whose clocks tick) in a fixed order so that
the information reaches node i after t steps from node
l. Finally, the probability that node i is activated and its
gossip action is observed by the attacker is α

t+1 . Therefore,
p
(l)
G (Si,0) ≥ α

dtmax(t+1)! . By Lemma 1 and the same logic as
Eq. (9), we have Eq. (12).

Remark 6: Gossip protocols are not able to protect the
source’s identity effectively during the early stage of infor-
mation spreading. As the spreading process continues, more
and more randomness is introduced, leading to stronger and
stronger privacy. Therefore, in delayed monitoring, it becomes
more difficult for the attacker to identify the source node as
the delay increases.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we investigate the privacy guarantees of gossip-
based protocols in general networks. In particular, it is found
that source anonymity is closely related to some key network
structure parameters, network diameter and decay centrality,
in the (arguably) more interesting asynchronous setting. In
wireless networks, through a simplified modeling for un-
reliable communications, the tradeoff between privacy and
spreading efficiency is revealed, and it is suggested that natural

or artificial interference can enhance the privacy of gossip
protocols with the cost of a decrease in spreading speed.
Finally, in delayed monitoring, it is verified that the privacy
of gossip protocols is enhanced as the delayed time increases,
and the corresponding effect is quantified.

Many interesting problems remain open in this line of
research besides those already mentioned above. For example,
if the attacker is able to measure the distance between any
two nodes in the network and rule out those unqualified nodes
given existing observations, how will such strategies influence
the privacy of gossip protocols? In addition, how can we
measure the privacy of gossip protocols against different ob-
servation models (e.g., network snapshot [6])? These problems
are worth further investigation in future work.
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