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Abstract—User mobility profile (UMP) is a combination of his-
toric records and predictive patterns of mobile terminals, which
serve as fundamental information for mobility management and
enhancement of quality of service (QoS) in wireless multimedia
networks. In this paper, a UMP framework is developed for esti-
mating service patterns and tracking mobile users, including de-
scriptions of location, mobility, and service requirements. For each
mobile user, the service requirement is estimated using a mean-
square error method. Moreover, a new mobility model is designed
to characterize not only stochastic behaviors, but historical records
and predictive future locations of mobile users as well. Therefore,
our approach incorporates aggregate history and current system
parameters to acquire UMP. In particular, an adaptive algorithm
is designed to predict the future positions of mobile terminals in
terms of location probabilities based on moving directions and res-
idence time in a cell. Simulation results are shown to indicate that
the proposed schemes are effective on mobility and resource man-
agement by evaluating blocking/dropping probabilities and loca-
tion tracking costs in wireless networks.

Index Terms—Mobility and resource management, quality of
service (QoS), user mobility profile (UMP), wireless network.

1. INTRODUCTION

IVERSE mobile services and development in wireless net-

works have stimulated an enormous number of people to
employ mobile devices such as cellular phones and portable lap-
tops as their communications means. The most salient feature
of wireless networks is mobility support, which enables mo-
bile users to communicate with others regardless of location.
It is also the very source of many challenging issues, relating
to the mobility and service patterns of mobile terminals (MTs),
namely, user mobility profile (UMP). For each mobile user, a
UMP consists of detailed information of service requirements
and mobility models that is essential to quality of service (QoS)
and roaming support. The applications of UMP can be catego-
rized as follows:

* Development and analysis of handoff algorithms. One
of the most important QoS issues is to design efficient
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handoff algorithms to reduce handoff-dropping proba-
bility caused by bandwidth shortage and mobility when
mobile users move from one cell to another [8], [23].

e Call admission control (CAC) and resource management.
An efficient CAC algorithm demands the knowledge of
UMP in order to accommodate the maximum number of
users or to yield maximum system throughput [11], [12].

* Routing optimization. User mobility information can also
be used to assist traffic routing in wireless networks to ease
the bottleneck effect in overloaded base stations or access
points [13].

* Location update and paging. Many mobility management
schemes utilize UMP to improve system performance with
regards to reducing signaling costs and call loss rates [6],
[21].

Since mobility and resource management are critical to sup-
porting mobility and providing QoS in wireless networks, it is
very important to describe movement patterns of mobile objects
accurately. In [1], the location probability at the time of a call
arrival is calculated by assuming that the MTs take the shortest
paths when they move from one cell to another with four pos-
sible directions. Another prediction method is proposed in [5]
in which the next probable cell is determined based on path in-
formation. In [13], a hierarchical location-prediction algorithm
is described in which a two-level user mobility model is used
to represent the movement behavior at global and local levels.
The next cell is predicted by considering speed and direction of
a user’s trajectory. Through estimation of mobile users’ trajec-
tory and arrival/departure times in [4], a group of future cells
are determined, which constitute the most likely cluster into
which a terminal will move. In order to predict resource de-
mands, two methods are proposed in [23]. One of them is based
on the Wiener Process which predicts the bandwidth require-
ment according to current bandwidth usage. The other method
is to use time series analysis on the premise that future demand
increments are related to past variations.

To summarize, most of the existing methods are aimed at
finding the most probable cell [4], [5], [13]. However, when an
MT moves quickly in micro-cell networks, the short residence
time in a cell may not allow computations in every cell, i.e.,
next-cell prediction. Also, there are very limited efforts on es-
timating a group of probable cells or a cluster of cells without
considering the historical records [1], [4], [6]. Often, the de-
mand for multimedia services is not taken into account, which
is critical for efficient resource management. Furthermore, UMP
is not well defined, which should consider the characteristics of
users’ mobility and service patterns.
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Therefore, a framework for UMP is proposed in this paper,
which includes the following contributions.

* A zone concept is proposed to add an additional level of lo-
cation description to differentiate varying future locations
of a mobile user depending on its moving direction, thus
reducing computation overhead.

* A new framework of user mobility profile is designed to
incorporate service requirements and the mobility model,
including long-term and short-term information.

* By using an order- L Markov predictor, the service require-
ments of a mobile user are predicted based on the most re-
cent k records, aiming to minimize the mean-square error.

* An adaptive prediction algorithm is developed to predict a
group of cells into which an MT will move by considering
historical records, path information, moving direction and
speed, cell residence time, and tradeoff of computation
overhead.

* The implementation and the effectiveness of the proposed
scheme for mobility and resource management is dis-
cussed with respect to system performance and overhead.

The rest of this paper is organized as follows. In Section II,
a system model and a new concept of zone is for location de-
scription. In addition, a new mobility model, including stochastic
model, historical records, and predictive trajectory, is described.
In Section III, the framework of UMP is defined, and it is cate-
gorized into quasi-stationary and dynamic UMP. The estimation
and prediction algorithms of service requirements and future lo-
cation probabilities are presented in Section I'V. In Section V, we
describe the simulation model and the parameters used in our ex-
periments. The effectiveness, applications, and overhead of the
proposed schemes in mobility and resource management are dis-
cussed in Section VI, followed by conclusions in Section VII.

II. SYSTEM MODEL, LOCATION DESCRIPTION,
AND MOBILITY MODEL

In this section, we describe a system model based on cellular
networks, and we present a new concept, zone partition, and a
mobility model for a more precise location description.

A. System Model

Consider a mobile wireless network with a cellular infrastruc-
ture, e.g., General Packet Radio System (GPRS), which may be
one of several macro-, micro-, and pico-cell systems. This wire-
less mobile network provides diverse service applications such as
voice, audio, data, and video. A typical network is composed of
a wired backbone and a number of base stations (BSs). Each BS
is in control of a cell, and a group of BSs are managed by a mo-
bile switching center (MSC) in the circuit-switch domain and a
serving GPRS supporting node (SGSN) in the packet-switch do-
main. The service area is divided into location areas (LAs), and
each LA consists of a group of cells. If an MT is moving from
one cell to another cell belonging to another MSC, location reg-
istration and identity authorization need to be carried out.

Since each LA consists of a number of cells, we propose a
zone partition concept to improve the granularity of location
description. A zone is a subset of an LA, which is composed
of a group of adjacent cells. We expect that the MTs in the same
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Fig. 1. Zone partition.

zone demonstrate the same, if not similar, movement behavior.
For example, in Fig. 1, the coverage of an MSC-A is an LA, and
there are two MTs, « and 3, which are currently located in the
coverage area of MSC-A and may possibly move into the area
of MSC-B and MSC-C, respectively. The service area of each
MSC is divided into n zones (n = 7). If we know that MT (3
is moving south, it is most likely that it is going to move into
zone 3. Therefore, we incorporate an MT’s movement direction
and position (zone) to provide a more accurate prediction of the
MT’s mobility pattern than simply using the LA information.

B. Location Description

Based on our description in Section II-A, locations can be
specified at three levels. In other words, a mobile user’s current
position can be represented as follows.

* Location Area: As shown in Fig. 1, the current location
area ID is available in home location register (HLR) and
visitor location register (VLR) because an HLR is a cen-
tralized database that maintains permanent information of
mobile users, whereas VLR keeps the up-to-date locations
of visiting mobile terminals.

* Zone Partition: The granularity of LA is not sufficient to
predict future locations. Thus, zone partition is used to
describe more accurate information of an MT’s current
position and to estimate next position due to the continuity
of movement.

* Cell ID: In order to maintain an active connection for a
mobile user, it is most important to know in which cell the
mobile user is located. The network knows in which cell an
MT resides by sending polling messages, which can be ac-
quired without additional cost during call origination/ter-
mination, or through location client service (LCS) man-
agement. The details of implementation are introduced in
Section VI-C.

The ultimate goal of this work is to estimate the next cells into
which a mobile user will possibly move. The prediction of future
LAs is beyond the scope of this paper, and more information can
be found in [2]. In this study, we focus on how to predict possible
future cells. It is worth mentioning that most information about
mobile users is subscriptive and aggregate information collected
and stored in current wireless systems for location management,
such as destination address and stored location area ID in 3GPP
specifications [19].
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Fig. 2. Moving direction.

C. Mobility Model

There are many mobility models that describe stochastic char-
acteristics of random movement with regard to mobility scale,
varying randomness in direction, speed, and residence time, and
geographical circumstances [7], [20]. In this paper, we propose
a mobility model that considers stochastic behavior of mobile
users, e.g., residence time within a cell, historical records, and
predictive location patterns in terms of location probabilities.
There are five components in this model to characterize the
movement of a mobile user.

* The MT’s residence time in a cell is represented by a
random variable 7", which has a Gamma distribution with
probability density function (pdf) [2], [14], [15]. Gamma
distribution is selected for its flexibility because, given dif-
ferent parameters, a Gamma distribution can be an expo-
nential, an Erlang or a chi-square distribution. The pdf
of an MT’s residence time with Gamma distribution has
Laplace transform @, 7(s) with the mean value 1/4 and
the variance V. Then

@t = (F2)

1=

where

ey

The mean residence time of this distribution (1) is
E.[T] = 1/p. We assume that the residence time of an
MT in each cell is independent throughout this paper.

* The MT’s current direction 6,,() is collected through real-
time monitoring, which can be initiated by the serving BS.
The MT’s current direction is defined as the direction from
its previous position to the current position. Here we de-
note ,.(t) as the moving direction of the MT =, which is
defined as the degree from the current direction clockwise
or counterclockwise, i.e., —m < f < 7. Fig. 2 shows the
probable cells in the shadow cluster for § = [—7 /2, 7/2]
when the current direction is from west to east.

* Moving speed: The MT is allowed to move away from its
current position in any direction, and variation of the MT’s
direction based on its previous direction is a uniform dis-
tribution in the range of +7/2 [9], [22]. The initial ve-
locity of an MT is assumed to be a random variable with
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Gaussian pdf truncated in the range of [0, Vi,.x km/h],
and the velocity increment is taken to be a uniformly dis-
tributed random variable in the range of Av% of the av-
erage velocity V /h.

¢ Historical records: In this context, we trace the historical
records of an MT by using a trace records matrix (TRM)
of L x M, where L is the total number of records and M
is the total number of cells that an MT has traversed in the
period of observation. The element go5, @ = 1,2,...,L,
B =1,2,...,M, of the TRM denotes whether the MT
has traversed a cell. The matrix G can be written as

gi1 912 9gim

grL1 9r2 gLm

and g, is given by
L,

Gap = 0.

* Predictive future locations: The probabilities that an MT
will be in other cells at time ¢ is denoted as P, ;(¢), given
that the current serving BS of the MT z is ¢. The serving

BS of an MT is expected to determine location probabili-
ties and notify other BSs with this estimation. Then

if the MT has entered this cell
otherwise.

3

ﬁrz(t) =[Prio(t) Pri1(t) Puyio(t) -+ Poin(t)] (4)

where IV is the total number of cells for the estimation.
This number is closely related to the scope of location
prediction. In reality, the prediction is valid for a specific
time period. Given the moving speed of an object, the max-
imum distance that an object can travel within a time pe-
riod can be determined. Thus, the maximum number of
cells that cover the maximum distance can also be decided
accordingly.

III. USER MOBILITY PROFILE FRAMEWORK

In order for wireless networks to support different bandwidth
reservation and mobility management strategies, the system
must be able to dynamically and adaptively maintain historical
records and predictive locations of mobile users online. The
historical records can be collected from the user’s subscription
such as the user’s information stored in and the HLR for cellular
systems or during the origination or termination of a session for
the purpose of quality monitoring and billing. On the contrary,
future positions must be predicted based on historical records
and mobility-related parameters such as current position, di-
rection, and speed [9], [22]. In the proposed framework, the
predictive records are referred to as the location probabilities
of the cells in the shadow cluster and the estimated service type
during an MT’s roaming into other cells. There are two types of
data in the new UMP. The first type is called quasi-stationary
UMP, which represents the MT’s information that changes
infrequently or that can be obtained from network databases.
This includes both subscriptive and historical information. The
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other type is called dynamic UMP, which changes over time or
cannot be obtained from network databases.

A. Quasi-Stationary UMP

An MT’s quasi-stationary information includes an MT’s cur-
rent network characteristics, calling pattern, and service require-
ments. In wireless networks, a mobile user receives its mobile
services by subscribing to a home network. For example, a user
can subscribe to a service package, which is the combination
of different service classes. Such information will remain un-
changed for a long In other words, this information may remain
unchanged for a certain period of time. Therefore, such informa-
tion can be referred to as quasi-stationary UMP. We denote this
long-term information as a quadruple, AS =(T., 0, V,,D,)
for an MT z. Here, we consider that each element of A,? is
a component of a vector, which indicates a specific character.
Thus, I',, Q,, U, and ®, are the elements of vectors ', Q, ¥,
and ®, respectively, which are elaborated as follows.

* Network ConfigurationT' = {T'y,T'y,---, Ty }. Thisis a
vector that identifies different network architectures, such
as pico-cell, micro-cell, macro-cell, and satellite systems.
W is the number of the registered networks among which
an MT is allowed for seamless roaming. At a specific time
instant, an MT must be located in a network, e.g., [',.
This information is not required from users; instead, it
is recorded in the network entities such as an HLR and
VLRs.

 Time Period @ = {Q1,Qs,---,Qg}. This set identifies
different time periods of one day. S is the cardinality of the
set, i.e., the maximum number of time segments divided
within 24 h. In current cellular networks, time segments
relating to accounting are categorized into peak time, non-
peak time, weekends, and weekdays and are decided by
service providers.

* Service Description® = {W, Uy, .- Wy} This setrep-
resents service requirements such as bandwidth require-
ment and end-to-end delay. U is the total number of ser-
vice patterns allowed in the network. Each element in this
set provides the probability mass function (PMF) over a
particular sampling space of service types as described in
Section III-B. For example, ¥,, € ¥ is used to represent
the PMF of an MT z and its corresponding sample space
A,.

* Calling Pattern ® = {®q, Py, ---, Dy}, where V is the
cardinality of the set. Each element is related to the de-
scription of calling events, which can be different from
one user to another. However, in most of the existing net-
works, the calling patterns are defined based on a group
of mobile users so that computation complexity can be
simplified and scalable. A calling pattern may include the
probability distribution of calling arrival time, call holding
time, and call origination rate.

B. Dynamic UMP

The quasi-stationary UMP provides long-term information of
mobile users. In order to satisfy real-time prediction require-
ments, we also need to consider data that changes from time
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to time such as moving direction, speed, and service type. This
type of information is referred to as dynamic UMP. Our objec-
tive is to derive or estimate dynamic UMP information based on
quasi-stationary UMP. We focus on the predictive records that
are derived from the mobile user’s previous service and mobility
information. We assume that locations are independent of ser-
vices in this context because they can be reflected in the network
configuration. In particular, we examine location probabilities
and service type because these two metrics are the most often
used parameters for mobility and resource management.

Let AP = [a2, P, (t)] denote the dynamic UMP for the
MT =z at time ¢. The first element o is the service type that x
will request, and the second item f‘m (t) represents the estima-
tion of location probabilities given that the MT z is currently in
cell <. Location probabilities are used to represent the likelihood
of an MT’s presence in a cell. For single-cell location estima-
tion, there are only two possibilities: 1 or 0, in accordance with
whether an MT will be in a cell or not, respectively. Since it is
unrealistic to represent an MT’s movement by a single random
variable, we use location probabilities to describe the result of
many factors, such as mobility models, changing directions, and
geographic conditions. This method is widely used in the re-
search of handoff, location tracking, and mobility management
(81, [18], [21].

In this context, we use PMF to describe different service re-
quirements, which are offered to subscribers in terms of service
packages, covering the most popular service requirements of
mobile users. In other words, each service pattern has a specific
PMF with regard to each service type. For a discrete random
variable, service type Y, the PMF ¢(a) of Y over a sample space
A is defined by

Y(a) =Prob{Y = a}

Z P(a) =1.

acA

)

For a particular MT =z, the service pattern is denoted by V..
The PMF can be decided either by the network administrators
or by accumulating the mobile user’s records. The algorithm
for estimating o7 will be illustrated in Section IV-B. One of
the main tasks of predicting and computing UMP is to deter-
mine I_;zz(t) The sequence of cells that will be visited by the
MT constitutes a random process, with location probabilities
P, ; j(t), which is the probability that an MT =, residing in cell
1, will be in cell j at time ¢. The location probabilities I_i“(f)
are calculated by the serving BS based on the MT’s historical
records, current position, velocity, and moving direction.

IV. MEASUREMENT AND PREDICTION ALGORITHMS

A block diagram of the algorithms proposed for service and
mobility prediction is illustrated in Fig. 3. We start with the ac-
count of the UMP framework by explaining the parameters used
for prediction. Then, we discuss the description and prediction
of service requirements. Afterwards, we present the prediction
algorithm of location probabilities.
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Fig. 3. Flowchart of computing a UMP.

A. Flowchart of the Algorithm

First, given the network infrastructure by I',., the cell radius
and network configuration are then available. Second, the time
period 2, € AS is one element in 2. The direct information
corresponding to a particular timing period is the moving ve-
locity and the pdf of an MT’s residence time in a cell, which
depend upon traffic conditions. Then, the service description is
given by U, € AQ, with PMF ¢, (a) and its corresponding
sample space A . Finally, the calling pattern of the MT is de-
scribed by @, € A,?, relating to the incoming/outgoing call dis-
tribution and call holding time. This information will be used for
resource allocation in possible future cells.

In addition to predicting location probabilities, we estimate
the next service request based on the PMF of service patterns
as well as historical records shown in box C of Fig. 3. The his-
tory of service requirements is known to the network because
of billing and service management. Thus, this information does
not require extra effort and can be utilized efficiently.

B. Service Description, Measurement, and Estimation

The aim of our algorithm is to minimize the estimation error
between the estimated service type and the real value. The future
service pattern is estimated based on an a priori PMF of service
patterns, 1, (a). First, we assume that the service pattern of an
MT can be represented by a random variable Y. The PMF of
this random variable is 1),.(a), which is the probability for value
Y = a. The sample space of service types is denoted by A,.
For example, there are four samples in A, i.e., there are four
different services which may be requested by an MT, such as
voice, data, audio, and video, corresponding to values 1, 2, 3,
and 4, respectively. We define a PMF vector F(V,,) as

where 1,.(+) is the probability of each service type for a € A,
and K = |A,] relating to ¥.

Then, we consider an order-L Markov predictor, which as-
sumes that the service can be predicted from the most recent
values in the service history, which is

Ba(L) = [ho(t) ha(te) -+ ha(t)] M
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where L is the length of historical records and h,(ty) is the
service that the MT x has requested at time #y,.

If we think of the user’s service requirement as a random
variable Y, and Y (7, j) is a string Y;Y; 41 . . . Y; representing the
sequence of values that Y takes forany 1 < < 5 < L, then the
Markov assumption is that Y behaves as follows, for all a € A.:

Prob (Yn+1 —alY(1,n) = ﬁm(L))
=Prob (Y41 =alY(n—L+1,n)=c)
=Prob (Yiyry1 =alY(i+ 1,i+ k) =¢) (8)

where the notation Prob(Y,,+1 = a;|...) denotes the proba-
bility that Y; takes the value a;. The first line indicates that the
probability depends on only the most recent L records, while
the latter two lines indicate the assumption of a stationary dis-
tribution. We denote the probability that the next service type
takes the value a as 1)(a) as follows:

b (a|ﬁw(L)) = Prob (YL+1 - a|ﬁz(L)) )

—

We also notice that history records h, (L) and the new esti-
mate a will result in an estimate PMF

N(yi, L+1)+1 ify, =
> e ’ Yi = a
by Y :a,th): Ll
(i ") { Nt iy, 2
(10)
where y;, for: = 1,2---, K, is one of the values in the sample

space Ay, and N(c,d) denotes the number of times that value
¢ occurs in the number d historic records.

As a result, we can generate an estimate PMF vector, which
shows the frequency of each service request for a € A,. We
denote this PMF as F(¥,) as follows:

Fo(0,) = [1/; (yl = 1|Yp41 = a, by L)) ,
))

(
W (yi =2|Yz41 = a,h,(L

b (re = KVir = o Ba(D))] . (1)
We predict the next service requirement by minimizing the
mean-square error between the prior PMF and the estimate
PME. Consider that the mean-square estimation of the random
variable Y is to find an optimal constant a that minimizes e

e=E{(Y -a)’} = /(Y—a)2f<y)dy (12)

where f(y) is the pdf of a continuous random variable Y. For
the discrete random variable Y, which follows the PMF, U, the
above equation is rewritten as

e= Y (yi—a)Pa(y:) (13)
yi €Ax
where a is one of the values of y1,vy2, -+, vi, -, YK
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Fig. 4. Estimation of service type.

However, this definition cannot indicate the relationship be-
tween the history and the selection of an optimal value, showing
that an optimal value is selected independently of the previous
records of the random variable. When we consider historical
records in our estimation, it is necessary to take into account
the historical effect on finding an optimal value. In this con-
text, this effect is represented by the estimate PMF for an es-
timate value. Accordingly, the objective of the estimation is
to find an optimal value af that can minimize the difference
between the prior PMF vector F(¥,) in (6) and the empir-
ical PMF, F', (¥ (b|h, (L)), in (11). Therefore, we define mean-
square error between these two vectors e, (a|hy (L)) as

s (alfix(L)) =%i bulwr) = b (wlVesr=a B(D))
i=1
(14)

where K is the cardinality of Ax. By applying the minimum
square error for the estimation, the estimated result of the next
service type is

agﬁm(L) = arg Min {5_77 (a|ﬁx(L))} . (15)

~——
A

Therefore, the estimation is determined by both the service PMF
and historical records.

During the implementation, we consider that an MT’s histor-
ical records will be updated in the VLR/SGSN and HLR during
the connection origination stage. Then, we can proceed to esti-
mate the future service type a2 by examining each service type
a € A,. Each service type in the sample space A is selected
sequentially and input to the square error calculator together
with the historical records, as shown in Fig. 4. The results of
this calculation are then input into a decision maker to obtain
the most probable service type with minimum error. Finally, the
corresponding service type « is chosen as the estimated ser-
vice pattern. This method guarantees that the estimated service
pattern fits well with the known PMF. If an MT is not in the
progress of a call and its next probable service request is esti-
mated as a, then the bandwidth that needs to be reserved can
be determined by substituting &2 in (15) for a in (28).
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C. Prediction Algorithm of Location Probabilities

In this study, we develop an algorithm which takes several
important factors into account, while providing a suboptimal
maximume-likelihood estimation.

1) Assumptions and Parameters: We assume that the MT’s
residence time in a cell is represented by a random variable 7',
which has a Gamma distribution with a pdf. First, we need to
assume and measure the following parameters described in Sec-
tion II-C.

* The pdf of the residence time is described by a Laplace
transform @, r(s) in (1), with a mean of (1/4) and vari-
ance of V.

* The MT’s current position is represented at three levels,
as described in Section II-B. The zone partition can be
obtained by knowing the cell ID.

* The MT’s current direction ¢,(¢) and speed v(z) are col-
lected through real-time monitoring, which can be ini-
tiated by the serving BS, as explained in Section VI-C.
The initial velocity of an MT is assumed to be a random
variable with s Gaussian pdf truncated in the range of
[0, Vinaz km/h].

* Historical records are available in the form of a trace
records matrix (TRM) of L x M as in (2).

* Path database (PD) is a part of the digital map database,
which is obtained by discretizing a map into small seg-
ments, and each segment has many routes along with their
relationship to others. This information is available for
many applications, such as finding directions from one lo-
cation to another.

* We also assume that an aggregate historical path database
DH is retrievable in the network administration center.
Each record in this database is the previous path that the
MT =z has traversed.

Note that the path database DX is different from trace ma-
trix G. The former shows the cells in the sequence of an MT’s
travels, while the latter may be organized in an order of cell IDs.
The objective of a TRM is to determine future cells given the tra-
jectory of an MT, whereas the path database objective is to find
the similarity of an MT’s movement.

2) Prediction Algorithm: There has been some success of
varying degrees on determining location probabilities, which is
mainly focused on determining the next cell based on the mea-
surement of signal strength without considering road conditions
and an MT’s historical behavior [13], [17]. In this study, we dis-
tinguish those probable cells under the following constraints:

* The maximum distance: for a certain time period AT, the
maximum distance of an MT’s traveling is AT X Vijax,
where V.« is the upper limit of moving speed. Therefore,
given the cell radius, we can obtain the maximum number
of cells that an MT can traverse, i.e., the maximum number
of cells to be considered in the prediction.

* The future zones: by considering the maximum distance,
we can determine a group of cells into which an MT can
possibly move. However, this set can be further reduced
when we consider moving direction and the MT’s current
position.
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* The prediction level: similar to all of the prediction-based
schemes, our algorithm inevitably involves overhead for
computations and communications. The higher the predic-
tion levels, the more complicated the computations, which
result in more accurate predictions because more cells are
considered. The details of prediction level are described in
Section IV-C2b.

* The repetitive movement: we assume that an MT has a
repetitive moving pattern. Therefore, if a route in a cell
has been traversed by an MT before, which is shown in
’Df , then we consider this cell to have higher location
probabilities, i.e., the MT is more likely to move into this
cell.

* The path information: to be realistic, we take the path in-
formation into account. For a given part of the digital map,
we assume that it is covered by a number of cells. Each cell
has a set of routes. If a cell consists of a route that is con-
tinued from the current cell in which an MT resides, then
this cell has a higher location probability. In this way, we
combine the effect of historical records as well as path in-
formation.

The prediction of location probabilities involves many param-
eters, which cannot be simply represented by a mathematical
predictor. By considering the above constraints, we will achieve
a suboptimal estimation with maximum likelihood. In our pre-
diction, first we will find the most probable cells, based on the
MT’s: 1) current position; 2) moving speed; 3) prediction level;
and 4) direction. Then, we will examine each cell in accordance
with the last two elements.

a) Estimation of zones: For the sake of simplicity in pre-
sentation, we consider a wireless network with hexagonal con-
figuration for the remainder of this paper, although arbitrary
shape configurations can also be covered by our solution. Here
we denote the position of an MT by coordinates at a specific
time in an example of seven zones. In Fig. 5, let [.(t) = Z rep-
resent the MT currently in zone 0 and let () represent the cur-
rent moving direction of the M T, which is the direction variation
derived from the previous direction. This coordinate system is
defined with its origin at the current location of the MT, i.e., the
MT is always in its origin, and its previous direction is the posi-
tive direction of the z axis. The y axis can be obtained by turning
90° counterclock-wise from the x axis. Thus, the MT’s position
can be represented by X (p.(t),6..(t)), as shown in Fig. 5. This
coordinate system is dynamic in the sense that its origin and
axes’ orientation change over time.

Assume an MT is moving from point O toward A; thus, its
next position may be in zone 1, Z;. In general, the future zone,
Case k (1 <k <n —1), can be determined as

if 6,(t) > 0

]
Ze=24 1 %

(16)

=1 [0 i, () < 0
where 7 is the total number of zones and 6y is the angle of each
zone. By default, we always consider Z to be included in the
UMP. It is possible that more than one zone is involved in esti-
mating location probabilities since it is difficult to differentiate
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Fig. 5. Coordinate system with zone partition.

an MT’s position around the boundary of zones. Thus, we ex-
tend possible zones for Case k (n < k < 2n — 1) as follows:

1
|6 (¢)] (mod 7) < 3 - 0o
~» Casen — Z,_1 and Z;
1
|6..(t) — 6o] (mod 7) < 3 bo

~» Casen +1— Z; and Z,

-0y

W=

|62() = (n = 2) - bo|

~ Case2n —1— Z,_sand Z,_1.

(mod ) <
a7

In the example shown in Fig. 5, n = 7 is the number of zones,
and 6y = 7/3 is the angle of each zone. Although the selected
zones can shrink the number of probable cells, it is not sufficient
to identify the probable cells. Next, we will further approach
those probable cells by considering velocity v,,(t) and residence
time distribution.

b) Prediction level: Basically, the more cells or larger
areas considered in the prediction, the better the approximation
that can be reached, requiring more computations. To balance
the computation and estimation accuracy, we introduce a new
concept called prediction level to describe the influenced region
of the shadow cluster of an MT. According to the concept of
shadow cluster, the influenced cells are a group of cells sur-
rounding the cell in which the MT is residing. Thus, we always
start from a current cell, which is the center of a shadow cluster.
The vicinity of the current cell can be denoted according to its
distance away from the center cell. If a cell is adjacent to the
current cell, then it is in the first layer of the current cell. The
cells adjacent to the first-layer cells form the second layer of
the current cell. If the estimated cells cover only the cells of
the first layer, then it is called first-level prediction. Similarly,
the second-level prediction is associated with both first- and
second-layer cells.
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The definition of the prediction level is related to the accu-
racy of a prediction and can also be used as a QoS constraint,
as well. For the first level of prediction, only six cells are con-
sidered, i.e., the computation is not very complicated. On the
other hand, if the network should provide location probabilities
with the second level of prediction, there are eighteen cells, in-
cluding the first- and second-layer cells. Correspondingly, the
complexity of computation increases, which is demonstrated
in Section IV-C. Note that some second-layer cells may have
higher location probabilities than some cells in the first layer,
based on an MT’s movement pattern. One example is that an MT
traveling on a highway is more likely to be in the second-layer
cells along its movement direction than the first-layer cells be-
hind its trajectory or off the highway.

c) Calculation of the number of cells: Mobile users’ ve-
locity can be influenced by circumstances including geograph-
ical condition and timing period. For example, in an urban area
in which there are many buildings, MTs are forced to travel at
a low speed with diverse direction changes. On the contrary, in
rural areas, MTs can travel at a higher speed and change direc-
tion infrequently. The maximum distance traveled by an MT can
be determined by a knowledge of the upper and lower velocity
bounds of an MT.

We compute the number of cells that an MT could have trav-
eled during the time window AT". We consider that the MT goes
through a cell with the mean residence time in a cell. The av-
erage distance, d,(t), that an MT may travel along one direc-
tion, in terms of number of cells, is obtained by

)

Note that d,(¢) may be greater or less than the required pre-
diction level O, (¢) at time ¢ for a terminal z. If the former is
the case, the O,(t) will not affect the computation of prob-
able cells, which means that the estimated region covers the
area specified by O..(t). However, if the latter is the case, then
the computed region cannot cover the area that is required by
the prediction level. In this scenario, it is necessary to enlarge
the calculation range to meet the requirement of O,.(t). We de-
note N, (r : t = max{d,(t), O.(t)}, k), which is rewritten as
N..(r : t, k) in short, as the number of probable cells in the mo-
bility profiles with order r at time ¢ for Case k. The simplest
scenario is d, (t) = O, (t) = 1; the number of the probable cells
for Case 1in (16), N (r = 1 : ,1), can be calculated by the
following formula as there are six cells in the first layer:

0]

dy(t) = (18)

19)

Ny(r=1:t1)= [6-
2m
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The second layer includes two parts, one of which is the first-
layer cells and the other is the second-layer cells which fall into
the zone, that is

N.(r=2:t1)= <1+ {6~ |9;5?'D+ <1+ {2-6-'%—9'}) .
(20)

One additional cell is added to each item in (20) because we con-
sider the worst-case scenario to be two incomplete cells falling
into the probable zones. Similarly, we can have a general form
for calculating the number of probable cells in the mobility pro-
files, N, (r : t, k), shown in (21) at the bottom of the page. For
the Cases of n < k < 2n — 1, the number of cells is doubled
since there are two possible zones resulting from the moving
direction. Notice that the cells included in our illustration are
those that fall into the zone partitions and within the average
order d.(t) or prediction level O, (t). The set or sample space
of the mobility profiles is denoted as NV, (r : ¢, k), and each cell
that belongs to this set is denoted by X € N, (7 : ¢, k).

d) Prediction of location probabilities: Thus far, we have
determined the total number of probable cells and the set of
those cells. Now, we must estimate the location probability for
each cell. We observed that, for a particular cell, the number
of paths or travel routes is finite, i.e., the MT is moving among
finite states. The P, ; ;(t) forj = 1,2,---, N,(r : ¢, k), which
is the probability that an MT x currently in cell ¢ will be in cell
j during the timing window AT is computed by performing the
following procedures.

* Step 1: Select a value from 0 < py < 1 as the initial point
for computing the location probabilities.

e Step 2: Start from the bottom line of the TRM and take
the last two nonzero elements of the TRM to make a tem-
porary path P, as shown in Fig. 6(a).

* Step 3: Compare the path P to the equal or close segment
in PD as shown in Fig. 6(b). There may be a set of cells
that can be the next cell along with path P, which is repre-
sented by a set P5 . Each element of this set, X; € P2, is
a probable cell in Fig. 6(c) and which provides a possible
path, P(X;).

* Step 4: Estimate location probabilities, P, ; ;(t), by per-
forming the process shown in Fig. 7. This algorithm starts
by examining each cell in the set of possible cells, X; €
P2, and the total number of cells in this set is NV, (7 : ¢, k)
from (21). If a probable cell X is in the first order of pre-
diction and its corresponding path ﬁ(X ;) can be found in
the historical path database Df , then this cell X; has the
highest location probabilities. This emphasizes the impor-
tance of prediction constraints and user history. Addition-
ally, as the probable cells get further away from the MT’s

N.(r:t, k)=

2-(k—1+[6-'9;ff>']+{2-6-

k—1+{6-‘0§$)| +[2-6~%]+~-~+[1«6~

ifl<k<n-1

2T

[0 (t)]
[ @1
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Fig. 6. Prediction of location probabilities.

po := initial value of the highest probability
P := temporary path of TRM
P3 = set of probable cells in PD along path P
P(X;) := possible path of cell X; € P
Na(r k) = Np(max{o,(t),0.(t)} = r : t, k)
P, ;j(t) := location probability at cell j given an MT z
is currently in cell %
P,y := threshold of probability computation
while n < N,(r: ¢,k) do
for all X; € P? do
if X; € Ny(1:t,k) and P(X;) € DY then
Prij(t) =po
else
case: X; € N,(2:t,k)and P(X;) € DF
Pyij(t) = 5po
case: X; € N;(2:t,k)and P(X;) ¢ DY
Prij(t) = ipo
case: X; ¢ (No(1: 4, k) UNL(2: L, k)) and P(X;) € DY
Prii(t) == po
others :
for all » > 2 do
while P, ; (1) < Py do
case: X; € Ny(r: t,k)
Prij(t) = (3)'po
case: X; ¢ No(r:t,k)
Prij(t) = (3)Po
end while
end for
end if
end for
end while

Fig. 7. Estimation of location probabilities (step 4).

current position, and they are not relevant to the historical
paths, the location probabilities decrease. This examina-
tion continues until all cells in the possible set are scruti-
nized.

000nKOOOO

0001000

c7700000 0 «ee

1029

Probable Cell
0000DO 0O

500013000

<170 0 00 0 0 .-

(b)

'

Aggregate Historic Path

As aresult, a sequence of location probabilities is obtained in
terms of py, where pg can be solved by applying the following

expression:

~~
F€(PS [N (rit,k))

P,;;(t) =1 (22)

V. SIMULATION MODEL

In this section, assumptions and specifications used in the
simulation are described. Instead of assuming in many previous
studies, that an MT travels along a highway or one-dimensional
(1-D) environment, we consider random behavior in our simula-
tion, which involves much more complicated computation. We
consider two scenarios in our service estimation: uniform and
nonuniform distributions. As described in Section I1I-A, i.e., the
service description of a quasi-stationary UMP is able to provide
the PMF of services as shown in (5).

Suppose there are five types of services supported by the
MT’s current wireless network, which are audio, video, voice,
data, and voicemail. When the uniform PMF is the case, i.e.,
1, (a) = 0.2, the probability of each type of service is equal.
As for the nonuniform PMF, we use the same example as in
Section III. Each MT is allowed to request any type of service
at a particular moment. We will predict the service pattern by
using (9)—(15) in Section IV-B.

The time is quantized in intervals AT = 50 s, which is a
preset time window. This interval is chosen based on cell resi-
dence time for each mobile terminal. In reality, different users
may have different moving speeds and different mean residence
times. However, for a specific cell, the average velocity can
be determined for the mobile users in its coverage area. Ac-
cordingly, the cell residence time can be calculated by dividing
the cell diameter by the average velocity. The calculation time



1030

window is much smaller than the cell residence time except in
pico-cell systems. In our simulation, the service request from an
MT is generated according to a Bernoulli process in each cell
and each moment.

We also consider the MT’s speed and changes in its moving
direction [9], [22]. The MT is allowed to move away from its
current position in any direction, and variation from its pre-
vious direction is a uniform distribution limited in the range of
+(7/2). The initial velocity of an MT is assumed to be a random
variable with a Gaussian pdf truncated in the range of [0,112
km/h] and the velocity increment is taken to be a uniformly dis-
tributed random variable in the range of £40% of the average
velocity, 80 km/h. As for the residence time distribution in (1),
the values of y is taken with 1.65 [24].

The most important feature of this simulation is that we use an
actual digital map for computing the mobile location probabili-
ties. In the selected segmentation of a map of Atlanta, Georgia,
there is an Interstate Highway I-85 and a toll freeway 400 on
which most of the city traffic travels. We deliberately chose this
segment, 7 km X 5 km, because it is a combination of diverse
environments that provides a number of choices for a traveling
MT, thus generating different location probabilities. If we only
consider highways, then the location probability prediction is
only related to the next cell in a 1-D model. By establishing a
grid model, this area is covered by 30 cells covering the area.
We find that the maximum number of routes for each cell is 10.
Thus, the maximum number of routes in our simulation is 300.
Based on the geographical condition of this area, we generate
a PD which will be used for predicting location probabilities in
Section IV-C2.

A. Effect on Mobility Management

Location update and paging are two fundamental opera-
tions for locating an MT. As the demand for wireless services
grows rapidly, the signaling traffic caused by location update
and paging increases accordingly, which consumes limited
available radio resources. Location update is concerned with
reporting current locations of the MTs. In a paging process, the
system searches for the MT by sending poll messages to the
cells close to the last reported location of the MT at the arrival
of an incoming call. Delay time and cost are two key factors
in the paging issue. Of the two factors, paging delay, is very
important as the QoS requirement for multimedia services.
Paging cost, which is measured in terms of cells to be polled
before the called MT is found, is related to the efficiency of
bandwidth utilization and should be minimized under delay
bound [21].

We will compare the results with the so-called selective
paging in [1] because the location probabilities are estimated.
The cell radius is assumed to be 2 km in our simulation. The full
area of the segmentation map is covered by this type of cells,
and we assume there is one BS in each cell and all of them are
controlled by an MSC, as in Fig. 1. A highest-probability-first
(HPF) scheme is introduced in which the sequential polling is
performed in decreasing order of probabilities to minimize the
mean number of cells being searched [18].

We assume that each LA consists of the same number M of
cells in the system. The worst-case paging delay is considered
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as a delay bound D in terms of polling cycle. We consider the
partition of paging areas (PAs) given that 1 < D < M, which
requires grouping cells within an LA into the smaller PAs under
delay bound D [18], [21].Suppose, at a given time, the initial
state P is defined as P = [p1,p2,---,p;, -, pN], where p;
is the location probability of the jth cell to be searched in de-
creasing order of probability. We use triplets P A*(7, ¢;,n;) to
denote the PAs in which ¢ is the sequence number of the PA;
q; 1s the location probability that the called MT can be found
within the ith PA and n; is the number of cells contained in this
PA. An LA can be divided into D PAs because the delay bound
is assumed to be D. Thus, the worst-case delay is guaranteed
to be D polling cycles. The system searches the PAs one after
another until the called MT is found.

Accordingly, the location probability q; of the ith PA is ¢; =
> jepa- (i) pj- If the called MT is found in the ith PA, the av-
erage paging cost under delay bound D, E[C(D)], and average
delay, E[D(D)], are computed as follows:

D 7
EIOD) =Y g3 m
k=1

EDD)]=Yi g

i=1

(23)

B. Effect on Resource Management

When the estimation of service type is applied to resource
management, we define the probability vector T, ;(a,t) as

Y.i(a,t) = [Toiolat) Tain(at) - Yosn(a,t)] (24)

where Y, ; o(a,t) is the probability that an MT « remains in a
cell 7 given that the MT initiates a call in cell < while this call
is an a type of service and it is not over by ¢. Y ; j(a,t), for
7 =1,2--- N, is the probability that a call is still active in cell
7 given that this call is initiated in cell z. We also consider the pdf
g(a, t), which represents the distribution of call holding time of
service type a. With the above consideration and recalling the
definition of f)’“ of (4) in Section III-B, for an MT z that is
initiating a call of service a in cell ¢, the probability Y, o(a, ¢)
can be determined by the following expression:

]\T
T.o0(a,t) =[1-Gla,t)]- [1- me7i7j(t) (25)

where G(a, t) is the cumulative distribution functions (cdfs) for
g(a,t)and P, ; ;(t),for j = 1,2,---, N, is the probability that
the MT will be in cell j in (25), which is the product of two
probabilities because we assume the calling pattern is indepen-
dent of an MT’s movement. [1 — G(a, t)] is the probability that
the call is not over by time ¢, and [1 — Zjvzl P, ; j(t)] is the
probability that the MT is still in cell ¢ at time ¢, given that there
are IV probable cells.

For the other cells in the shadow cluster, we define the
cdfs for N probable cells with service a as g_‘m(a, t) =
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[Goii(a,t) Geisla,t) Gusn(at)]. Therefore, Xy i(t) is
determined by

T, .(a.t)
——
i#0

[I} ~ G, t)} il (26)

where [ is a vector with NV ones and 11 is a diagonal matrix as

P,i1(t) 0O cee 0
0 P, io(t) - 0
m= 27)
0 . ..
0 R Pa:,i,N(t)

As a result, each element of 'fm(a./ t) in (24) is determined.
Accordingly, the bandwidth needed in the next probable cells
for an MT z in cell i, W ;(a,t), can be reserved as

W.i(a,t) =a-Toi(a,t). (28)

We assume that the time is quantized in slots of length AT
Also, we assume that new call requests are reported at the begin-
ning of each time slot and that a decision regarding an admission
request is made sometime before the end of the time slot where
the request was received. Every BS gathers call connection re-
quests from MTs in its cell and checks whether its current re-
sources can support the requested equivalent bandwidth. A call
is admitted if the sum of the equivalent bandwidth at a link is
less than the link capacity, which is also called semi-resource
reservation [11]. We use the metrics of handoff call dropping
probability for handoff calls and call blocking probability for
new arrivals.

VI. COMPARISON AND EVALUATION
A. Comparison of Single-Cell and Multicell Prediction

In the proposed UMP framework, we consider the following
factors in predicting future locations of mobile users: 1) histor-
ical records; 2) path information; 3) statistical model; 4) moving
direction and velocity; 5) current position of a mobile object;
and 6) shadow cluster, i.e., a set of possible cells. All of these
factors impact location prediction as described in previous sec-
tions. In this section, we evaluate the proposed scheme with re-
gard to the effect on mobility and resource management.

In addition, we compare the proposed scheme with previous
work on location prediction, which can be categorized into
single-cell prediction [5], [8], [13], [17] and multicell predic-
tion [1], [4], [12]. In the first category, each of them considers
only two or three factors compared to six factors covered in our
proposed scheme. Moreover, location estimation is focused on
the next cell instead of a group of cells. Therefore, the impact
of other factors is ignored and may also overlook the possibil-
ities in other cells. In particular, if there is no new interaction
between the system and a mobile user since the last update,
multicell prediction will have an important influence on user
tracking. Regardless of the reasons causing the interruption of
communications, the system can always initiate searching or
testing a mobile object based on its profiles in mobile environ-
ments. Moreover, it may not be efficient to generate dynamic
UMP frequently for micro- or pico-cell networks, e.g., per cell;
instead, we can adjust the window time for calculating a UMP
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to reduce computation and communication cost. The effect of
single-cell prediction and multicell prediction are shown in
Figs. 10 and 11.

For the second category, i.e., multicell prediction, it has been
very difficult to compare the location probabilities quantita-
tively. Thus, most of the literature will elaborate on the rationale
of the proposed schemes and demonstrate the results by the
effect on either mobility management or resource management
[4], [12], [23]. To find a group of cells in multicell prediction
in [4], the most likely cluster (MLC) based on directional
probabilities needs to be determined. The method of MLC
further approaches and reduces the number of cells defined.
The location probabilities, therefore, are defined as the fraction
of directional probability in one cell to all of the cells through
which a mobile object can traverse during the window time.

However, there are three major concerns of this method. First,
it depends on accurate direction measurements using the Global
Positioning System (GPS). In our algorithm, as long as the di-
rection measurement is accurate to 15°, no cells will be missed
in the prediction, which is easier to implement in real systems.
Second, the MLC solution does not take user history into consid-
eration. Although user history may not be important for macro-
cell systems, it is critical to micro- and pico-cell systems be-
cause mobile objects are very likely to change their directions
frequently. Third, there was no consideration of path informa-
tion in [1] and [4]. No matter how likely a mobile object can
move into a region from the analysis based on current measure-
ments, it must move into an area that allows movement conti-
nuity, i.e., a path must exist in the next cell. Therefore, we take
the path database into account by comparing the available path
with the predictive future path. The algorithm described in [1]
is labeled ““Selective Paging” in Figs. 8 and 9.

B. Numerical Results

First, we investigate the convergence of mean-square error by
using (14). For the uniform PMF, the first convergence point is
approximately L = 65, while it is approximately L = 120 for a
nonuniform PMF. Thus, if an MT subscribes a service package
which conforms to a uniform PMF, the next probable service
type can be predicted more accurately compared to a nonuni-
form PMF. Accordingly, the bandwidth requirement can be de-
termined. We estimate service type «, for an MT using the algo-
rithm in Section IV-B. In our experiments, both the uniform and
nonuniform PMFs are considered. We compute the mean-square
errors using (13) and (14). Then, we determine the service type
according to the scheme in Fig. 4.

Then, we predict the probable cells using the algorithm de-
scribed in Section IV-C. For 0,,(t) = +7/3 and 0,.(t) = +7/2,
we first determine the probable zones using (16) and (17), lim-
iting the probable cells in a particular region. Next, the number
of probable cells is computed using (1), (18), and (21).

There are many ways to evaluate the effectiveness of the pre-
diction algorithm of computing location probabilities [8], [12],
[23], as we introduced in Section I. Here, we show the effect
of these results on paging issues since it involves both paging
costs and paging delays. Paging is the process by which the
MSC sends polling message to BSs in its management area to
determine the serving cell of the called MT. Paging cost affects
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Fig. 8. Comparison of paging costs. (a) First-level prediction. (b) Second-level
prediction.

network resources because the paging message is sent via down-
link channels; thus, it should be reduced as much as possible.
Paging delay is part of call delivery delay, and it is related to
QoS requirement. Thus, it should also be reduced so that the
call connection can be established quickly.

Paging costs resulting from location probabilities of the first
and second levels of prediction are compared to those of uni-
form distribution assumed in the existing paging schemes [18],
[21]. Note that the number of cells is determined by the pre-
diction level and moving direction presented in Section IV-C2,
which has a strong impact on the performance of the scheme.
Increasing the prediction level and change in direction, by in-
cluding more cells, increases the likelihood of supporting QoS
in future possible cells. However, this will cause more com-
putations and communications. Therefore, we compare paging
cost and delay with regard to change in direction and prediction
levels. We conduct the experiments on the following cases: 8, =
/3 with first- and second-level prediction; §,, = /3 without
prediction for the cells in one or two layers surrounding the cur-
rent cell; 8, = 7/2 with first- and second-level prediction.
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level prediction.

The results of paging costs are given in Fig. 8(a) and (b), in
which paging costs are measured by the number of cells to be
searched before finding the MT. Since the location probabilities
provided in [1] are related to three cells, the paging cost is better
than the two-cell prediction and worse than the four-cell predic-
tion, as shown in Figs. 8(a) and 9(a). When the variation of the
moving direction is high, causing more probable changes, the
improvement of paging costs is more visible in Fig. 8(a). For ex-
ample, when 6, = £(7/3), the reduction in paging costs due to
the location probabilities is not as large as that of 6, = (7 /2).
This means that it is more important to predict location proba-
bilities if the MTs are moving randomly, i.e., the movement of
the MTs is not uniformly distributed in the location area.

The paging cost of the proposed scheme is very close to the
scheme proposed in [1] for the first-level prediction because
there are a small number of cells in the shadow cluster. There-
fore, the benefits of the proposed scheme are not evident com-
pared to the “Selective Paging” scheme, which also covers the
cells adjacent to the current cell. If the prediction level is higher,
the paging costs are significantly reduced compared to those
without prediction. Specifically, if MTs are moving very fast
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Fig. 10. Dropping and blocking probabilities with 10% new calls. (a) Handoff
dropping probabilities. (b) New-call blocking probabilities.

and are expected to other cells in a short time, there are more
probable cells. As a result, location probability in each cell is
smaller. As a result, it is more difficult to locate the MT. Ac-
cordingly, the prediction of MTs’ location probabilities is more
effective and more important.

Paging delays are compared in Fig. 9(a) and (b), which are
measured in terms of polling cycles. Each polling cycle is the
time from sending a paging request to receiving a response.
In Fig. 9(a), the paging delays are greatly reduced in compar-
ison to not using prediction. As the delay constraints increase,
the average paging delays increase while the paging costs de-
crease. We notice that the delays are reduced even more when
the delay constraints are greater. Also, the predicted probabil-
ities are more effective on reducing paging delays when the
prediction level is higher, as shown in Fig. 9(b). This is espe-
cially useful for those MTs moving in wide areas, where there
are many paths available instead of highway scenarios.

We also conduct simulations of resource management. The
predicted service type and location probabilities are used to re-
serve the equivalent bandwidth for the mobile terminals. In our
simulation, we consider a different new-call ratio as the number
of requests of new calls to the total number of call requests. The
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Fig. 11. Dropping and blocking probabilities with 90% new calls. (a) Handoff

dropping probabilities. (b) New call blocking probabilities.

results shown in Figs. 10 and 11 are the statistics of 20 000 call
requests. If the requested bandwidth cannot be allocated, then a
new call will be blocked or the handoff call will be dropped.

We consider that handoff calls have higher priority than new
calls. Therefore, call dropping/blocking probabilities are related
to the new call ratio, which is the fraction of new calls in the
total number of connections requested. We compare no-reser-
vation, next-cell reservation, two-cell reservation, and four-cell
reservations. In particular, next-cell reservation corresponds to
single-cell prediction discussed in Section IV-A. In Figs. 10
and 11, we can observe that call dropping probabilities increase
as call arrival rates increase, indicating that the bandwidth re-
lease depends on the call departure. Given the fixed call holding
time, the more call arrivals there are, the higher call dropping
and blocking probabilities are. Meantime, we can see that the
handoff dropping probabilities decrease as we reserve band-
width in more cells, i.e., better than single-cell prediction. The
effect of reservation is obviously on the handoff dropping prob-
abilities as opposed to on the new call blocking probabilities. If
major call requests come from handoff, then call dropping prob-
abilities are higher, compared to the case in which the new calls
are dominant.
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C. Discussions on Implementation and Overhead

Finally, we discuss the implementation of our solution in real
systems and the overhead of computation and communications.

1) Implementation in Existing Wireless Networks: There are
three aspects relating to the implementation and incorporation
within existing networks: location description, real-time moni-
toring of speed and velocity, and collection of historical records.

Location information: There is no extra effort is required to
know a mobile user’s current LA because of location registra-
tion process. In third-generation (3G) wireless systems, LCS is a
new feature to provide location information. The proposed user
profile framework can be used as an access point to user profile
data for the service providers [19]. In addition, given a cell ID,
we know to which zone a cell belongs since the zone partition is
determined during the system design. There are several ways for
wireless systems to collect cell ID, such as during the process
of delivering an incoming service or the process of establishing
a routing path for an outgoing service. Furthermore, an MT’s
location can also be obtained through LCS management pro-
vided by wireless systems, which may be call-independent. In
addition to the information of cell IDs, the LCS also provides
the geographical estimation about an MT in terms of universal
latitudinal and longitudinal data. Mapping between the MT’s
position in terms of latitude and longitude and local coordinate
system is finished through location client coordinate transfor-
mation function.

Measurement and real-time monitoring: The quasi-sta-
tionary information are stored in the HLR and VLR, which can
be updated in three processes: location update, call origination,
and call termination. The measurement of directions and ve-
locity is an issue of real-time monitoring. There have been a
few algorithms for mobile velocity and direction estimations
[9], [16], [22]. The velocity information can be collected
during the handoff because velocity estimation is required to
keep handoff delay acceptable. The detailed algorithms about
velocity estimation are beyond the scope of this paper.

Other related work also addresses the scalability issue of
monitoring and collecting mobile users’ information by care-
fully constructing the databases that maintain the querying
records [10]. This work has demonstrated that the BSs, location
measurement units (LMUs), and VLRs are able to support
discrete information monitoring and collecting. For the con-
tinuous monitoring in which the mobile objects are monitored
continuously over a time period until the MTs or BSs interrupt,
simulation results showed that the existing BSs and MTs are ca-
pable of handling even continuous monitoring if the databases
and safe regions are designed appropriately.

2) Overhead of Prediction Algorithms: The overhead that
will be incurred by the proposed scheme consists of three parts:
1) buffer space to store historical records; 2) communication
cost to send prediction results to probable cells for bandwidth
reservation; and 3) computation time required to perform the
algorithms to obtain prediction results.

As described in Section III-A, the quasi-stationary UMP
will be updated during the procedures of location update,
call origination, and termination. This information is stored
in the VLR/SGSN and HLR; therefore, there are no extra
requirements for storing quasi-stationary information. In the
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proposed framework, each MT keeps a list that stores the cell
IDs that it has traversed and the services that it has requested.
This list is refreshed when the MT experiences a handoff or
incoming or outgoing service. According to the specifications
of cellular handsets, each one can store 50-100 records of
calls and an additional 50-100 frequent calling users. Each of
these records can accommodate 180 characters, which results
in a total storage of 180 x 8 x 100 = 144000 b to 576 000
b. Considering each cell ID is 15 b [3], 50-cell IDs will take
just 750 b. The historical records of cell IDs take up to 0.5%
auxiliary storage space in a cellular handset, which is a very
small amount. Thus, historical records are considered in many
schemes [5], [8]. Note that the historical records can also be
stored in the serving BS rather than in the terminals; therefore,
using historical records will not cause significant overhead
in storage.

The UMP information can be forwarded from the previous BS
to the current serving BS, which is transmitted via the wired in-
terface between BSs. Therefore, the radio resource used to com-
municate between the MTs and BSs will not be consumed while
delivering user information. Compared to other algorithms in-
troduced in Section I, the proposed scheme will incur extra com-
munication costs for distribution prediction results to other cells.
Let us consider that the maximum number of cells to be pre-
dicted in our algorithm is N, (r : ¢,k) in (21) for terminal z
given that the MT is currently in zone k, and the prediction level
is 7. Then, the total communication cost of informing other cells
is obtained as N, (r : t,k) x C., where C.. is the communica-
tion cost for one cell, i.e., the cost for all algorithms of next-cell
prediction. Therefore, the overhead of the proposed scheme is
closely dependent on the number of cells in the mobility profiles,
which is also the number we need to reduce as much as possible.
However, this communication cost does not take any radio re-
sources; instead, it uses dedicated wirelines between base sta-
tions. With the transmission speed in fiber optics at 10 Gb/s, this
communication overhead is trivial. But, we obtain benefits in
terms of QoS improvement and decreased tracking cost. More-
over, we can further reduce the overhead by grouping users.

VII. CONCLUSION

We have explored a fundamental issue of providing high-
level QoS in wireless networks. Noticing that the key point to
QoS-based mobile networks is the knowledge of service re-
quirements and future locations prior to the arrival of mobile
objects, we first proposed a novel framework of UMP, con-
sidering many important factors associated with the MTs’ be-
havior. The service requirement is estimated by using a mean-
square error method based on the historical records and service
probability distributions. Moreover, we introduced the concept
of zones and prediction levels to shrink the region of probable
cells. In the proposed prediction algorithms, we took several im-
portant factors, including direction and velocity of mobile ob-
jects, historical records, stochastic model of cell residence time,
and path information into account. Therefore, the service re-
quirement and future locations are predicted more accurately
compared to previous schemes because this is the first time
that all of these factors are considered. As examples, we pro-
vided the simulation results to demonstrate that the proposed
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algorithms for mobility and resource management are effec-
tive in terms of reducing location tracking cost, delays, and call
dropping/blocking probabilities.
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