
ARTICLE IN PRESS
Computer Networks xxx (2005) xxx–xxx

www.elsevier.com/locate/comnet
A cost-minimization algorithm for fast location tracking
in mobile wireless networks

Wenye Wang a,*, Guoliang Xue b

a Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, United States
b Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-8809, United States

Received 10 March 2005; received in revised form 9 August 2005; accepted 26 September 2005

Responsible Editor: B. Baykal
Abstract

Location tracking is one of the most important issues in providing real-time applications over wireless networks due to
its effect to quality of service (QoS), such as end-to-end delay, bandwidth utilization, and connection dropping probability.
In this paper, we study cost minimization for locating mobile users under delay constraints in mobile wireless networks.
Specifically, a new location tracking algorithm is developed to determine the position of mobile terminals under delay con-
straints, while minimizing the average locating cost based on a unimodal property. We demonstrate that the new algorithm
not only results in minimum locating cost, but also has a lower computational complexity compared to existing algorithms.
Furthermore, detailed searching procedures are discussed under both deterministic and statistic delay bounds. Numerical
results for a variety of location probability distributions show that our algorithm compares favorably with existing
algorithms.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The increasing demand for diverse mobile appli-
cations using public wireless networks has imposed
many challenging issues because of the variations
in mobile users� positions from time to time [14].
In order to deliver services in wireless networks, fast
location tracking is critical to offering real-time
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mobile services, such as voice over IP. In cellular
wireless networks, location update and paging are
two fundamental operations for locating a mobile
terminal (MT). According to the latest specification
on third generation wireless communication systems
such as universal mobile telecommunication system
(UMTS) [1,9,23], location update depends on the
design of location areas (LAs) and routing areas
(RAs). Each LA consists of a group of cells, and
mobile terminals send location update requests
when they cross the boundary of two LAs. The
RA is designed for packet switching domain, and
each RA can be a subset of the location area. In
.
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other words, mobile terminals update their location
information with the system based on location
management mechanisms.

On the opposite, paging is a process to locate
MTs, which is performed by the system instead of
end users [16,19]. The main challenge in locating
MTs is to reduce the signaling cost under delay con-
straints. Therefore, the minimization of cost and
delay caused by locating mobile objects has been
studied extensively by researchers [2,7,11,15–
17,20,24]. In future wireless networks, many appli-
cations of multimedia services have various quality
of service (QoS) requirements, including delay,
transmission rate, pricing models and so on.

Among these parameters, delay is one of the
most important metrics because it is directly related
to the perceived QoS and is used to differentiate
real-time and non-real-time applications. Therefore,
traditional broadcast paging scheme used for tele-
phony systems, in which polling messages are sent
to every cell in the LA, is not appropriate for dual
services in circuit-switched and packet-switched
domains. Under this broadcast paging scheme, the
paging delay is minimized since there is only one
polling cycle required to find the called MT and all
cells within the LA receive the paging request simul-
taneously, where a polling cycle is the round trip
time from when a paging message is sent until the
response is received. However, the cost of this pag-
ing scheme is high and the utilization of bandwidth
is low since all cells in the LA are searched, which
consumes a large amount of down-link radio
resources for high mobility users.

As the demand for wireless services such as
emails, transactions, and web-browse grows rapidly,
the signaling traffic caused by location tracking
increases accordingly, which consumes limited
available radio resources. To improve the efficiency
of bandwidth utilization, we explore the optimiza-
tion of location tracking cost under delay con-
straints, based on a time-varying probability
distribution of user location [5,13,15,22]. The prob-
ability distribution of user location depends on
many factors such as mobility model, calling pat-
tern, and so on. Many tracking schemes are
designed to predict cell location probabilities and
to estimate the next location of a MT accurately
[2,3,6,8,10,18]. In this paper, we focus on optimal
partitioning of searching areas.

The minimization of location tracking cost
with delay constraints induces two fundamental
problems:
1. Given the probability distribution and a deter-
ministic delay bound, what is the minimum cost
required to locate the target object? If there is
such an optimal solution, how to design paging
areas and how to proceed the searching proce-
dure? What is the computation complexity for
finding an optimal solution?

2. Given the probability distribution and a statistic
delay constraint, what is the minimum cost
required to locate the moving terminal? How
can the statistic delay constraint be satisfied?

These two problems are challenging because they
require the optimal solution to achieve minimum
cost under delay constraints, whereas the computa-
tion complexity must be taken into account. Previ-
ous efforts have addressed these problems to some
extent. For example, in [4,12,16], it is demonstrated
that the minimum cost can be obtained if all cells
are searched in a decreasing order of location prob-
abilities in the absence of delay constraints. Similar
results also show that the minimum cost can be
achieved through dynamic programming. Since the
number of ways to partition an N cell location area
into D paging areas is exponential in N, searching
through all possible partitions is an unrealistic
approach to finding a cost-minimum scheme. In
[20], it is proved that three necessary conditions
are required to achieve minimum cost given a deter-
ministic delay bound, thus, reducing the computa-
tion complexity. It is required that all cells must
be searched in a non-increasing order of their loca-
tion probabilities. This important property makes it
sufficient to search only OðND�1Þ partitions. Since it
takes O(N) time to compute the paging cost corre-
sponding to a given partition, the necessary condi-
tion of [20] immediately implies an OðNDÞ time
algorithm for computing an optimal paging scheme
under delay bound D.

In this paper, we prove a unimodal property of
two-step locating cost as a function of the corre-
sponding 2-partition of the location area. This
unimodal property enables us to find an optimal
2-partition in OðlogNÞ time, given OðN logNÞ pre-
processing time. As a result, we have an
OðN logN þ ND�2 logNÞ time algorithm for com-
puting a cost-minimum location tracking under
delay constraint D. Moreover, we investigate the
cost minimization issue under statistic delay con-
straints. Based on the optimal algorithm developed
for deterministic delay bound, we tackle this prob-
lem through a sequential matching algorithm. Con-
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sidering multiple locating algorithms may cause fail-
ure in the searching process, we also analyze locat-
ing failure which is affected by the proposed
algorithm.

Throughout the paper, the proposed algorithms
and procedure are illustrated in the context of cellu-
lar networks. However, they are applicable to other
mobile communication systems as well. For exam-
ple, a hot-spot system such as a wireless local area
network (WLAN) may need to locate a laptop
which sends requests of services so as to deliver data
or video to this terminal. Meanwhile, the locating
algorithm can be used to assist storing information
in those proxy servers which are close to the request-
ing terminals. Especially, if mobile users change
their positions after they send a web-browsing or
message request, locating these terminals is manda-
tory, but the delay constraints are flexible for non-
real-time applications.

The rest of the paper is organized as follows. In
Section 2, we formulate the problem of location
tracking and discuss necessary conditions for cost
minimization. In Section 3, we prove a unimodal
property of two-step searching and use that prop-
erty to design a fast cost-minimization algorithm
subject to deterministic delay bounds. In Section
4, we present location tracking procedure under sta-
tistic delay bounds. We evaluate the performance of
the proposed algorithm in terms of locating cost,
delay, computation complexity, and searching fail-
ure in Section 5. We present numerical results over
various location probability distributions in Section
6 and conclude the paper in Section 7.

2. Problem formulation

We assume that each LA (or RA) in a wireless
system consists of the same number of cells, N.
The worst-case delay of a successful searching is
considered as the delay bound, D, that is, the num-
ber of polling cycles. For instance, if D is equal to 1,
the system should find the called MT in one polling
cycle, requiring all cells within the LA to be polled
simultaneously. The locating cost, C, which is the
number of cells polled to find the called MT, is
equal to N. In this case, the average locating delay
is at its least value, which is one polling cycle, and
the searching or paging cost is at its highest value,
C = N. On the contrary, when D is equal to N,
the system will poll one cell in each polling cycle
and search all cells one by one until the called MT
is found. Thus, the worst-case occurs when the
called MT is found in the last polling cycle, which
means the searching delay would be at its maximum
and equal to N polling cycles. However, the locating
cost may be minimized if the cells are searched in a
decreasing order of location probabilities as demon-
strated in [5,16].

We consider the partition of an LA given that
1 < D < N , which requires grouping cells within
an LA into smaller searching areas (SAs) under
delay bound D. The initial state P is defined as
P = [p1,p2, . . . ,pj, . . . ,pN], where pj is the probability
of jth cell to be searched in decreasing order of
probability. We use triplets SA*(i,qi,ni) to denote
the SAs, in which i is the sequence number of the
SA, qi is the probability of the called MT being
found within the ith SA, and ni is the number of cells
contained in this SA. Accordingly, the location prob-
ability qi of the ith SA is

qi ¼
X

j2ith SA
pj. ð2:1Þ

The locating cost under delay bound D, E½CðDÞ�, is
computed as follows:

E½CðDÞ� ¼
XD
i¼1

qi � ki; where ki ¼
Xi

k¼1

nk ð2:2Þ

and the average delay, E½DðDÞ�, is

E½DðDÞ� ¼
XD
i¼1

i � qi. ð2:3Þ

Therefore, the cost-minimization problems for loca-
tion tracking can be formulated as follows:

• The problem of optimal partition under determin-
istic delay constraint (PDDC) has an input
parameter D 2 f1; 2; . . . ;Ng and asks for a parti-
tion of the LA into D SAs so that the locating
cost is minimized.

• The problem of optimal partition under statistic
delay constraint (PSDC) has an input parameter
d2 [1,N] and asks for an integer
D 2 f1; 2; . . . ;Ng together with a partition of
the LA into D SAs so that the locating cost is
minimized among all such partitions with an
average delay no more than d.

In [20], the following necessary conditions are
proved for an optimal partition with minimum
locating cost.
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Lemma 2.1. If a searching sequence P satisfies the

following conditions of partition, the locating cost

E½CðDÞ� can be minimized:

1. Probability condition: The cells must be searched

in a decreasing order of location probability. In

other words, if u and v are cells with pu > pv, then

the optimal searching sequence SAP that minimizes

E½CðDÞ� must satisfy u 2 PAPðg; qg; ngÞ and

v 2 PAPðh; qh; nhÞ for all g 6 h.

2. Forward boundary condition: It determines the

largest location probability cell in the SA. We
denote p1iþ1 as the largest probability cell in the

(i + 1)th searching area with ni+ 1 cells. Then,

p1iþ1 � ðniþ1 � 1Þ must be less than or equal to qi.

3. Backward boundary condition: It chooses the

smallest location probability cell in the SA. The

backward boundary condition demands that qi
should be less than or equal to psi � ðniþ1 þ 1Þ, where
psi is the smallest probability in the ith searching
area, and ni+ 1 is the number of cells in the

(i + 1)th SA. Thus, the smallest probability cell

psi cannot be moved ‘‘backward’’ to the (i + 1)th

SA, which comes after the ith SA.

Similarly, we have the following facts.

Lemma 2.2. There exists an optimal partition under

statistic delay constraint d such that the cells are
searched in a decreasing order of location probability.

In other words, if u and v are cells with pu > pv, then

the optimal searching sequence SAP that minimizes

E½CðDÞ� subject to E½DðDÞ� 6 d must search the SA

containing u before the SA containing v, if u and v are

in different SAs.

Proof. If u and v are in the same SA, there is noth-
ing to be proved. In the rest, we will assume that u
and v are in different SAs. Since changing the order
of two cells in the same SA does not affect the locat-
ing cost and the average delay, we may assume that
the cells in each SA are ordered in a decreasing
order of their location probabilities.

Suppose that SAL and SAR are two SAs such
that the optimal partition method searches SAL

before SAR. Assume that SAL contains cells cL1 ; . . . ;
cLm with locating probabilities pL1 P � � � P pLm.
Assume that SAR contains cells cR1 ; . . . ; c

R
n with

locating probabilities pR1 P � � � P pRn . Suppose that
pLm < pR1 . Swapping cLm with cR1 , we will get a
different partition. It follows from the theory of
[20] that the new partition will have a lower locating
cost. From the definition of average delay, we know
that the average delay of the new partition is also
smaller than the average delay of the previous
partition (by pR1 � pLm). This proves the lemma. h

Lemma 2.3. Let CDðDÞ be the locating cost of the

minimum cost paging scheme subject to deterministic

delay bound D for D ¼ 1; 2; . . . ;N . Then CDðDÞ is

a monotonically non-increasing function of D.

Proof. Suppose that D < N and that CDðDÞ is
achieved by partitioning the LA into a number of
D SAs, such as SA1; SA2; . . . ; SAD, where the cells
are paged with decreasing locating probability.
Since D is smaller than N, there exists an SA, SAi,
which contains cells ci1; c

i
2; . . . ; c

i
k for some k P 2

with locating probabilities pðci1Þ P pðci2Þ P � � �
P pðcikÞ. If we replace SAi with two SAs, one con-
taining ci1 and the other containing cells ci2 through
cik, we will have a total of Dþ 1 ways of partition
whose corresponding paging cost is CDðDÞ�
pðci1Þ 6 CDðDÞ. This proves the lemma. h

Lemma 2.4. Let CS(d) be the locating cost of the

minimum cost paging scheme subject to statistic delay

bound d by partitioning the LA into SAs. Then CS(d)

is a monotonically non-increasing function of d.

Proof. Let d1 < d2 be two statistic delay bounds.
Since there is a paging method whose average delay
is no more than d1 and whose locating cost is equal
to CS(d1), there is a paging method whose average
delay is no more than d2 and whose locating cost
is at most CS(d1). This proves the lemma. h

In the following section, we will present an
OðN logN þ ND�2 logNÞ time algorithm for com-
puting an optimal partition. Our result is based on
a unimodal property and a necessary and sufficient

condition for an optimal 2-partition.
3. Optimal partition under deterministic delay

constraints

3.1. Optimal partition into two SAs

In this section, we will focus on the case where
D ¼ 2. For any integer n2{1,2, . . . ,N � 1}, we can
partition N cells into SAn

1 and SAn
2 so that SAn

1

contains cells 1 through n (the first n cells) and
SAn

2 contains cells n + 1 through N (the last N � n

cells). It follows from the probability condition of
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Lemma 2.1 that for some integer n, SAn
1 and SAn

2

form an optimal partition.
Let f ðnÞ ¼ n �

Pn
i¼1pi þ N �

PN
i¼nþ1pi. Then f(n) is

the expected cost of the corresponding partition.
The following fact is important.

Lemma 3.1. Assume 1 6 n 6 N � 2. We have

• If f(n) 6 f(n + 2), then f(n + 1) < f(n + 2).
• If f(n) P f(n + 2), then f(n + 1) < f(n).
Proof. Let

X ¼
Xn

i¼1

pi þ ðnþ 1� NÞ � pnþ1 ð3:4Þ

and

Y ¼
Xn

i¼1

pi þ ðnþ 1� NÞ � pnþ2 þ pnþ1 þ pnþ2.

ð3:5Þ
Since NP n + 2 and pn+1 P pn+2 > 0, we have

Y P Xþ pnþ1 þ pnþ2 > X. ð3:6Þ
By definition, we have:

f ðnþ 1Þ ¼ ðnþ 1Þ �
Xnþ1

i¼1

pi þ N �
XN
i¼nþ2

pi

¼ f ðnÞ þX; ð3:7Þ

f ðnþ 2Þ ¼ ðnþ 2Þ �
Xnþ2

i¼1

pi þ N �
XN
i¼nþ3

pi

¼ f ðnÞ þXþY. ð3:8Þ

When f(n) 6 f(n + 2), we have XþY P 0. It fol-
lows from (3.6) that Y > 0. This implies that
f ðnþ 1Þ ¼ f ðnÞ þX < f ðnÞ þXþY ¼ f ðnþ 2Þ.
For f(n) P f(n + 2), we have XþY 6 0. In the
same way aforementioned, X < 0, which means
f ðnþ 1Þ ¼ f ðnÞ þX < f ðnÞ. This completes the
proof. h

Lemma 3.2. [unimodal property] Assume that

1 6 i < j < k 6 N. Then we have

f ðjÞ < maxff ðiÞ; f ðkÞg. ð3:9Þ

Proof. If i = j � 1 and k = j + 1, it follows from
Lemma 3.1 that

f ðjÞ < maxff ðiÞ; f ðkÞg
¼ maxff ðj� 1Þ; f ðjþ 1Þg. ð3:10Þ
Assume that f(j) < f(j + 1). Applying Lemma 3.1
repeatedly, we can get f(j) < f(j + 1) < f(j + 2) < � � �
< f(N). Therefore f(j) < f(j + 1) implies f(j) < f(k).

Similarly, f(j � 1) > f(j) implies f(1) > f(2) > � � �
f(j � 1) > f(j), which in turn implies f(j) < f(i). This
proves the lemma. h

Theorem 3.1. With delay bound D ¼ 2, there are at

most two integers n2{1,2, . . . ,N � 1} such that

SAn
1 ¼ f1; 2; . . . ; ng and SAn

2 ¼ fnþ 1; nþ 2; . . . ;Ng
form an optimal partition.

1. If f(j) = f(j + 1) for some j, then there are exactly
two optimal partitions. They are defined by

SAn
1 ¼ f1; 2; . . . ; ng and SAn

2 ¼ fnþ 1; nþ 2; . . . ;
Ng for n = j and n = j + 1.

2. If f(j) < f(j + 1) for some j, then SAn
1 ¼

f1; 2; . . . ; ng and SAn
2 ¼ fnþ 1; nþ 2; . . . ;Ng

being an optimal partition implies n 6 j.

3. If f(j) > f(j + 1) for some j, then SAn
1 ¼ f1;

2; . . . ; ng and SAn
2 ¼ fnþ 1; nþ 2; . . . ;Ng being

an optimal partition implies n P j + 1.

Proof. If f(j) = f(j + 1), it follows from Lemma 3.2
that f(i) > f(j) for any 1 6 i < j and f(k) > f(j + 1)
for any j + 1 < k 6 N. Therefore, for either n = j

or n = j + 1, SAn
1 and SAn

2 form an optimal
partition.

If f(j) < f(j + 1), it follows from Lemma 3.2
that f(j) < f(k) for any j < k 6 N. Therefore when-
ever SAn

1 ¼ f1; 2; . . . ; ng and SAn
2 ¼ fnþ 1; nþ 2;

. . . ;Ng form an optimal partition, we must have
n 6 j.

If f(j) > f(j + 1), it follows from Lemma 3.2 that
f(i) > f(j + 1) for any 1 6 i < j + 1. Therefore when-
ever SAn

1 ¼ f1; 2; . . . ; ng and SAn
2 ¼ fnþ 1;

nþ 2; . . . ;Ng form an optimal partition, we must
have n P j + 1. h

Corollary 3.1. When D ¼ 2, the necessary condi-

tions of Lemma 2.1 (probability condition, forward

condition, backward condition) are also sufficient

for an optimal partition.

Proof. Assume that SAn
1 ¼ f1; 2; . . . ; ng and

SAn
2 ¼ fnþ 1; nþ 2; . . . ;Ng satisfy all three condi-

tions of Lemma 2.1. It follows from the proof of
Lemma 2.1 [20] that f(n) is not larger than f(n � 1)
or f(n + 1). It follows from Theorem 3.1 that
SAn

1 ¼ f1; 2; . . . ; ng and SAn
2 ¼ fnþ 1; nþ 2; . . . ;

Ng form an optimal partition. h
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Based on the unimodal property, an optimal 2-
partition of an N-cell location area can be computed
in OðlogNÞ time, after OðN logNÞ preprocessing
time. This is listed as Algorithm 1.

Theorem 3.2. Algorithm part2 (p, s, L, H, index)

correctly computes an integer index so that cells

L + 1 through index � 1 and cells index through H

form an optimal partition of the cells from L + 1
through H, with the corresponding cost value

returned. The worst case running time of the algo-

rithm is OððH � LÞ logðH � LÞÞ. In particular, part2

(p, s, 0, N, n) computes an integer n such that SAn
1 and

SAn
2 form an optimal partition of the cells 1 through N.

Proof. The correctness of the algorithm follows
from Theorem 3.1 and Lemma 3.2.

step_1 takes OððH � LÞ logðH � LÞÞ time. step_2
takes O((H � L)) time. step_3 takes O(1) time.
step_4 takes OðlogðH � LÞÞ time. Therefore the
overall running time is OððH � LÞ logðH � LÞÞ. h

Algorithm 1. double part2 (p, s, L, H, index)

Input: p1 P p2 P � � � P pN and si ¼
Pi

j¼1pj for
i = 1,2, . . . ,N. s0 = 0. 0 6 L < L + 1 < H 6 N.
Output: index is set so that {L + 1, . . . ,index} and
{index + 1, . . . ,H} form an optimal partition of
the cells {L + 1, . . . ,H}. The corresponding cost
is returned.step_1 LB :¼ L; UB :¼ H;
step_2 while UB > LB + 1 do
j = (LB + UB)/2;
f(j) = (j � L) Æ (sj � sL) + (H � L) Æ (sH � sj);
f(j + 1) = (j + 1 � L) Æ (sj+1 � sL) + (H � L) Æ
(sH � sj+1);
if case 1 of Theorem 3.1 happens then

index :¼ j; return f(j);
elseif case 2 of Theorem 3.1 happens then

UB :¼ j; goto step_4;
elseif case 3 of Theorem 3.1 happens then

LB :¼ j; goto step_4;
endif

endwhile
3.2. Optimal partition into D SAs

In this section, we will use part2 as a subroutine
in the development of an optimal partition algo-
rithm and any D. There are OðND�2Þ choices of
the first D� 2 groups. For each such choice, we
can use OðlogNÞ time to compute the optimal par-
tition of the last two location groups subject to this
setting. A total of OðN logNÞ preprocessing time is
required for sorting and for computing prefix sums
of the probabilities.

Theorem 3.3. Algorithm part D correctly computes

an optimal D-partition of the cells {L + 1, . . . ,H}.
The time complexity of algorithm is OðN logNþ
ND�2 logNÞ.

Algorithm 2. double partD(p, s, L, H, index)

Input: p1 P p2 P � � � P pN and si ¼
Pi

j¼1pj
for i = 1,2, . . . ,N. s0 = 0. 0 6 L < LþD� 1 <
H 6 N .
Output: The D� 1 element array index is set so
that {L + 1, . . . ,index[1]}, {index[1] + 1, . . . ,
index[2]}, . . . ,findex½D� 1� þ 1; . . . ;Hg form an
optimal partition of the cells {L + 1, . . . ,H}.
The corresponding cost is returned.
step_1 for each L < index½1� < index½2� < � � � <
index½D� 2� < H � 2 do compute the corre-
sponding cost as

PD�2
i¼1 ðindex½i� � index½i� 1�Þ�

ðsi � si�1Þ þ part2ðp; s; index½D� 2�;H ; index½D�
1�Þ;
step_2 Set the array index to be the one with the
minimum corresponding cost.

return the corresponding minimum cost.

Proof. The correctness of the algorithm follows
from that of Algorithm 1. We need to compute
the cost for OðND�2Þ times, spending OðlogNÞ time
for each such computation. OðN logNÞ is spent on
preprocessing. Therefore the worst-case running
time of partD is OðN logN þ ND�2 logNÞ. h
4. Optimal partition algorithm under statistic
delay constraint

Based on the optimal partition algorithm for
deterministic delay bound, in this section, we tackle
the cost-minimization problem under the con-
straints of statistic delay.

4.1. Location tracking algorithm under statistic
delay constraint

Statistic delay constraint can be considered as an
average delay during service delivery. The problem
of minimizing locating costs under statistic delay
constraints is a difficult one. It may be mathemati-
cally complicated to provide a concrete solution.
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However, we can tackle this problem by considering
the intrinsic relationship between the average delay
and upper delay bound. The basic idea is to find a
corresponding upper delay bound given a statistic
delay constraint. Then we can obtain an optimal par-
tition based on the algorithm developed in Section 3.

Assume a set of delay bounds is denoted as D,
and the cardinality of this set is N, which is the max-
imum number of cells in an LA. Each specific delay
bound, D 2 D, results in an average searching delay
DðDÞ. We also denote d as the set of statistic delay
constraints and each statistic delay constraint, d2d.
Thus, upper delay bound, D, is distinguished from
statistic delay constraint d. Note that it is possible
that we can find a delay bound D 2 D correspond-
ing to multiple statistic delay d 2 d as shown in
Fig. 1, depending on how statistic delays are speci-
fied in mobile services.

Therefore, the minimization of locating costs
with statistic delay constraint can be formulated as
finding the matching delay bound to a specific statis-
tic delay constraint. Then, the optimal partition
algorithm developed in Section 3 can be deployed
Average Delays Delay Bounds
D −− Set of d −− Set of

Minimum

Locating

Cost

Fig. 1. Deterministic delay and statistic delay.

1.0 1.23 1.47 1.66

{1.1}
{1.2}
{1.3}
{1.4}

{1.5}
{1.6}

Delay Bounds
D -- Set of 1 2 3 4

{1.0} {1.7}

10.0 5.38 3.88 3.65

Average Delays

Average Delays

Average

under Delay Bounds

d -- Set of

Locating Costs

Fig. 2. Example of location tracking
in determining the final partitions for optimal
searching procedure under the constraints of aver-
age searching delay.

Our locating procedure under statistic delay
constraint is as follows:

1. Determine the range of average delays,
Rd = [1,dmax], with upper delay bounds varying
from 1 to N, i.e., D ¼ 1; 2; . . . ;N .

2. Obtain the set of average searching delays and
costs according to upper delay bounds by using
the optimal partition algorithm in Section 3.

3. Match the requirement of average delay, d2d to
a specific delay bound D 2 D.

4. Find the partition of searching areas with corre-
sponding upper delay bound, D; thus, the aver-
age locating cost with average delay constraint
dðDÞ can be obtained.

If there are more than one delay bound which
result in average delays that satisfy the requirement
of statistic constraint, by default, the one that pro-
duces less locating costs will be preferred because
the objective of the optimal locating is to reduce
the overhead of locating process.

For example, considering an example as in Fig. 2.
First, we determine the range of average delays with
varying delay bounds, i.e., Rd = [1,3.00]. This means
the maximum average delay of location tracking for
this example is 3.00 polling cycles with the optimal
partition algorithm. On the other hand, the service
requirements, based on the range of average delay
obtained from Rd, are represented by the average
searching delays, which can be specified as
d = [1.0,1.1,1.2,1.3, . . . ,1.9,2.0,2.1, . . . ,2.9,3.0]. This
is the second row shown in Fig. 2. Next, we match
the elements in d with D = [1,2, . . . ,10]. Then the
1.76 2.4 2.68 2.87 2.97 3.0

{1.8}
{1.9}
{2.0}
{2.1}
{2.2}
{2.3}

{2.4}
{2.5}
{2.6}

{2.7}
{2.8}

5 6 7 8 9 10

{2.9} {3.0}

3.52 3.16 3.11 3.07 3.03 3.0

under average delay constraint.
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locating cost for each delay constraint can be
obtained as in the last row in Fig. 2.

4.2. Sequential matching algorithm

Here, we introduce a systematic method to
accomplish the procedure explained in the previous
section, namely, Sequential matching. This is used to
match the average delay with the delay bound. The
framework of the sequential matching algorithm
starts from the lowest delay constraint in set d.
The flowchart of this matching procedure is shown
in Fig. 3. The idea is to compare the delay con-
straint with the possible average delays. Since the
average delay may be derived from service-level
agreements or quality of service specification, the
required average delay may not be the exact value
that can be obtained by any locating algorithm.
Therefore, we need to satisfy the delay requirements
as close as possible. If the average searching delay
meets the delay constraint, then the corresponding
delay bound is determined, which further yields
the minimum locating cost. This procedure contin-
Determine the set of
delays upon uppe

Input the set of aver
Delay_Constraint (), and t

Start from the fi
(the smallest value i

Is Delay_Constraint(i) <

Take the next average delay
in the set of Average_Delay()

Is Delay_Constraint(i) <= the current average delay

No

No

No

Go to next element of Delay_Constraint
in an increasing order of values

Is this the last element in Delay_Constraint()

Fig. 3. Sequential mat
ues until all elements in delay constraint set d are
examined and categorized into specific delay
bounds. Therefore, the optimal partition can be
completed based on the algorithm with determinis-
tic delay bound proposed in Section 3.
5. Performance evaluation

The performance of the proposed Fast location
tracking algorithm for Cost-Minimization, denoted
as FCM in short, will be evaluated by following
parameters:

• Average locating cost and average delay of
searching: Once a location area is partitioned
into SAs and searching sequence is determined
based on a location tracking algorithm, the sys-
tem is able to send paging signals to each SA
one by one in an order of the searching sequence.
The average locating cost and searching delay
can be obtained by using formulas in (2.2) and
(2.3) for any given delay bound.
  average paging
r delay bounds

age delay constraints,
he number of elements, M

rst element, i = 1
n Delay_Constraint())

= the lowest average delay? 

Establish the mapping between
Average_Delay() and Delay_Constraint()

in an increasing order of values 
Go to next element?

Yes

Yes

Average_Delay()

(i <= M)?

ching algorithm.
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• Computation complexity: We are interested in
comparing the computation complexity of three
cases: without any partition algorithm, with only
necessary conditions, and with fast locating algo-
rithm, which are necessary and sufficient.

Without using the probability condition, one
needs to consider all possible partitions of the LA
into D SAs. The number of such partitions is the
Stirling number of the second kind [21]. By taking
the searching order into consideration, we have

D!� Sðn;DÞ ¼
XD�1

i¼0

ð�1Þi
D

i

� �
ðD� iÞn. ð5:11Þ

If we evaluate all possible partitions satisfying the
probability condition, the time complexity would
be OðN logN þ NDÞ, since there are O(ND� 1) parti-
tions to evaluate and evaluation takes O(N) time.

The time complexity of the necessary conditions
only algorithm is O(ND), whereas our fast locating
algorithm is OðN logN þ ND�2 logNÞ.

6. Numerical results

The numerical results of the proposed fast cost-

minimization (FCM) algorithm with regards to uni-
form distribution, truncated discrete Gaussian dis-
tribution, and irregular distribution are presented
in this section. We compare the average locating
cost and searching delay with highest probability
first (HPF) and paging with necessary conditions
only algorithms (NOA) [16,20]. It is necessary to
mention that in the original paper of the HPF
scheme, a non-increasing probability density func-
1 2 3 4 5 6 7 8 9 10
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Delay bound, D
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NOA
FCM
Broadcast

((a)

Fig. 4. Locating cost for uniform distribution: (a) determin
tion g(x) must be found for a non-increasing dis-
crete distribution of location probabilities [16]. In
order to obtain the numerical results and make
complete comparison, we design the paging proce-
dure of the original HPF scheme, which is called
the enhanced-HPF (E-HPF) scheme. In addition,
we evaluate the computation complexity of different
partition algorithms with regards to delay bounds
and number of cells.

Although location probabilities are given as a
prior information in this paper, they can be
obtained through network simulation experiments
[3] in which network scenarios, buffers, and compu-
tation complexity are provided. These location
probabilities can then be used as input to our track-
ing algorithms. In order to avoid redundancy, we
focus on the numerical results in this section.
6.1. Locating cost and delay for uniform probability

distribution

First we study the relationship between the aver-
age locating cost, C, deterministic delay bound, D,
and statistic delay bound, d, under different search-
ing schemes. Fig. 4(a) shows the average searching
cost CðDÞ as a function of D for an LA with 10 cells
(N = 10). It can be seen that the locating costs
decrease with the increasing delay bounds for three
partition algorithms, except broadcast scheme. As a
matter of fact, we can observe only one plot in the
figure because the three plots overlap, which means
the fast tracking algorithm, FCM, necessary condi-
tions-based algorithm, NOA, and HPF, result in the
same average locating cost for uniform distribution,
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
5.5
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b)

istic delay constraints; (b) statistic delay constraints.
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which fall very fast as the delay bound increases.
This is because, for uniform distribution, all three
algorithms yield the same partition of searching
areas. In particular, when the delay bound is 5,
the locating costs achieve the small asymptotic
value. Therefore, there is a trade-off between the
locating cost and delay constraints, which is impor-
tant in handling mobile services with different
requirements.

Under statistic delay constraints, average locat-
ing costs also decrease as the delays increase, but
they maintain the same for some varying values of
delays as shown in Fig. 4(b). In fact, this is a reason-
able phenomena because paging messages are sent
one by one, i.e., the paging can be finished only in
integer number of polling cycles. In reality, no
Fig. 5. Searching delay for uniform distribution.
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Fig. 6. Locating cost for truncated Gaussian distribution: (a) de
searching process can be terminated at halfway of
a polling cycle. Each paging response must be sent
within a complete polling cycle. Therefore, these
numerical results provide a very good reference for
determining QoS levels with reasonable delay con-
straints. Again, the results of three partition algo-
rithms are overlapped for the same reason for
deterministic delay bounds. The average searching
delays are shown in Fig. 5. It is observed that the
average delays increase as the delay bound
increases. We conclude that the fast tracking algo-
rithm matches the optimal partition algorithm
based on necessary conditions, and enhanced HPF
very well.

6.2. Locating cost and delay for truncated Gaussian

distribution

In this section, the average locating cost and
delay versus delay bounds are investigated for trun-
cated Gaussian distribution. When the mobile users
are moving toward their destinations, they are likely
to keep going along a specific path. The location
probabilities of the cells covering the path will be
higher than those regions that are away from the
path. Thus, the truncated Gaussian distribution is
more appropriate for modeling this type of
movement.

The average locating cost and delay of different
schemes are revealed in Figs. 6 and 7 for truncated
discrete Gaussian distribution with mean zero and
variance one. When an MT�s location probability
pj is a truncated discrete Gaussian distribution, the
average locating cost, C, decreases very quickly as
1 1.2 1.4 1.6 1.8 2 2.2

3

4

5

6

7

8
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10

Statistic delay bound, d

HPF
NOA
FCM

)

terministic delay constraints; (b) statistic delay constraints.



Fig. 7. Searching delay for truncated Gaussian distribution.
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D changes from 1 to 4, then it converges to the min-
imum value. Note that the FCM algorithm yields
the minimum cost compared to E-HPF and NOA.
In particular, the improvement of locating cost of
FCM over NOA is up to 20% at D ¼ 4 as shown
in Fig. 6(a), which indicates that the necessary con-
ditions for cost minimization is not sufficient. Under
the statistic delay constraints, again, locating costs
decrease as the delays constraints increase. More-
over, we find that with a small amount of increase
in average delay, the locating cost can be reduced
tremendously. For example, in Fig. 6(b), when the
delay constraint is 1 polling cycle, the cost is 10.
However, when the delay constraint is 1.2 polling
cycles, the cost is around 3. Thus, the locating cost
is reduced more than 3 times while the average pag-
ing delay is increased by 20%. These results provide
a very good reference for systems to establish the
services class with regard to the mobile users� QoS
expectation.

In addition, the maximum average delay is 2.2 of
truncated Gaussian distribution, which is much
smaller than that for uniform distribution with
5.5. This demonstrates that the assumption of the
uniform distribution will yield the most disadvanta-
geous result although it is still being widely used. In
Table 1
The irregular location probability distributions

Cell sequence 1 2 3 4 5

Case A 0.36 0.31 0.05 0.05 0.045
Case B 0.28 0.26 0.08 0.08 0.05
Case C 0.16 0.16 0.16 0.16 0.06
reality, it is very unlikely to have a uniform distribu-
tion of location probabilities because of dynamic
environments. Thus, we can consider the cost and
delay of uniform distributions as the worst bounds,
i.e., our algorithm would not affect results nega-
tively even in the worst case. The deployment of
cost-minimization location tracking algorithms are
more effective for the truncated Gaussian distribu-
tion. In many mobile environments, especially in
public access wireless networks, the movement pat-
terns of mobile users would be destination-oriented.
The location probabilities are thus more likely to be
truncated Gaussian distribution than uniform. The
average searching delays are illustrated in Fig. 7.
As the delay bound increases, the average searching
delay also increases. FCM algorithm generates the
minimum cost among three algorithms, whereas
the average delays of FCM are higher than those
of the other two algorithms. In other words, the
benefits of locating cost is gained at the expense of
a relatively small increase in the average delay.

6.3. Locating cost and delay for irregular probability

distribution

We also investigate the average locating cost and
searching delay for irregular location probability
distributions when the location probability distribu-
tion may not be represented by a particular func-
tion. We conduct our simulations based on three
irregular distribution cases created randomly in
Table 1. The locating costs and average delays of
cases A, B, and C are shown in Table 2. The details
of each SA, such as partitions, searching sequence,
the location probability, and the number of cells
under D ¼ 3; 4; 5, are also illustrated. The minimum
locating costs for each delay bound are indicated in
bold and the minimum average delays are indicated
in italics in Table 2.

The locating costs decrease as the delay bound
increases. For instance, the costs of case A are chan-
ged from 3.88! 3.52 ! 3.29 when D is changed
from 3 to 5. It can be seen that the FCM algorithm
results in the minimum locating costs for all cases.
6 7 8 9 10

0.045 0.04 0.04 0.03 0.03
0.05 0.05 0.05 0.05 0.05
0.06 0.06 0.06 0.06 0.06



Table 2
The comparison of locating cost and delay

Partitions (SAs) SA(i,qi,ni) E½CðDÞ� E½DðDÞ�
Case A: D ¼ 3

NOA (1, 0.36, 1); (2, 0.36, 2); (3, 0.28, 7) 4.24 1.92
FCM (1, 0.67, 2); (2, 0.19, 4); (3, 0.14, 4) 3.88 1.47
E-HPF (1, 0.77, 4); (2, 0.13, 3); (3, 0.10, 3) 4.99 1.33

Case A: D ¼ 4
NOA (1, 0.36, 1); (2, 0.31, 1); (3, 0.19, 4); (4, 0.14, 4) 3.52 2.11
FCM (1, 0.36, 1); (2, 0.31, 1); (3, 0.19, 4); (4, 0.14, 4) 3.52 2.11
E-HPF (1, 0.72, 3); (2, 0.14, 3); (3, 0.08, 2); (4, 0.06, 2) 4.28 1.48

Case A: D ¼ 5
NOA (1, 0.36, 1); (2, 0.31, 1); (3, 0.10, 2); (4, 0.13, 3); (5, 0.10, 3) 3.29 2.30
FCM (1, 0.36, 1); (2, 0.31, 1); (3, 0.10, 2); (4, 0.13, 3); (5, 0.10, 3) 3.29 2.30
E-HPF (1, 0.67, 2); (2, 0.10, 2); (3, 0.09, 2); (4, 0.08, 2); (5, 0.06, 2) 3.52 1.76

Case B: D ¼ 3
NOA (1, 0.54, 2); (2, 0.26, 4); (3, 0.20, 4) 4.64 1.66
FCM (1, 0.54, 2); (2, 0.21, 3); (3, 0.25, 5) 4.63 1.71
E-HPF (1, 0.70, 4); (2, 0.15, 3); (3, 0.15, 3) 5.35 1.45

Case B: D ¼ 4
NOA (1, 0.54, 2); (2, 0.16, 2); (3, 0.15, 3); (4, 0.15, 3) 4.27 1.91
FCM (1, 0.54, 2); (2, 0.16, 2); (3, 0.15, 3); (4, 0.15, 3) 4.27 1.91
E-HPF (1, 0.62, 3); (2, 0.18, 3); (3, 0.10, 2); (4, 0.10, 2) 4.74 1.68

Case B: D ¼ 5
NOA (1, 0.54, 2); (2, 0.16, 2); (3, 0.10, 2); (4, 0.10, 2); (5, 0.10, 2) 4.12 2.06

FCM (1, 0.28, 1); (2, 0.26, 1); (3, 0.16, 2); (4, 0.15, 3); (5, 0.15, 3) 3.99 2.63
E-HPF (1, 0.54, 2); (2, 0.16, 2); (3, 0.10, 2); (4, 0.10, 2); (5, 0.10, 2) 4.12 2.06

Case C: D ¼ 3
NOA (1, 0.48, 3); (2, 0.22, 2); (3, 0.30, 5) 5.54 1.82
FCM (1, 0.32, 2); (2, 0.32, 2); (3, 0.36, 6) 5.52 2.04
E-HPF (1, 0.64, 4); (2, 0.18, 3); (3, 0.18, 3) 5.62 1.54

Case C: D ¼ 4
NOA (1, 0.32, 2); (2, 0.32, 2); (3, 0.18, 3); (4, 0.18, 3) 4.98 2.22
FCM (1, 0.32, 2); (2, 0.32, 2); (3, 0.18, 3); (4, 0.18, 3) 4.98 2.22
E-HPF (1, 0.48, 3); (2, 0.28, 3); (3, 0.12, 2); (4, 0.12, 2) 5.28 1.88

Case C: D ¼ 5
NOA (1. 0.32, 2); (2, 0.32, 2); (3, 0.12, 2); (4, 0.12, 2); (5, 0.12, 2) 4.80 2.40
FCM (1. 0.32, 2); (2, 0.32, 2); (3, 0.12, 2); (4, 0.12, 2); (5, 0.12, 2) 4.80 2.40
E-HPF (1. 0.32, 2); (2, 0.32, 2); (3, 0.12, 2); (4, 0.12, 2); (5, 0.12, 2) 4.80 2.40

Broadcast scheme (1,1,10) 10 1
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The NOA can also yield the minimum costs for
some scenario, such as D ¼ 5 for Case A and
D ¼ 4 for Case B. Occasionally, all three algorithms
may result in the minimum cost, such as D ¼ 5 for
Case C. According to the locating costs of Case A,
the FCM algorithm can improve up to 22% com-
pared to E-HPF and 8.5% compared to NOA algo-
rithms. Therefore, the new cost-minimization
algorithm is very effective in achieving the minimum
locating costs regardless of location probability dis-
tributions and delay bounds.
6.4. Computation complexity

Fig. 8 shows the computation complexity of fast
tracking algorithm (‘‘FCM’’), necessary conditions
algorithm as ‘‘NOA’’, and no probability con-
straints, which is referred to as ‘‘ALL’’ for various
number of cells under different delay constraints.
When the number of cells is 10, the dotted line in
Fig. 8 shows the result of not using any partition
constraints. The dashed line is for using necessary
conditions, and the solid line is based on FCM algo-
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Fig. 8. Computation complexity: (a) number of cells, N = 10; (b) number of cells, N = 15.
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rithms, where delay bounds are increased from 2 to
5. The figures show that the proposed fast algorithm
saves up to three orders of magnitude computation
than that for not using optimal partition and up to
50 times than that of using NOA. The more the
number of cells, the more significant is the improve-
ment. When the number of cells is increased to 15,
the computation can further be reduced from six
orders of magnitude to two orders of magnitude
compared to partition without using NOA and
using NOA, respectively. It indicates that the fast
location tracking algorithm is very efficient in reduc-
ing the computation for cost-minimization location
tracking in mobile wireless networks.

In addition to computation complexity, it is also
important to consider the buffers required for loca-
tion probabilities in real systems. Here we evaluate
only the numerical results of computation complex-
ity. In our previous work [3], we presented a detailed
procedure to calculate location probabilities and
buffer requirement in the third generation cellular
wireless systems based on technical specifications.
According to our previous results, the number of
cells to be considered in computation is less than
10 in most of the scenarios. Therefore, our numeri-
cal results here are applicable to real systems.

7. Conclusions

We have presented a new algorithm for cost-min-
imization location tracking in mobile wireless net-
works. Based on a unimodal property of two-step
locating cost as a function of the corresponding 2-
partition of the location area, the new algorithm
reduces the computation complexity significantly
while achieving an optimal partition. In addition to
the investigation ofminimum cost searching problem
under deterministic delay bound, we also addressed
the searching problem under statistic delay con-
straints by using a sequential matching algorithm.
Our simulation results show that the proposed algo-
rithms are applicable to different location probability
distributions. This is an important merit because uni-
form or Gaussian distributions of location probabil-
ities are not present in real systems. As a matter of
fact, these probabilities change over time and are
irregularly distributed. By combining with location
estimation algorithms, the proposed algorithms can
easily be implemented in wireless systems.
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