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Abstract—Mobile ad hoc networks are vulnerable to malicious
attacks and failures due to their unique features, such as
node mobility and dynamic network topology. The design and
evaluation of routing protocols and topology control require
sound analysis on network connectivity and node behaviors.
However, little work has been done on how node misbehaviors
affect network connectivity. Modeling and analysis of node
misbehavior involves many challenges such as multiple failures
caused by selfishness, mobility, and potential Denial of Service
attacks. Thus, we propose a novel model to characterize node
misbehaviors based on a semi-Markov process. In particular, we
analyze the impact of node misbehavior on network connectivity
in a mobile ad hoc network stochastically. Numerical results
based on analysis and simulations are provided to demonstrate
the effectiveness of our approach and results.

I. INTRODUCTION

Compared with wired networks, mobile ad hoc networks
are more vulnerable to malicious attacks as well as failures
due to their unique features, such as stringent power con-
straints, error-prone communication media and highly dynamic
network topology, which have posed a number of nontrivial
challenges to the applications of mobile ad hoc networks. Sig-
nificant research works have been done to investigate mobile
node misbehaviors [1], [8], [12] and ad hoc network connectiv-
ity [10], [3], [6]. However, little research efforts were made to
analyze to what extent these node misbehaviors can impact
the connectivity of mobile ad hoc network quantitatively,
which is the problem that we will address in this paper. The
answer to the problem will considerably help us to understand
various research problems, such as the design of fault-tolerant
routing protocols and analysis of ad hoc network performance,
thoroughly. Nevertheless, since mobile ad hoc networks are
complex and dynamic systems, and the effects resulting from
misbehaving nodes cannot be ignored, an in-depth study on
the impact of node misbehaviors is quite challenging due to
the multiple failures caused by node mobility, energy depletion
and Denial of Service (DoS) attacks.
In this paper, we first provide a formal classification of node

behaviors, then use a semi-Markov process to characterize
the behaviors of mobile nodes. In our node behavior model,
a mobile node may change its behaviors among four states,
i.e., cooperative, selfish, malicious and failed according to an
embedded Markov chain, while the transition time between
two states is not necessarily exponentially distributed. Fur-
thermore, based on the stochastic properties of the model, we

analyze the problem of node isolation due to misbehaving node
neighbors and obtain the probability that an ad hoc network
keeps connected in the presence of misbehaving nodes finally.
The remainder of this paper is organized as follows. In

Section II, we present related works on node misbehaviors
and network connectivity analysis. In Section III, we define
network connectivity and formulate the problem of network
connectivity in the presence of misbehaving nodes. In Section
IV, we model node behaviors by a semi-Markov process and
analyze the stochastic properties of the model. In Section
V, we derive the probability of the network connectivity by
considering node isolation issue. In Section VI, we validate
our analytical results by simulations, followed by conclusions
in Section VII.

II. RELATED WORK

Yang et al in [13] presented a good overview of potential
attacks which may impact network performance and proposed
a concept called resiliency-oriented security design. Among
all security threats, we are most interested in DoS attacks,
since they may have devastating influence on the network
survivability. Aad and Hubaux in [1] studied a novel DoS
attack perpetrated by relay nodes called JellyFish and a well-
known attack called Black Hole. Hollick and Schmitt in [8]
also showed that malicious attacks, especially Black Hole, can
harm ad hoc networks more than node failures.
Besides the analytical studies on DoS attacks analysis,

significant research efforts were made to analyze the con-
nectivity of ad hoc networks as well. Li and Wan in [10]
presented a localized method to control network topology such
that the resulting topology is tolerant to failures with fewer
communication links maintained. Bettstetter in [3] thoroughly
investigated the connectivity of wireless multihop networks
and analyzed the maximum number of failed nodes that a
multihop wireless network can sustain so that the network still
keeps connected.
Meanwhile, some schemes were proposed to make ad hoc

network resilient to node failures or DoS attacks, such as the
on-demand routing protocol proposed in [2], which provides
resilience to byzantine failures, and the study of SCTP in
mobile ad hoc networks with particular emphasis on the DoS
resistance [9]. However, none of these works endeavored
to reveal the quantitative impact of node misbehaviors and
failures on the connectivity of a mobile ad hoc network.
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III. NETWORK MODEL AND PROBLEM FORMULATION
A mobile node can become a failed node for many reasons,

such as moving out of the transmission ranges of its neigh-
bors, exhausting battery power, malfunctioning in software or
hardware, or even leaving the network. Besides these potential
failed nodes, each ad hoc network is composed of some
cooperative nodes and misbehaving nodes, which are active in
terms of their participation in the route discovering operation.
In this paper, we categorize mobile nodes into two disjoint
sets, failed nodes and active nodes, and represent a mobile ad
hoc network with only active nodes byMA. Next we define
the network connectivity formally.
Definition 1: (Network Connectivity) A mobile ad hoc net-

workMA is k-connected (k ≥ 2) if for each node pair there
exist at least k mutually independent paths (or k node-disjoint
paths) connecting them. For a k-connected networkMA, the
maximum value of k is defined as the connectivity of MA,
denoted by κ(MA) [4].
Then we formulate the problem of network connectivity

to misbehaving nodes (NCMN) problem as: Given a mobile
ad hoc network MA with a number of active nodes Na,
what is the probability that MA can keep k-connected, i.e.,
Pr(κ(MA) = k | Na)? We identify the following steps to
solve the NCMN problem:
1) The evolution of a node’s behavior should be described
properly such that the stochastic properties of the node
behavior can be found.

2) The node isolation resulting from misbehaving nodes
should be analyzed thoroughly such that the condition
for node’s being connected can be drawn.

The NCMN problem describes the possibility that an ad hoc
network can survive in a hostile environment with failures and
security attacks, so its solution will have a profound contri-
bution to a variety of research topics, such as fault-tolerant
routing design, resilient-oriented secure application, multihop
wireless network performance evaluation, and mobility and
topology management.

IV. NODE BEHAVIOR MODELING
In this section, we use a semi-Markov process to model

the evolution of node’s behavior, then analyze the stochastic
properties of node behaviors.

A. Semi-Markov Node Behavior Model
Since malicious and selfish nodes may not forward packets

properly, they are not considered as cooperative in this paper,
then the behaviors of mobile nodes are classified as follows:
• Cooperative Nodes are active in route discovery and
packet forwarding, but not in DoS attack launching.

• Failed Nodes are not active in route discovery.
• Selfish Nodes are active in route discovery, but not in
packet forwarding and DoS attack launching.

• Malicious Nodes are active in route discovery and DoS
attack launching.

Notice the fact that a mobile node is more inclined
to be failed due to energy consumption over time, we

find that the probability that a node changes its behavior
is dependent on time. Therefore, the revolution of node
behaviors cannot be simply described by a Markov chain
because of its time-dependent property. We propose a
node behavior model in this paper by a semi-Markov
process, denoted by Z(t), t ≥ 0, with a state space S =
{C (cooperative), S (selfish),M (malicious), F (failed)}.
Z(t) is determined by two matrices, P = (pij) and
F(t) = (Fij(t)), where pij is the transition probability of a
node’s behavior becoming state j from i, while Fij(t) is the
distribution function of the time spent from state i to j. Fig.
1 depicts the node behavior model defined above.

Fig. 1. Semi-Markov Process for Node Behavior.

B. Stochastic Properties of Node Behavior Model
In particular, we are interested in the probability that Z(t) is

in a certain state i, i.e., Pi , limt→∞ P (Z(t) = i|Z(0) = j).
Nevertheless, the existence of the limiting distribution needs
to be verified.
From Fig. 1, we can see that the embeddedMarkov chain of

Z(t), denoted byXn, has a finite state space S, and inXn each
state can reach other states within finite steps and itself within
one step. Thus, Xn is irreducible and ergodic. By Corollary
9-1 (pp. 325) in [7], we know that Z(t) is irreducible. Next,
let µij denote the expected transition time from state i to j,
since node behaviors change within finite time, then µij <∞
holds ∀i, j ∈ S. If let µi denote the expected holding time
in state i, we have µi =

P
j∈S pijµij . Thus,

P
i∈S µi < ∞

holds, which implies that Z(t) is also positive recurrent by
Theorem 9-2 (pp. 325) in [7]. Therefore, by Theorem 9-3 (pp.
327) in [7], the limiting distribution can be obtained by:

Pi , lim
t→∞,∀j∈S

P (Z(t) = i|Z(0) = j) =
πiµiP
j∈S πjµj

, (1)

where πi is the stationary probability of state i of Xn.
In order to calculate πi and µi in (1), we must obtain

transition probabilities pij and transition time distributions
Fij(t), which are described as follows.
1) Transition Probabilities: To determine pxf (x ∈

{C,S,M}), we consider both energy consumption and node
mobility behavior, which are characterized by an average
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node lifetime, T life, and average node residence time, T in,
respectively. To determine pxm (x ∈ {C,S, F}), we assume
an attack model in which an attacker chooses ka out of total
N nodes as victims with probability qa and needs an average
time of T attk to compromise these victim nodes. Notice that
a failed node is not affected by attacks, we apply the attack
model to cooperative and selfish nodes only. To determine pxs
(x ∈ {C,M,F}), we assume that malicious and failed nodes
will not become selfish. As for cooperative nodes, they are
assumed to turn off the packet forwarding function if their
residual energies drop below 1/η of their initial energies,
so that they become selfish at time TTS =

η−1
η · T life. To

determine pxc (x ∈ {S,M,F}), we assume that a cooperation
stimulating mechanism such as nuglet counter [5] is used,
where each selfish node possesses a certain number of tokens
TCmax initially and spends tokens when it sends or receives
packets for its own benefit. So selfish nodes must become
cooperative if the number of remaining tokens drops below a
threshold TCthr. For simplicity, we consider that malicious
nodes cannot become cooperative, while it is possible for
a failed node to be repaired or recharged with an average
recovery time T recr. Consider that P is a stochastic matrix,
we can determine pxx (x ∈ S) correspondingly. The complete
definitions of pij are given by (2) as follows:

pcf = pmf = psf = max(
1

T life

,
1

T in

),

pcm = psm = qa · ka
N
· 1

T attk

, pfm = 0,

pcs =
1

TTS
=

η

η − 1 ·
1

T life

, pms = pfs = 0,

psc =
TCthr

TCmax
, pmc = 0, pfc =

1

T recr

,X
i∈S

pij = 1, ∀j ∈ S. (2)

2) Transition Time Distributions: We use two-parameter
Weibull distribution from reliability engineering to define
Fxf (t) as: Fxf (t) = 1 − exp(−(t/β̂)α̂) (x ∈ {C,S,M}),
where α̂ is the slope parameter, β̂ = T life/Γ(1 + 1/α̂)
is the scale parameter, and Γ(·) is the gamma function.
Fcm(t), Fsm(t) and Fcs(t) are defined by Weibull distribution
similarly. In this paper, we assume that Fsc(t) is a uniform
distribution with the range of [a, b]. We further define Ffc(t)
and Fxx(t) (x ∈ S) by exponential distributions.

F(t) =


E(λ) W(α̂, TTSγ ) W(α̂, Tattkγ ) W(α̂, T lifeγ )

U(a, b) E(λ) W(α̂, Tattk
γ ) W(α̂, T lifeγ )

1 1 E(λ) W(α̂, T life
γ
)

E( 1

T recr
) 1 1 E(λ)

 ,

(3)
Then the complete definitions of Fij(t) are given by (3), where
W(α̂, β̂) denotes Weibull distribution with parameter α̂ and
β̂, E(λ) denotes exponential distribution with parameter λ,
U(a, b) denotes uniform distribution with range [a, b] and γ =
Γ(1 + 1/α̂).

After determing pij and Fij(t), we obtain πi by:

�π = �πP,
X
i∈S

πi = 1, πi ≥ 0, (4)

where �π , (πi) for i ∈ S. We further obtain µi by:
µij =

Z ∞

0

tdFij(t), µi =
X
j∈S

pijµij , ∀i ∈ S. (5)

By substituting the results from (4) and (5) into (1), the
limiting probability, Pi, can be obtained.

V. ANALYSIS OF NETWORK CONNECTIVITY
Recall that our objective is to find out the probability of

an ad hoc network keeping k-connectivity in the presence of
misbehaving nodes and node failures. Based on the proposed
node behavior model in Section IV, we are ready to analyze the
connectivity of ad hoc networks stochastically in this section.

A. Node Isolation due to Misbehavior
We begin our analysis by examing the effects of node

misbehaviors, which is so called node isolation problem. Fig.
2(a) shows the scenario where all the neighbors of node u
are selfish nodes. In this case, the number of node-disjoint
outgoing paths of u is zero, where the term outgoing path
refers the path through which a node can communicate the
nodes of at least two-hop away. In the scenario shown in

(a) (b)

Fig. 2. Node Isolated by Misbehaving Neighborhood.

Fig. 2(b), one of the neighbors of node u is Black Hole. In
fact, only one Black Hole neighbor x2 is sufficient to trap all
traffic initiated from node u if the destination is beyond the
neighborhood of node u. In this case, the number of node-
disjoint outgoing paths for node u is also zero. If node u
is surrounded by one or more JellyFish node(s), then the
throughput of the data stream via the JellyFish node will
become zero after a short time period, which is especially
harmful for long communication sessions.
Let Nop(u) denote the number of node-disjoint outgoing

paths of node u, then node u is isolated from the network
if Nop(u) = 0. Considering that there exist only two types
of malicious nodes in this context, Black Hole and JellyFish
nodes, we have the following observation:
Lemma 1: A node u is isolated if it has at least one Black

Hole neighbor or the total number of selfish, JellyFish, and
failed neighbors is d, given it has d neighbors.
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By Lemma 1, let D denote the number of neighbors of a
node, then we obtain the probability of a node being isolated,
given that the node has d neighbors, as
Pr(Nop = 0|D = d) = 1− (1− PBH)

d + (1− Pc − PBH)
d, (6)

where Pc and PBH are the probabilities that a node is
cooperative and a Black Hole, respectively. Consequently, a
node must have at least one cooperative and no Black Hole
neighbor to keep it connected to the network.

B. Condition of Keeping A Node k-Connected
Let n̂c(u), n̂BH(u) and n̂g(u) denote the number of co-

operative, Black Hole and all other neighbors of node u,
respectively, then based on the analysis to node isolation
problem, we have
Theorem 1: A node u has k node-disjoint outgoing paths if

and only if u has k cooperative neighbors and no Black Hole
neighbor, i.e., {Nop(u) = k} ⇔ {n̂c(u) = k, n̂BH(u) = 0}
for k ≥ 1.
Notice that the events of any node being in a certain behavior
state are mutually independent, then by multinomial probabil-
ity law, we know that the joint distribution of n̂c, n̂BH , n̂g is
a multinomial distribution. By Theorem 1, the probability of
a node being k-connected to network, given that the node has
d neighbors, is defined as

Pr(Nop = k|D = d) = Pr(n̂c = k, n̂BH = 0, n̂g = d− k)

=
d!

k!(d− k)!
(Pc)

k · P̄ d−k, k ≥ 1, (7)

where P̄ = 1− Pc − PBH denotes the probability of a node
being neither cooperative nor Black Hole.

C. Probability of k-Connectivity
Let θ(MA) = min{Nop(u)|Nop(u) ∈ N, u ∈ MA}, we

have the condition to keep a network k-connected as follows:
Theorem 2: An ad hoc networkMA with Na nodes is k-

connected if and only if any active node u ofMA has at least
k node-disjoint outgoing paths, when Na is sufficiently large.
Therefore, by Theorem 2, the probability of a network being
k-connected can be represented by:

Pr(κ(MA) = k) = Pr(θ(MA) ≥ k). (8)

We assume that the number of outgoing paths for each node
u, Nop(u), is independent, then from (8), we have:

Pr(κ(MA) = k|Na) = (1− Pr(Nop < k))Na , (9)

where Na is the number of active nodes. By the total proba-
bility law, we have

Pr(Nop < k) =

∞X
d=k

Pr(Nop < k|D = d)Pr(D = d). (10)

To solve this problem, we need to find Pr(Nop < k|D =
d) and Pr(D = d). By (7), Pr(Nop < k|D = d) is given
immediately by:

Pr(Nop < k|D = d)

= 1− (1− PBH)
d +

k−1X
m=0

d!

m!(d−m)!
(Pc)

m · P̄ d−m.(11)

To derive Pr(D = d), we assume that all nodes move
randomly over a finite area with size A. We divide the area
into N 0 small grids virtually so that the grid size is in the same
order of the physical size of a node. Consider that the network
area is normally much larger than the node physical size, the
probability that a node occupies a specific grid, denoted by p0,
is very small. With large N 0 and small p0, node distribution
can be modeled by a Poisson point process. Then we have

Pr(D = d) ≈ µd0
d!
e−µ0 , (12)

where µ0 = ρπr20 . ρ is the node density depending on the
underlying mobility model, and r0 is the transmission range
of nodes.
Finally, by (9), (10), (11) and (12), we obtain:

Pr(κ(MA) = k|Na)

=

"
Γ(k, µ0)

Γ(k)
+ e−µ0PBH

µ
1− Γ(k, µ0(1− PBH))

Γ(k)

¶

−e−µ0PBH · Γ(k, µ0Pc)
Γ(k)

#Na
. (13)

where Γ(·) and Γ(h, x) = (h − 1)!e−x
Ph−1

l=0 xl/l! are
complete and incomplete Gamma function, respectively.

VI. SIMULATION RESULTS
Up to now, we have obtained the stochastic properties of

the impact of node behaviors on network connectivity. In this
section, we evaluate our node behavior model and network
connectivity of ad hoc networks by simulations.

A. Simulation Environment
In this work, we use NS2-v2.27 and MATLAB-v6.5 to

perform the simulations. Unless specified otherwise, all sim-
ulations are performed in a 1000 × 1000 m2 square area,
over which 200 mobile nodes with transmission range 150 m
are distributed uniformly. IEEE 802.11 is used for medium
access control and AODV is used as the routing protocol.
BonnMotion [11] is used to generate Gauss-Markov modeled
movement scenarios. In order to calculate the probability of
connectivity, we collected the neighborhood statistics of each
node per 10 seconds, including the number of neighbors and
the behavior of each neighbor. With these information, the
number of outgoing paths of each node can be obtained, then
the probability of k-connectivity can be calculated.

B. Probability of A Node Being Cooperative
As explained in Section IV-B, node mobility is represented

by the average residence time T in. The smaller T in is, the
faster a node will leave a network, which implies that the node
is less cooperative to its neighbors. As shown in Fig. 3(a), the
cooperative probability Pc is proportional to T in when T in ≤
T life and remains a constant of 1/T life afterward. From Fig.
3(a), Pc is affected by the initial energy Einit as well, i.e., a
node with a higher Einit is more likely to be cooperative. By
(2), as η increases, pcs keeps deceasing until 1/T life, which
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Fig. 3. Probability of A Node Being Cooperative Pc.

reflects the fact that a node is more likely to be cooperative if
it takes longer time to become selfish. Therefore, in Fig. 3(b),
Pc increases quickly at the beginning, then almost remains
constant afterwards. Meanwhile, we can see that a higher token
threshold TCthr can increase Pc effectively, which shows that
it is necessary to use a cooperation stimulating mechanism
to mitigate selfish behavior. Moreover, by (2), the shorter
T attk is, the more likely a node is compromised to become
malicious, which leads Pc in proportion to T attk, as shown
in Fig. 3(c). If the fraction of vulnerable nodes within total
nodes, ka/N , is increased from 0.01 to 0.05, then cooperative
probability Pc drops dramatically for the same T attk. Thus,
we conclude that external attacks can impact Pc substantially.

C. Probability of k-connectivity

In this section, we study how network connectivity is
impacted by misbehaving nodes and node failures. Fig.
4(a) shows the simulation results of the probabilities of k-
connectivity against Pc for k = 1, 2, 3, 4, respectively. In this
experiment, Pf and PBH are set to 0 such that we can observe
the effect of Pc clearly. From Fig. 4(a), the probability of k-
connectivity is inversely proportional to k given constant Pc,
and proportional to Pc given constant k. To obtain a higher
k-connectivity, it is necessary to have a higher Pc.
In order to see the effect of probability of node failure

Pf , we set both Ps and Pm as zero to eliminate the impact
of misbehaving nodes in our simulations. From Fig. 4(b),
the probability of k-connectivity decreases very fast as Pf
increases. As we expected, for a highly connected network,
the impact of Pf is more significant, e.g., the probability of
k = 3-connectivity drops to 0.4 even as Pf = 0.2.
In the same way, we obtain the results from node selfishness

as shown in Fig. 4(c). Similar to that in Fig. 4(b), the plot
in this figure indicates that the probability of k-connectivity
decreases as selfish probability Ps increases. Nevertheless,
differing from the results in Fig. 4(b), the probability of k-
connectivity does not change significantly when Ps is in-
creased at the beginning, especially for lower k. Notice that the
number of active nodes Na decreases as Pf increases, which
makes the network sparser in terms of the decreased node

density (e.g., ρ = Na/A if the node distribution is uniform).
Therefore, node failures have severer partitioning effects than
selfish nodes.
Compared to the analytical results, the simulation results

are lower than analytical ones, which can be explained by the
border effect, i.e., the nodes at the vicinity of the simulation
boundary have less neighbors and thus become isolate easily.
Therefore, the analytical result provides a upper bound for the
probability of k-connectivity.

D. k-connectivity Impacted by Other Parameters
In addition to node behaviors, we continue to evaluate the

impact of other system parameters on network connectivity.
Here we look at the effect of Black Hole with the probability
of PBH . By (13), PBH has tremendous influence on the
probability of k-connectivity. Analytical results are illustrated
in Fig. 5(a) from which we can see that Black Hole is the
most harmful behavior since it destroys network connectivity
much severer than node failures do. Recall the node isolation
issue discussed in Section V-A, we find that a Black Hole
actually can isolate all its neighbors, and its influential scope
will be extended when it roams in the network.
Next, we discuss the effect of system size N on the network

connectivity. In this simulation, the transmission range r0 is
set as 100m to enlarge system size N . Fig. 5(b) shows that
the required network size N should be enlarged to guarantee
the same k-connectivity when malicious or failed nodes are
in present. To discuss the effect of the node’s transmission
range r0 on the network connectivity, we change the system
size N to 150 from 200 to enlarge the change of r0. Fig. 5(c)
shows that the higher k-connectivity is required, the larger r0
is needed. Similar to the analysis to Fig. 5(b), we conclude
that the required r0 has to be increased to guarantee the same
k-connectivity if malicious or failed nodes exist in a mobile
ad hoc network.

VII. CONCLUSION
In this paper, we focused on the modeling and analysis

of the impact of node misbehaviors to network connectivity
of mobile ad hoc networks, which has been rarely studied
before. We first classified node behaviors into four types:
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Fig. 4. Probability of k-connectivity: Effects of Node Behaviors.
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Fig. 5. Probability of k-Connectivity: Effects of System Parameters.

cooperative, selfish, malicious and failed, then proposed a node
behavior model by employing a semi-Markov process. In our
model, mobile nodes change their behaviors according to the
well-defined transition probability matrix and transition time
distribution matrix. After obtaining the limiting probability of
a node being in each behavior state. we analyzed the node
isolation problem resulting from misbehaving neighbor nodes
and provided the condition under which mobile nodes can
be connected with a mobile ad hoc network. In consequence,
we obtained the probability of a network being k-connected.
Finally, our analytical results were explained by simulation
experiments. As a conclusion, besides mobility-induced fail-
ures, node misbehaviors can cause node isolation problem as
well, which impacts the network connectivity significantly.
Our work also provides a deeper understanding to network
performance evaluation and multiple failure detection in the
presence of node misbehaviors.
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