CentMesh Drones Mission Control Protocol

Specifications, API, How-to
e
Objective: The objective of this document is to describe the protocol by which an application
running on the CentMesh Mobile Node platform can receive high-level directives from a Mission
Control. In this context, the term “Mission Manager” and “Mission Control Protocol” refer
specifically to CentMesh Mobile Nodes and CentMesh Drones, and are not to be confused with
MAVLink terms such as “Ground Control Station”. This document also provides an introduction
to the MCP sample code provided (both for the drone side, and the controller side), and
describes how the sample code can be utilized by a drone application programmer.

Change History:

Version 0.1: Created by Ramachandra Kasyap Marmavula, March 6, 2014

Version 0.2: Edited by Rudra Dutta: added overview section, March 6, 2014

Version 0.3: Edited by Ramachandra Kasyap Marmavula: added How-to section March 7, 2014

More Context: CentMesh website and wiki: http://centmesh.csc.ncsu.edu

1 Overview of the Mission Control Protocol (MCP)
2 MCP Application Programmer’s Interface
2.1 Class Definitions
File: mcp.py
File: mcp_enum.py
File: mcp_common.py
File: mcp_handler.py
2.2 Available methods - Sample code description
File: mission_manager.py
File: mcp_handler_ground.py
File: mission_controller.py
File: mcp_handler_mission_controller.py
Extracting WayPoint list
2.3 Using the Methods to design drone applications
Handler module
Main module

1 Overview of the Mission Control Protocol (MCP)

The MCP is primarily intended to allow applications running on CentMesh Drones to receive
mission control commands from a “Mission Manager”.

http://www.google.com/url?q=http%3A%2F%2Fcentmesh.csc.ncsu.edu&sa=D&sntz=1&usg=AFQjCNEVinZ7i3CVWKmwLvaGCHiU8ncDwQ

The Mission Manager and drone application communicate over UDP sockets, by convention on
ports 7889 and 7890. At the IP level, they are local subnet IP broadcasts. MCP messages
themselves can be unicast or broadcast. Unicast MCP messages should be replied to with an
MCP acknowledgement message.

|~
/
MCP Commands Drone Application

MCP ACK

=l
Y/ i e\

Mission Manager

The format of the messages exchanged in the MCP is as below:

Preamble DstID SrcID | Sequence No | Action Code | Payload

The Preamble is a 9-byte unique pattern. The first 7 bytes spell out “NCSU-CM” in ASCII, the
value of each of the last two bytes is 1.

The next two fields provide the MCP ID of the destination and source of the message. By
convention, the Mission Manager always has the ID 0. The drones each have a unique ID locally
configured, which can be read from a file by (or specified on the command line of) the drone
application.

The Sequence No is a 2-byte field that allows successive messages to be identified and
acknowledged independently. Each sender of MCP messages (i.e, Mission Manager, or Drone
Application) starts with an arbitrary initial sequence number value, and then increments it for
successive messages. Retransmissions of the same message are identified by repeating
sequence number. This allows a sender to guarantee delivery of a unicast messages by
retransmitting the message until an acknowledgement is received. The receiver discards
duplicates received for a message, if any.

The 2-byte Action Code field specifies the meaning of the MCP message, and the Payload field
provides the details for the action code. The length and meaning of the Payload is dependent on
the Action Code.

The following values are possible for the Action Code field, with corresponding meanings. ALL
of the following messages except ACK and Mission_Ready are always sent by the Mission
Manager. An ACK is sent by the drone application or Mission Manager for every unicast
message received.

Mission_Ready: The drone application sends this message to the Mission Manager signaling its
‘mission readiness’. The drone application must verify GPS lock and other similar ready-to-fly
capabilities before sending this message. The Mission Manager waits for a ‘Mission_Ready’
message from each drone application before it proceeds with initiating the mission.

Start_Mission: The Mission Manager starts the mission with this message, and does not send
any subsequent MCP commands until an acknowledgement is received. The drone application
must not ARM the autopilot before receiving this message. No payload.

End_Mission: The Mission Manager sends this message to indicate that it will send no further
commands in the current mission. The drone application should complete carrying out all
currently pending actions (from previously received commands), then execute an RTL. No
payload.

WP_List: A list of waypoints is embedded in the payload. The first two bytes of the payload
specify the number of waypoints that follow. The waypoints are listed in the Waypoint File
format. The drone application should interpret the waypoints in a way appropriate to the mission.
(For example, in Challenge 1, this should be interpreted as the waypoints to visit, but not
necessarily in that order.)

WP_On: A single waypoint is embedded in the payload, in MAVLink format, and is now
considered “active”. The meaning of “active” depends on the mission. (For example, in
Challenge 2, it means a waypoint is now eligible for earning points.)

WP_Off: The most recently specified waypoint to be “active” is now “inactive”. The meaning of
“‘inactive” depends on the mission. No payload.

Obstacles_List: A list of waypoints is embedded in the payload, that should be interpreted as
obstacles. The first two bytes of the payload specify the number of waypoints that follow. The
obstacles are specified in Waypoint File format.

(Please note that the Waypoint File format is recommended by MAVLink, though not part of
MAVLink and the same format is used by MCP. Sample waypoint and the way of extraction is
described in a later section in this document).

ACK: The payload is a sequence number for a previously received message, which is being
acknowledged. This is the only message sent by the drone application.

http://www.google.com/url?q=http%3A%2F%2Fqgroundcontrol.org%2Fmavlink%2Fwaypoint_protocol%23waypoint_file_format&sa=D&sntz=1&usg=AFQjCNHNEnHhP-U9Emfc29B71UTb1Xv74Q
http://www.google.com/url?q=http%3A%2F%2Fqgroundcontrol.org%2Fmavlink%2Fwaypoint_protocol%23waypoint_file_format&sa=D&sntz=1&usg=AFQjCNHNEnHhP-U9Emfc29B71UTb1Xv74Q
http://www.google.com/url?q=http%3A%2F%2Fqgroundcontrol.org%2Fmavlink%2Fwaypoint_protocol%23waypoint_file_format&sa=D&sntz=1&usg=AFQjCNHNEnHhP-U9Emfc29B71UTb1Xv74Q

Mav_Passthrough: This code is reserved for future compatibility. The payload consists of a
single embedded MAVLink message.

2 MCP Application Programmer’s Interface

In this section we describe an API to perform the various necessary tasks for the MCP Mission
Manager and Drone Application programs. The API is made available as a python library. In the
first section below, we describe the classes with their data members. In the next section, we
describe the methods available in these classes. The last section describes how an application
programmer can use these methods to communicate using the MCP protocol, and perform the
various common required tasks.

2.1 Class Definitions

The code for the MCP implementation consists of two key components:
1. MCP module for sending and receiving MCP messages
2. Custom modules (to be written by application developers) that uses (1) to handle
received messages. There are default handlers for each and every message that do
‘nothing’. In other words, if the application developers do not write any message handlers,
no action will be taken whenever a MCP message is received.

File: mcp.py

from mcp_common import Action_codes

class that is offered by the MCP module, used to send and receive messages
class Mcp()
{
Attributes
udp_server_port = None # Local server that is created in the constructor
remote_udp_conn = None # Tuple with (Broadcast IP, remote port)
mcp_handler = None # This is replaced by the one called in the constructor
timeout = 5 # in seconds, can be overridden by what is passed
num_of retries=1000 # can be overridden by the passed argument
preamble = ASCII code corresponding to N''C''S' 'U' =" 'C' 'M' followed by 0x01 0x01
source_ID = None # This will be initialized in the constructor, for now it is 1 for UAV and
#0 for laptop
base format_string = “I7s2B4H” #This has to be appended by the format for payload

“” Function List “”

constructor

__init__(self, handler_obj (of type mission_message handler:
mandatory),port_to_listen_to : optional, port_to_send_to: optional, IP address to send to:

mandatory, source_id: mandatory):

destructor
__del__(self):

Public function: to send unicast message.
#Exception with the appropriate error message is thrown when the function fails.
If timeout and retries are not specified the call blocks.

send_unicast_message (action_code , buffer, destination ID (all mandatory), timeout,
num of retries: optional):

Public function

send_broadcast_message (action_code, buffer):
“” Public function: if the message is destined for itself, ACK, otherwise no ACKing. Calls
the registered handlers. If an ACK is received, ignore and continue listening for a‘proper’
message.

OPTIONAL: can specify what sort of message to wait for and timeout. If timeout is not
specified, the call blocks until a message of expected type is received.

LIRLEL)

recv_message (message_type = <one of the action codes>, timeout = 0)
“” Private function: Function that actually sends messages - both
send_broadcast_message() and send_unicast_message() call this. This method does
the packing of the structure according to what is expected. The handling of retries and
timeouts is handled by the wrapper send_() functions that invoke this function. “”
__send__ (payload, destination ID)

“” Private function: Function that actually receives messages - this is called by
recv_message() and also send_() functions to wait for an ACK.””
__recv__(timeout)

“” Private function: Returns a string that has the packet in the MCP format. Uses the
format string and packs the structure.

format_string = base_format_string + len(payload) + s
__generate_mcp_packet__ (action_code, buffer):

LELIEL)

"""Private function: Parses the buffer received and returns the following:
source_id, seq_id, action_code, payload""
__get_mcp_fields__ (self, buffer):

}

“”Private function: Increment the sequence number. Called during every send™.
__increment_sequence_number__ ():

"""Private function: Returns the length of MCP Header. Length of current fields:
Preamble: 'NCSU-CM'0x010x01 (9 bytes)

destination ID: 2 bytes

source ID: 2 bytes

sequence number: 2 bytes

Action code: 2 bytes

Total: 17 bytes

__length_of _mcp_header__ ():
“" Private function: Return the current sequence number""
__get_sequence_number__ ():

“’Private function: returns the destination broadcast ID”””
__get _dest _broadcast ID__ ():

[131E0)

Private function: Validate if the received action code is a valid action code. Returns
True if valid, False if not™”
__validate_action_code _ (action_code):
“” Private function: Check if the passed action code is what was expected. This is called
by recv_message (action_code = something). Returns True or False.””
__check_passed_action_code _ (action_code):

""" Private function: Get remote end address. Used by send().
__get_remote_end_address__ (self):

Class for generating exceptions.
class McpException(Exception):

{

Constructor: takes the message to be used as argument
__init__(message):

Returns the message that was used to create this object

st

}

r_():

File: mcp_enum.py

Reference: http://stackoverflow.com/questions/36932/how-can-i-represent-an-enum-in-python

“”To check if a given action code exists. we can simply call
Action_code.reverse_mapping(<value>) in a try/catch block. If this returns a key error, then the
action code is invalid.

def enum(*sequential, **named):
enums = dict(zip(sequential, range(len(sequential))), **named)
reverse = dict((value, key) for key, value in enums.iteritems())
enums['reverse_mapping'] = reverse

return type('Enum’, (), enums)

File: mcp_common.py

import mcp_enum

Current Action codes:

Mission_Ready = 0

Start_Mission = 1

End_Mission = 2

WP_List=3

WP_On =4

WP_Off =5

Obstacles_List=6

ACK=7

Mav_Passthrough = 8

NOTE: 'Any' type is used on the receiving/sending end for validation purpose
only. It can't be used as an actual action code.

Action_Codes = mcp_enum.enum('Mission_Ready','Start_Mission','End_Mission',"WP_List',
'WP_On','WP_Off, 'Obstacles_List', '"ACK','Mav_Passthrough','Any")

http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F36932%2Fhow-can-i-represent-an-enum-in-python&sa=D&sntz=1&usg=AFQjCNHqvWcgB1eVbOqSmXIIKox0fV7UsA

File: mcp_handler.py

from mcp_common import Action_codes

class MissionMessageHandlerBase(Object) {
Attributes
dict_ message_handlers = {}
mavutil_obj = None # We need this object to control the UAV.
“” Function List “”
constructor
__init__(mavutil_obj (of type mavutil: mandatory - should allow None as well as we would
not need one for the process running on the Laptop)):

destructor
_del__():

Public: Function to handle Start_mission. Starts the mission by arming the copter
handle_start_mission_message():

Public: Function to handle End_mission. Should probably do a RTL.
handle_end_mission_message():

Public: Function to handle WP_List. Saves the waypoints to a dictionary - [index, WP]
handle_wp_list_ message(buffer):

Public: Function to handle WP_On. Save the waypoint and perform some action.
handle_wp_on_message(buffer):

Public: Function to handle WP_Off. Mark the waypoint and perform some action.
handle_wp_off message(buffer):

Public: Function to handle obstacle list
handle_obstacle_list_ message (buffer):

Public: Function to handle Mav_Passthrough. Custom action.
handle_mav_passthrough_message (buffer):

No handler required for ACK message and we don’t call this either. But adding this
for the sake of completion:
handle_ack message():

The handlers MUST be overridden by their exact names in any class that extends this.
Preferring a simple (but a bit difficult to follow) method for overriding.

#Public func: NOT a message handler. This function 'blocks' till the APM is 'mission
#ready'. We currently verify if there is a GPS fix and wait till we have one. More
#functionality can be possibly added here

is_mission_ready():

2.2 Available methods - Sample code description

File: mission_manager.py
Process running on the laptop that manages the UAV missions

This has the main() method that does the following making use of mcp module:
1. Waits for 'Mission Ready' messages from all UAVs (currently only one)
2. Sends 'Start Mission' message to each UAV
3. Executes the challenge based on the challenge number

File present in ‘mission_manager’ directory.

Invoke it using the following syntax:
./mission_manager.py <challenge #> <broadcast address> <local port> <remote port>

Example: For challenge 2 and testing locally (i.e. both Mission Manager and the drone application
reside in the same system), use the following command:

/mission_manager.py 2 127.255.255.255 7889 7890

File: mcp_handler_ground.py
Has the method definitions for handling MCP messages for the Mission Manager

As mentioned in the earlier section, there are default message handlers for each MCP message
(that do nothing). If a new handler is not defined for a particular function, then the default one is
invoked. Since the Mission Manager handles only ‘Mission_Ready’ message, this file has handler
just for the single message:

File present in ‘mission_manager’ directory.

class MissionMessageHandler (a sub-class of MissionMessageHandlerBase):

This keeps track of whether the UAVs are mission ready or not
dict_is_uav_ready = {}

#Constructor: initialize the dictionary with list of system IDs
__init__(mavutil_obj,list_system_ids):

#Public: Handler for 'Mission_Ready' message. This is the only message
#that the mission planner is interested in. The buffer contains the ID of
#UAV that sent this message"""

handle_mission_ready_message (buffer):

#Public: Returns true if all UAVs are 'mission ready'. False otherwise
all_uavs_ready(self):

File: mission_controller.py
Process running on the UAV that is managed by Mission Manager

This has the main() method that does the following making use of mcp module:
1. Sends 'Mission Ready' message to mission planner (after getting a GPS fix)
2. Waits for 'Start Mission' message from mission planner. Upon receipt, ARMs the UAV
and makes it fly vertically to an altitude of 20 metres
3. Waits for 'Waypoint List' message (challenge 1), saves the waypoints to a dictionary and
then prints out (index of waypoint, latitude, longitude, altitude) for each waypoint.

File present in the following path: ‘sample_prog_mavutil/program_3a/mission_controller.py’

Invoke it using the following syntax:
./mcp_mission_controller.py <broadcast address> <local port> <remote port>

Example: For testing locally (i.e. both Mission Manager and the drone application reside in the
same system), use the following command:

./mcp_mission_controller.py 127.255.255.255 7890 7889
Note that the values specified for local port and remote port should be interchanged for Mission
Manager and drone application.

File: mcp_handler_mission_controller.py
Has the method definitions for handling MCP messages for sample app 3a - Mission controller

As mentioned in the earlier section, there are default message handlers for each MCP message
(that do nothing). If a new handler is not defined for a particular function, then the default one is

invoked. The sample application (mission controllers) handles ‘Start_Mission’,’End_Mission’ and
‘WP_List’ messages and handlers are defined for them.

(NOTE: In the sample code provided, there are also handlers for WP_On, WP_Off messages.
Both the handlers print a waypoint after receiving one. Additional functionality (which will be
needed for the challenges) can be built on top of this.

File present in the following path: ‘sample_prog_mavutil/program_3a/mcp_handler_uav.py’

class MissionMessageHandler (a sub-class of MissionMessageHandlerBase):
constructor
__init__(mavutil_obj):

Handler for 'Start_Mission': ARM the UAV and station keep at 10 metres
handle_start_mission_message(buffer):

#Handler for 'End_Mission": The 'End_Mission' implies that the mission
#manager will not send any more messages. The UAV can continue doing
#whatever it is currently doing and then Return to Launch (RTL) once
#that is done. Since this is sample code, we just do a RTL
handle_end_mission_message(self, buffer = None):

#Handler for WP_On: Displays the received waypoint.
handle_wp_on_message(buffer):

#Handler for WP_Off: Displays the received waypoint.
handle_wp_off _message (buffer):

#Handler for 'WP_List": this sample code saves the waypoints to a list and displays them
handle_wp_list_message(buffer):

#Internal func: NOT a message handle. Traverses the dictionary of waypoints saved
#by the handler and prints the following: index of waypoint, latitude, longitude and
#altitude

__print_waypoints__ ():

#Internal function: makes the UAV fly vertically up to 20 metres
__fly_vertically__ ():

Extracting WayPoint list

As given in the Waypoint File format, following are the various fields:

http://www.google.com/url?q=http%3A%2F%2Fqgroundcontrol.org%2Fmavlink%2Fwaypoint_protocol%23waypoint_file_format&sa=D&sntz=1&usg=AFQjCNHNEnHhP-U9Emfc29B71UTb1Xv74Q

<INDEX> <CURRENT WP> <COORD FRAME> <COMMAND> <PARAM1> <PARAM2> <PARAM3> <PARAM4>
<PARAM5/X/LONGITUDE> <PARAM6/Y/LATITUDE> <PARAM7/Z/ALTITUDE> <AUTOCONTINUE>

Following is the content of sample file is used in Challenge 1:

QGC WPL 110

0 1 0 16 0 0 0 0 35.771332 -78.674421
0.000000 1

1 0 3 22 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 3.000000 1

2 0 3 19 5.000000 0.000000 0.000000 0.000000
35.771103 -78.674659 3.000000 1

3 0 3 19 5.000000 0.000000 0.000000 0.000000
35.771057 -78.674421 3.000000 1

4 0 3 20 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 1

A waypoint list is built from this. The format of the list is as follows:

of waypoints Waypoint 1 Waypoint2 | Waypoint n

<---2 bytes---> List of waypoints each of size 37 bytes

The size 37 comes from the fact that mavlink_apm.py uses the following method to
‘pack’/’'unpack’ waypoints (reference ‘pack()’ method of ‘MAVLink _mission_item_message’
class:

MAVLink_message.pack(self, mav, 254, struct.pack('<fffffffHHBBBBB', self.param1,
self.param2, self.param3, self.param4, self.x, self.y, self.z, self.seq, self.command,
self.target_system, self.target_component, self.frame, self.current, self.autocontinue))

The sample app (mcp_mission_controller.py) blocks for ‘WP_List’ message after receiving a
‘Start_Mission’ message. Once this message is received, ‘handle_wp_list_ message()’ in
‘mcp_handler_uav.py’ is invoked.

mcp_obj.recv_message(mcp.Action_Codes.WP_List)

Following is the list of steps performed in ‘handle_wp_list_ message()’ to obtain <latitude,
longitude,altitude> for each waypoint:

1) Get the number of waypoints

wp_list_size = len(buffer) - 2
format_string = mcp.format_num_waypoints + str(wp_list_size) +'s’

num_waypoints, rest_of payload = struct.unpack(format_string,buffer)

2) Save waypoints to a dictionary

wp_list = struct.unpack(format_string_wp,rest_of _payload)
idx =0
for way_point in wp_list:

self.dict_waypoints[idx] = way_point

idx = idx+1

J

3) Print the index, latitude, longitude and altitude using the function *__print_waypoints__()".

for key,value in self.dict_waypoints.items():
waypoint_tuple = struct.unpack(fmt, value)
print waypoint_tuple
print (‘Waypoint (%d) : Lat: %f Lon:%f Alt: %f’
%(int(waypoint_tuple[7]),float(waypoint_tuple[4]),
float(waypoint_tuple[5]),
float(waypoint_tuple[6]))

Please note that there is a slight difference in the order in which elements are stored from the
order in which they are packed and sent by mavlink_apm.py - in the Waypoint File format,
latitude, longitude and altitude are present in the ‘end’:

<INDEX> <CURRENT WP> <COORD FRAME> <COMMAND> <PARAM1> <PARAM2> <PARAM3>
<PARAM4> <PARAMS5/X/LONGITUDE> <PARAM®6/Y/LATITUDE> <PARAM7/Z/ALTITUDE>
<AUTOCONTINUE>

mavlink_apm.py packs this and sends them in the format mentioned above where the latitude,
longitude and altitude appear at indices 4,5 and 6 when treated as a tuple.

param1,param?2,param3,param4,x,y,z,eq,command,target_system,target component,frame,
current,autocontinue))

You are encouraged to use this example as a reference to extract waypoints and obstacle list

2.3 Using the Methods to design drone applications

The sample code with the above classes and methods can be easily utilized in building drone
applications. The Mission Manager code can be used as is for the three challenges (use the first
command line argument for specifying the particular challenge).

For developing the drone application, there is only one major component that needs to be
written - the message handler for a message. For example, if the drone application requires to
handle waypoint list, have a function

handle_waypoint_list message(buffer) and specify the functionality there. Note the name of the
function should match the one specified in mcp.py.

For the general sequence of things to take care, refer the existing sample application (a
combination of mcp_mission_controller.py and mcp_handler_uav.py). In short the flow would be
this:

Handler module

In a new file, have a class that extends ‘MissionMessageHandlerBase’ class (ex:
‘MissionMessageHandler’). This class should have methods for handling various messages that
are expected to be received. ‘Start_Mission’ and ‘End_Mission’ are to be handled by all drone
applications and thus should always have handlers.Which others to have depends on the role of
the drone application (ex: for challenge 1, WP_List’ must be handled, while for challenge 2,
‘WP_On’ & ‘WP_Off must be handled etc.)

Main module
In another file, have the ‘main’ function that does the following (in that order):
1. Create a mavutil object:

mavutil_obj = mavutil. mavlink_connection(device)
2. Create an object of type ‘MissionMessageHandler’ pasing mavutil_obj created above:
mission_message_handler_obj = MissionMessageHandler(mavutil_obj)
3. Create an object of type mcp passing the ‘mission_message_handler_obj’,local port, remote
port and broadcast address as arguments:
mcp_obj = mep.Mcp(mission_message _handler_obj,udp_local_port,udp_remote_port,

broadcast_address, source_id)

4. Wait for the UAV to get ‘mission ready’ (in other words, call the below function and wait for it to
return):

mcp_obj.mcp_handler_obj.is_mission_ready()

5. Send ‘Mission_Ready’ message to Mission Manager after (4) returns:
mcp_obj.send_unicast_message(mcp.Action_Codes.Mission_Ready,None,0)

6. Wait for Start_Mission message. On receiving one, ARM the UAV and station keep at 10
metres:

mcp_obj.recv_message(mcp.Action_Codes.Start_Mission)

7. Keep receiving messages using recv_message(). Once a message is received, the handler
specified is automatically invoked (the application developer does not need to do anything).

8. Stop receiving messages once End_Mission is received. You can have a flag in the code to
keep track of whether an End_Mission has been received. Upon ‘End_Mission’ receipt, complete
the flight and do RTL.

NOTE:

e send_unicast_message() takes timeout, number of retries as optional arguments. If
these are not specified, the call blocks.

e recv_message() takes timeout and expected action code as optional argument. If timeout
is not specified, the call blocks. If a particular action code is specified and a message
with some other action code is received, then the received message is ignored and the
call blocks till the expected message is received.

