Tutorial for developing applications for the drone

challenge
=]

Objective: The objective of this tutorial is to help develop and verify sample applications using
the programmable platform offered by CentMesh drones. We also introduce mavutil, a python
module that provides additional wrappers for some functions offered by pymavlink. Code
snippets that contrast the two ways of achieving the desired functionality (with and without
mavultil) are also discussed.

Change History:
Version 1.0: not tracked
Version 1.1: Created by Ramachandra Kasyap Marmavula, March 1, 2014

More Context: CentMesh website and wiki: http://centmesh.csc.ncsu.edu

Introduction

Part I: General Tutorial

1.1 How to write programs using pymavlink
pymavlink
Developing an application
Utility functions
Commonly used functionality
Given a requirement, how to choose the right API?
1.2 Introduction to mavutil
Using mavultil
Creation of an object of type mavlink_apm
Waiting for a particular type of message
Getting the current mode of the UAV
Setting the UAV in a particular mode
Arming the UAV
Are there wrappers for each and every function in mavutil?
Do we need mavlink_apm.py as well?
1.3 Sample applications
Sample application 1
Sample application 2
1.4 Sample applications - alternate approaches
Sample application 1
Creation of a ‘connection object’

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fmavlink%2Fmavlink%2Fblob%2Fmaster%2Fpymavlink%2Fmavutil.py&sa=D&sntz=1&usg=AFQjCNFtBDDz5D7br6QkiQXcOXsZ_i2yyg
http://www.google.com/url?q=http%3A%2F%2Fcentmesh.csc.ncsu.edu&sa=D&sntz=1&usg=AFQjCNEVinZ7i3CVWKmwLvaGCHiU8ncDwQ

Setting the UAV mode to AUTO
ARM the UAV
Waiting for messages with GPS information
Saving GPS information
Change in saved file format
Sample APP 2

Creation of a ‘connection object’
ARM the UAV
Change in parse_gps_info()
Setting the waypoint

Saving sensor data

Part II: Virtual Environment Usage Guide

2.1 Using SITL with Sample applications
Sample application 1
Steps for running the sample application
Sample application 2
Steps for running the sample application
Running the sensing platform:

Introduction
The figure below shows the components involved in any application that runs on the CM drones.

CentMesh Drone

The detailed description of each of these components is available in the CentMesh wiki documentation:

APM
Beaglebone black
GCS

MAVProxy

Virtual Environment: Using a Software-in-the-Loop (SITL - documentation and further detail here)
simulation, the entire setup can be run in a single Virtual Machine image. The representation (simplified) is
displayed by the following figure. Such a VM images has been created by the CentMesh team, and made
available as a loadable image in the NCSU Virtual Computing Laboratory (VCL).

VCL image running Ubuntu

The rest of this tutorial is organized as follows. Part | is written in general terms, and should apply equally
well to the real drone platform, or the VCL VM, or a stand-alone VM built according to the instructions on
the CentMesh wiki. However, for ease of reference, we repeatedly make references to the VCL image, in
boxes such as the one below.

Information about sample code locations, sample commands, etc. specifically referring to the VCL image
will appear in boxes like these.

Part Il is entirely a guide to using the virtual drone programming environment, using SITL on VCL.

Part I: General Tutorial

1.1 How to write programs using pymavlink

pymavlink

Python bindings for MAVLink are provided by pymavlink. Using the interfaces provided by pymavlink,
developers can:

e Receive MAVLink messages from the UAV, and

e Send MAVLink Messages to the UAV.

http://www.google.com/url?q=http%3A%2F%2Fcentmesh.csc.ncsu.edu%2Ftrac%2FMeshBed%2Fwiki%2FHardware%2FDrones%2FAutopilot%2Fautopilot&sa=D&sntz=1&usg=AFQjCNGqkxZfpxpgtLP2NtDgIuoXo2_PbQ
http://www.google.com/url?q=http%3A%2F%2Fcentmesh.csc.ncsu.edu%2Ftrac%2FMeshBed%2Fwiki%2FHardware%2FDrones%2FSensorNode&sa=D&sntz=1&usg=AFQjCNHTVLf4qYzehUawBgdQarm3HTQPmQ
http://www.google.com/url?q=http%3A%2F%2Fcentmesh.csc.ncsu.edu%2Ftrac%2FMeshBed%2Fwiki%2FHardware%2FDrones%2FAutopilot%2Fgcs&sa=D&sntz=1&usg=AFQjCNHX3mkPo9v5lMvT4kDTKqSX_U_4LA
http://www.google.com/url?q=http%3A%2F%2Fqgroundcontrol.org%2Fmavlink%2Fmavproxy_startpage&sa=D&sntz=1&usg=AFQjCNF-A9n3zW97WBhelxo_Cr4VvSO5RQ
http://www.google.com/url?q=http%3A%2F%2Fcentmesh.csc.ncsu.edu%2Ftrac%2FMeshBed%2Fwiki%2FHardware%2FDrones%2FAutopilot%2Fsitl&sa=D&sntz=1&usg=AFQjCNHP7LLlCAokBYxg6ae3dySqThxtZA
http://www.google.com/url?q=http%3A%2F%2Fqgroundcontrol.org%2Fmavlink%2Fpymavlink&sa=D&sntz=1&usg=AFQjCNECu0_W54RtOwQxyVjPHBBW1EdeUA

We are using pymavlink to communicate with the MAV and this tutorial describes its usage. You are
welcome to use any other resources (like this) that you may find useful.

Developing an application

1) Import ‘mavlink_apm.py’: This module can ‘decode’ and ‘encode’ (pack and unpack) MAVLink
messages. It needs to be included in your python program using ‘import’:

import mavlink_apm

In the VCL image, the module is already present under $HOME/application_code/lib. If you
need to generate the same in a VM, please follow the steps mentioned here

2) ‘mavlink_apm.py’ depends on other modules in the same source tree. So, to make sure that
the dependencies are resolved, the 'generator' directory (generated by the python code
generator that takes xml as its input) and all of its sub-directories are present in same directory
where mavlink_apm.py resides and the following is to be included:

sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../lib’)

3) Import mavutil.py using:

import mavutil

Please refer this section for details on mavutil

4) ‘mavutil.py’ depends on other modules in the same source tree. So, to make sure that the
dependencies are resolved, the following is to be included:

sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)),
\../../mavlink/mavlink/pymavlink’))

5) Import the following commonly used python libraries:
import re, sys, 0s, socket, select, time, tempfile, struct, ast

6) The application needs to create a UDP socket for reading messages from MAVProxy.
Sample code:

HOST ="

http://www.google.com/url?q=http%3A%2F%2Fqgroundcontrol.org%2Fmavlink%2Fcreate_new_mavlink_message&sa=D&sntz=1&usg=AFQjCNGHLe9nLYpeuEf4ARsKu6JNWKg8VQ
http://www.google.com/url?q=http%3A%2F%2Fcentmesh.csc.ncsu.edu%2Ftrac%2FMeshBed%2Fwiki%2FHardWare%2FMobileNode%2FpyMAVLink&sa=D&sntz=1&usg=AFQjCNHiVfHrpsfUHtL0zTuO1267DdrZpA

mavproxy_port = 12345

Create a server socket for MAVProxy

mavproxy_sock = socket.socket (socket. AF_INET,socket. SOCK_DGRAM)
mavproxy_sock.setblocking(0)

mavproxy_sock.bind((HOST, mavproxy port))

7) Create a MAVLink instance, which will perform ‘encode’/decode’ operations on the socket
created above

mav_obj = mavlink_apm.MAVLink (mavproxy_sock)

8) To read messages from the UAV, the decode() method is used. Sample code:

Call to receive data over UDP socket. 1024 is the buffer size

data_from_mavproxy,address_of_mavproxy = mavproxy_sock.recvirom (1024)
decoded_message = mav_obj.decode(data_from_mavproxy)

9) To access individual fields, there are several useful methods. For example, get_msgld()
returns the message ID sent by the UAV (the message ID is used to distinguish the different
possible messages between the UAV and the sample application). Sample code:

print("Got a message with id %u, fields: %s, component: %d, System ID: %d" %
(decoded_message.get_msgld(), decoded _message.get _fieldnames(),

decoded_message.get_srcComponent(), decoded_message.get _srcSystem()))
Prints the entire decode message
print (decoded_message)

Sample output for a heartbeat message:
Got a message with id 0, fields: ['type’, ‘autopilot’, 'base_mode’, 'custom_mode’,
'system_status', 'mavlink_version'], component: 1, System ID: 1
the decoded message
HEARTBEAT {type : 2, autopilot : 3, base_mode : 89, custom_mode : 3,
system_status : 4, mavlink_version : 3}

10) To send commands to the UAV, there are variations of encode() method. For example, to set
a waypoint the UAV has to travel to, the following method is used:

mission_item_encode()

Utility functions

The current mode of UAV is present in the ‘hearbeat’ message generated periodically by the
UAV. We expect ‘reading the current UAV mode’ and setting the current UAV mode to be
common operations. So, these operations are provided in a module called FTL_util.py (can be
imported by using import FTL_util)

To use this, an instance needs to be created:

FTL_util_obj = FTL_util. FTL_util()

The current mode of the UAV can be obtained by passing the heartbeat_message as an
argument to get_mav_mode() function. Sample code that returns the mode as a string:

mode = get_mav_mode (heartbeat_message)
The following sample code sets the UAV in AUTO mode:

FTL_util_obj = FTL_util.FTL_util()
FTL_util_obj.set_mav_mode(FTL_util_obj.auto_mode,mav_obj,

mavproxy _sock, address_of _mavproxy)

More utility functions may be added as needed.

Commonly used functionality

Each MAVLink message has a message ID that corresponds to the type of message. For
example, the ‘heartbeat’ message that is sent by the UAV has a message ID of zero. This is
given by MAVLINK_MSG_ID_HEARTBEAT in mavlink_apm.py. Similarly, a message with GPS
information has the message ID MAVLINK_MSG_ID_GPS_RAW_INT. The following code
checks if a message received is a heartbeat or it contains GPS information:

if msg_id == mavlink_apm.MAVLINK_MSG_ID_GPS_RAW_INT:
print ‘This is a message with GPS information!’
elif msg_id == mavlink_apm.MAVLINK_MSG_ID_HEARTBEAT:

print ‘This is a heartbeat message’

Refer page 4 of this document for description of other commonly used message IDs.

Each command sent to the UAV for performing actions (i.e. setting mode, setting a way-point
etc.) needs to have a command ID. For example, to arm/disarm the UAV, there is

http://www.google.com/url?q=http%3A%2F%2Fapi.ning.com%2Ffiles%2FTc1DvjhnAzXqvzUt8x9oAy2mCvEub4Br0bbMkchq9QnvL*1wpwyoEvJlheOALmmmIkC8LSwA6weXjqGBoUueb17TeY*-Iq3J%2FMAVLINK_FOR_DUMMIESPart1_v.1.pdf&sa=D&sntz=1&usg=AFQjCNE5dZkVH8xtyUZcOKc0we_j3n2uaA

MAV_CMD_COMPONENT_ARM_DISARM. It can be accessed by using
mavlink_apm.MAV_CMD_COMPONET_ARM_DISARM. Similarly to set a way-point,
MAV_CMD_NAV_WAYPOINT is used and it can be accessed by
mavlink_apm.MAV_CMD_NAV_WAYPOINT.

Given a requirement, how to choose the right API?

Refer mavlink_apm.py. Browse through the methods under ‘mavlink’ class (line 3008) to find the
one that best suits your requirement. If you are still not sure, refer mavproxy.py and mavutil.py.
mavproxy.py uses of the same library for sending messages. For example, entering ‘arm throttle’
in MAVProxy terminal will ARM the UAV. Checking mavproxy.py, we see that the cmd_arm()
function handles this command, which in turn invokes arducopter_arm() in mavuitl.py. This is a
wrapper function which finally calls command_long_send() which is defined in mavlink_apm.py
and that is what we need to use in our sample applications.

1.2 Introduction to mavutil

mavutil offers many useful functions that can minimize the amount of necessary code for an
application. The following sections list the changes that mavutil introduces for performing a
certain functionality. The sample applications (introduced later in this document) have been
implemented both with and without using mavutil. This section contrasts the code snippets
involved.

Using mavutil
We review the most commonly used functions in this section.

Creation of an object of type mavlink_apm

With mavutil, we create an object of type mavfile which has a reference to an object of type
mavlink_apm. To create an object of type mavfile, we need to build a string in the following
format: “udp:<IP address of the machine running mavproxy><port number used by mavproxy>".
Since mavproxy always runs in the same system, the IP address is always 127.0.0.1 (localhost).
Sample code:

device = "udp:127.0.0.1:12345"
mavproxy_conn = mavutil.mavlink_connection(device)

Waiting for a particular type of message
We frequently come scenarios where the application ‘blocks’ waiting for a particular message -
heartbeat, GPS etc. We can perform the same using a single function recv_match():

data_from_mavproxy = mavproxy_conn.recv_match (type="HEARTBEAT', blocking =
True)
The ‘type’ specifies the type of the message that we wish to wait for, ‘blocking’ specifies whether
we wish to block waiting for this message.

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Ftridge%2FMAVProxy%2Fblob%2Fmaster%2FMAVProxy%2Fmavproxy.py&sa=D&sntz=1&usg=AFQjCNEvwOftXkTHGbhQYTRidwPNzW1kjQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fmavlink%2Fmavlink%2Fblob%2Fmaster%2Fpymavlink%2Fmavutil.py&sa=D&sntz=1&usg=AFQjCNFtBDDz5D7br6QkiQXcOXsZ_i2yyg

Getting the current mode of the UAV

This involves two steps:

e Wait for the heartbeat message

e Once the heartbeat message is received, obtain the mode from it:
Sample code:

heartbeat_message = mavproxy conn.recv_match (type = 'HEARTBEAT', blocking = True)
flightmode = mavutil. mode_string_v10(heartbeat_message) # Gets the mode as a string

Setting the UAV in a particular mode
To set a UAV in auto mode, the following call is sufficient:

mavproxy_conn.set_mode_auto()
Similarly, to set the UAV in RTL mode, the following call is sufficient:

mavproxy_conn.set_mode_rtl()

Arming the UAV

Arming the UAV can be performed using ‘arducopter_arm()’ function. The following code snippet
arms the UAV if it is not already armed. Then it waits untill the UAV is armed:

if not mavproxy_conn.motors_armed(): # Function to check if UAV is armed
mavproxy_conn.arducopter_arm() # Function to ARM the UAV
#Do not proceed until the UAV is armed
mavproxy_conn.motors_armed_wait() # Function to wait till the UAV is armed.

Are there wrappers for each and every function in mavutil?

No. As mentioned earlier, mavutil provides wrappers for functions present in
mavlink.py/mavlink_apm.py. However this is not an exhaustive list. For those functions which do
not have wrappers, we need to work with the ‘mavlink’ object in mavfile. More details of how to do
this with examples are available in the ‘Sample applications - alternate approaches’ section.

Do we need mavlink_apm.py as well?

Yes. We still need mavlink_apm.py to access some of the constants. For example, in the
second sample application where the UAV is directed to traverse to specific waypoints, we need
the following:

frame = mavlink_apm.MAV_FRAME_GLOBAL_RELATIVE_ALT
command = mavlink_apm.MAV_CMD_NAV_WAYPOINT

1.3 Sample applications

In this section, we discuss two sample applications. Two implementations of each sample
application are discussed in this tutorial:

e Using mavutil (no FTL_util module needed)

e No mavutil involved (FTL_util module needed)

The VCL image has source code for these sample applications. Code for the
implementations using mavutil (no FTL_util module needed) is in the
‘lhome/droneusr/application_code/sample_prog/’ directory. Code for the FTL_util version (ng
mavutil needed) is in the /home/droneusr/application_code/sample _prog_mavutil’/ directory.

Sample application 1
This sample application performs the following operations:

1) Sets the UAV to AUTO mode

2) Listens on UDP port 12345 for messages from MAVProxy

3) Reads the GPS data that is generated by autopilot (in a virtual environment, the SITL
generates simulated GPS data) and forwarded by MAVProxy. Saves this raw data to a file every
5 seconds.

Code for the sample application is available in
/home/droneusr/application_code/sample_prog/program_1 (without using mavutil)
/home/droneusr/application_code/sample_prog_mavutil/program_1 (using mavutil)

Sample application 2
This sample application performs the following operations:

1) Listens on UDP port 12345 for messages from MAVProxy

2) Reads the file that has been generated by the first sample application, converts each reading
to a WayPoint and guides the UAV to that WayPoint. This process is repeated for each line in the
file every 5 seconds. Once all the entries in the file are read, the UAV is set to ‘Return to Launch
(RTL) mode.

Code for the sample application is available in
/home/droneusr/application_code/sample_prog/program_2 (without using mavutil)
/home/droneusr/application_code/sample_prog_mavutil/program_2 (using mavutil)

1.4 Sample applications - alternate approaches

As mentioned above, we can achieve the same functionality with or without using mavutil. In
most cases, the number of lines of code for achieving a particular functionality reduces with the
usage of mavutil. However, it is important to understand both the approaches as mavutil has
limitations and we need to work with mavlink_apm.py in such cases.

This section provides both the code snippets for achieving a particular functionality in the sample
applications.

Sample application 1
The app parameters: ./Juav_auto_mode.py <mavproxy port> <File to save GPS info>

Creation of a ‘connection object’

When mavutil is not used, we create a UDP server socket to listen for messages from

mavproxy. When using mavutil, we don’t deal with sockets directly, as they are abstracted by the
mavfile object. We obtain a reference to the connection object by using the following lines. Also,
we don’t need to specifically obtain the address of mavproxy.

Code snippet (no mavutil):

mavproxy port = int(sys.argv[1])
HOST ="
Create a server socket for MAVProxy
mavproxy _sock = socket.socket (socket. AF_INET,socket. SOCK_DGRAM)
print 'created UDP socket for MAVProxy'
mavproxy_sock.setblocking(0)
mavproxy _sock.bind((HOST,mavproxy port))
print 'Binding socket for MAVProxy connection’
Create the mavproxy object
mav_obj = mavlink_apm.MAVLink (mavproxy_sock)

#Get the address of mavproxy
address_of _mavproxy = get_mavproxy address (mav_obj, mavproxy sock)
return_status = FTL_util_obj.set_mav_mode(FTL_util_obj.auto_mode,mav_obj,
mavproxy sock, address _of _mavproxy)

Code snippet (using mavutil):

HOST ="
Create a mavlink connection to communicate with MAVProxy
device = "udp:127.0.0.1:"+str(mavproxy_port)

mavproxy conn = mavutil.mavlink_connection(device)

print 'created MAVLink connection to communicate with MAVProxy'

print mavproxy_conn.mav

data_from_mavproxy = mavproxy _conn.recv_match (type="HEARTBEAT", blocking
= True)

Setting the UAV mode to AUTO

Without mavutil, FTL_util is used to set the UAV mode. It is not required when mavutil is used.
Please note that in the code that uses mavutil, we set the mode to AUTO and then verify if it is
actually set (and reset if it is not).

Code snippet (no mavutil):

return_status = FTL_util_obj.set_mav_mode(FTL_util_obj.auto_mode,mav_obj,
mavproxy sock, address _of _mavproxy)
if return_status < 0:
print "Error while setting mode, please check the parameters passed..."”
sys.exit(1)

Code snippet (using mavutil):

is_mode_set = False
while (not is_mode_set):
Call to set the UAV in auto mode
mavproxy_conn.set_mode_auto()
Wait for hearbeat message. This is needed to verify the mode
as the hearbeat message contains the mode
heartbeat_message = mavproxy conn.recv_match (type = 'HEARTBEAT',
blocking = True)
flightmode = mavutil. mode_string_v10(heartbeat_message)
if (flightmode.lower() == 'AUTO".lower()):
print ‘'mode set to AUTO'
is_mode_set = True

ARM the UAV
Without mavutil, we have

ARM the UAV

component_id = mavlink_apm.MAV_COMP_ID _SYSTEM_ CONTROL

Same command for arming or disarming, arm_flag controls whether the UAV
armed or disarmed. arm_flag=1->arm, arm_flag=0->disarm

command = mavlink_apm.MAV_CMD_COMPONENT _ARM_DISARM

arm_flag = 1

Number of confirmations needed for this command. 0 means immediately

confirmation = 0

Other parameters are ignored by this command and are to be set to zero.

PARAM_IGNORE =0

msg = mav_obj.command_long_encode (1,component_id,command,confirmation,
arm_flag,PARAM_IGNORE,PARAM_IGNORE,

PARAM_IGNORE,PARAM_IGNORE,PARAM_IGNORE,
PARAM_IGNORE)
try:
mavproxy_sock.sendto(msg.get_msgbuf(),(address_of_mavproxy))
except socket.error as v:
print "Exception when trying to ARM the copter:”
print os.strerror(v.errno)
print "ARMED"

which can be replaced by

Check if the UAV is already armed, if it is, skip this step

if not mavproxy conn.motors_armed():
mavproxy_conn.arducopter_arm()
#Do not proceed until the UAV is armed
mavproxy_conn.motors_armed_wait()

print ' ARMED!'

Waiting for messages with GPS information
Code snippet (no mavutil):

data_from_mavproxy,address_of _mavproxy = mavproxy_sock.recvfrom
(MAX_SIZE)
decoded_message = mav_obj.decode(data_from_mavproxy)
msg_id = decoded_message.get_msgld()
Check if this information is GPS information.
if msg_id == mavlink_apm.MAVLINK_MSG_ID_GPS_RAW _INT:
save_gps_info(decoded_message, file_gps_info)

Code snippet (using mavutil):

gps_info = mavproxy_conn.recv_match (type = 'GPS_RAW _INT', blocking = True)
save_gps_info (gps_info, file_gps_info)

Saving GPS information

The way we save GPS information in this tutorial is slightly different than the one presented
during the tutorial on Feb. 12. This change is not related to mavutil. The following is a better way
of saving the GPS information such that the second sample app can read it easily without the
need of complex regular expressions. This is being noted here to highlight the change. We
perform two steps in the updated code:

e The payload of the message is obtained using the function get_payload(). This step is

needed to get the message as a stream of bytes rather than a string.

e This stream of bytes is ‘unpacked’ using a format string and saved as a tuple to the file.

For more details about structure packing and unpacking, please refer this.

Code in ‘save_gps_info()’ function (used in the sample application implementation without
mavutil):

new_time = datetime.now()
if (new_time - current_time).seconds >= int(INTERVAL):
print "Time to save!lll"
with open(file_gps_info, "a") as file_reference:
file_reference.write("\n" + str(decoded_message))
file_reference.close()
Update the current timers
current_time = new_time

Replacement code:

new_time = datetime.now()
if (new_time - current_time).seconds >= int(INTERVAL):
print "Time to save!lll"
Get the payload, this returns the message in the form of bytes
(rather than a string).
payload = decoded_message.get_payload()
fmt =
mavlink_apm.mavlink_map
[mavlink_apm.MAVLINK_MSG_ID_GPS_RAW_INT][0]
tuple = struct.unpack (fmt,payload)
with open(file_gps_info, "a") as file_reference:
file_reference.write("\n" + repr(tuple))
file_reference.close()

http://www.google.com/url?q=http%3A%2F%2Fdocs.python.org%2F2%2Flibrary%2Fstruct.html&sa=D&sntz=1&usg=AFQjCNHs-sS6Wge2Vbr-r1dZLlCowtAFqA

Update the current timers
current_time = new_time

Change in saved file format

Due to the change in the way the file is saved, the format of a line in the saved file is changed
from:

GPS_RAW_INT {time_usec : 251908000, fix_type : 3, lat : 357713121, lon : -786743912,
alt : 584090, eph : 0, epv : 65535, vel : 0, cog : 0O, satellites_visible : 10}

to

(251908000, 357713121, -786743912, 584090, 0, 65535, 0, 0, 3, 10)

Sample APP 2

Creation of a ‘connection object’:

When mauvutil is not used, we create a UDP server socket to listen for messages from
mavproxy. When using mavutil, we don’t deal with sockets directly here, it is abstracted by the
mavfile object. We obtain a reference to it by using the following lines. Also, we don’t need to
explicitly obtain the UDP port and address of mavproxy.

Code snippet (no mavutil):

mavproxy_port = int(sys.argv[1])
HOST ="
Create a server socket for MAVProxy
mavproxy sock = socket.socket (socket. AF_INET,socket. SOCK_DGRAM)
print ‘created UDP socket for MAVProxy'
mavproxy_sock.setblocking(0)
mavproxy_sock.bind((HOST,mavproxy port))
print ‘Binding socket for MAVProxy connection’
Create the mavproxy object
mav_obj = mavlink_apm.MAVLink (mavproxy_sock)

#Get the address of mavproxy
address_of_mavproxy = get_mavproxy_address (mav_obj, mavproxy_Sock)
return_status = FTL_util_obj.set_mav_mode(FTL_util_obj.auto_mode,mav_obj,
mavproxy_sock, address_of_mavproxy)

Code snippet (using mavutil)

HOST ="
Create a mavlink connection to communicate with MAVProxy
device = "udp:127.0.0.1:"+str(mavproxy_port)

mavproxy_conn = mavutil.mavlink_connection(device)

print 'created MAVLink connection to communicate with MAVProxy'

print mavproxy_conn.mav

data_from_mavproxy = mavproxy _conn.recv_match (type="HEARTBEAT', blocking
= True)

ARM the UAV
Without mavutil, we have

ARM the UAV

component_id = mavlink_apm.MAV_COMP_ID_SYSTEM_CONTROL

Same command for arming or disarming, arm_flag controls whether the UAV

armed or disarmed. arm_flag=1->arm, arm_flag=0->disarm

command = mavlink_apm.MAV_CMD_COMPONENT_ARM_DISARM

arm_flag = 1

Number of confirmations needed for this command. 0 means immediately

confirmation = 0

Other parameters are ignored by this command and are to be set to zero.

PARAM_IGNORE =0

msg = mav_obj.command_long_encode (1,component_id,command,confirmation,
arm_flag, PARAM_IGNORE,PARAM_IGNORE,

PARAM_IGNORE,PARAM_IGNORE,PARAM_IGNORE,
PARAM_IGNORE)
try:
mavproxy_sock.sendto(msg.get_msgbuf(),(address_of_mavproxy))
except socket.error as v:
print "Exception when trying to ARM the copter:”
print os.strerror(v.errno)
print "ARMED"

which can be replaced by

Check if the UAV is already armed, if it is, skip this step
if not mavproxy conn.motors_armed():
mavproxy_conn.arducopter_arm()
#Do not proceed until the UAV is armed

mavproxy_conn.motors_armed_wait()
print ARMED!'

Change in parse_gps_info()

Because of the way the file is saved by sample application 1, the use of regular expressions is
avoided.

Code snippet (no mavutil):

latitude = longitude = altitude = 0
Get Latitude
match_for_latitude = re.search(r'lat : (.+?),’,gps_info)
if not match_for_latitude:
print "Error - no latitude information found, return!”
return 0,0,0
else:
latitude = match_for_latitude.group(1)

Get longitude
match_for_longitude = re.search(r'lon : (.+?),",gps_info)
if not match_for_longitude:
print "Error - no longitude information found, return!”
return 0,0,0
else:
longitude = match_for _longitude.group(1)

Get altitude
match_for_altitude = re.search(ralt : (.+?),’,gps_info)
if not match_for_altitude:
print "Error - no altitude information found, return!”
return 0,0,0
else:
altitude = match_for_altitude.group(1)

return latitude, longitude, altitude

Code snippet (using mavutil):

latitude = longitude = altitude = 0
The first sample program has saved the GPS information as a tuple.
We need to convert the string (read from the file) back to a tuple.

From the format of the tuple, we know that second, third and fourth
values correspond to latittude,longitude and altitude respectively.
tuple_from_string = ast.literal_eval(gps_info)

latitude = tuple_from_string[1]

longitude = tuple_from_string[2]

altitude = tuple_from_string[3]

return latitude, longitude, altitude

Setting the waypoint

There is not a significant difference between the two approaches here. Since no wrapper exists
for mission_item_encode(), we use it as is. The slight difference is when mavutil is not used, we
access mission_item_encode() using

mav_obj.mission_item_encode()

whereas in other case, we access it using

mavproxy_conn.mav.mission_item_encode()

The other difference (as mentioned earlier) is we do not deal with the UDP socket directly rather

make use of the wrappers provided.
Code snippet (no mavutil):

Send the waypoint message and wait till the ACK is received for 2 seconds
list_read_sockets = [mavproxy _sock]
list_write_sockets = list_error_sockets =[]
while 1:
msg = mav_obj.mission_item_encode(target_system,
target_component,seq,frame,command,current,autocontinue,parami,param2,param3
param4, latitude,longitude,altitude - 584.0)
try:
mavproxy sock.sendto(msg.get_msgbuf(),(address_of mavproxy))
except socket.error as v:
print "Exception when setting WP:"
print os.strerror(v.errno)
time.sleep(1)
continue
readable, writable, error = select.select(list_read_sockets,
list_write_sockets,
list_error_sockets,INTERVAL)
if readable:

data_from_mavproxy,address_of _mavproxy = mavproxy_sock.recvfrom
(MAX_SIZE)

decoded_message = mav_obj.decode(data_from_mavproxy)
msg_id = decoded_message.get_msgld()

Check if this is a waypoint request message
if msg_id == mavlink_apm.MAVLINK_MSG_ID_MISSION_ACK:
print '"ACK for this way-point received received...’

break
else:
#print "Expected message ID 47, received %d" % msg_id
continue
else:

Send the message again

print "Timeout on receiving waypoint ACK message”
continue

Code snippet (using mavutil):

while 1:

msg = mavproxy_conn.mav.mission_item_encode(target_system,
target_component,seq,frame,command,current,autocontinue,parami,param2,param3
param4, latitude,longitude,altitude - 584.0)
try:
mavproxy_conn.write(msg.get_msgbuf())
except socket.error as v:
print "Exception when setting WP:"
print os.strerror(v.errno)
time.sleep(1)
continue
Wait for a waypoint ACK
msg = mavproxy_conn.recv_match(type="MISSION_ACK', blocking = True,
timeout = 2)
print str(msg)
If we have reached here beacause of a timeout, continue
if (not msg):
continue
else:
print 'Waypoint set as expected..’
break

Saving sensor data

Any Sensor data that is read by applications running on the UAV can be saved to periodically to a
repository. To enable this, a sensing daemon runs continually as part of the CentMesh Mobile
Node platform. Applications can provide sensor data they collect to this daemon, the daemon
then periodically reports this data to a distributed server running on CentMesh, and

Sensing daemon (client): This reads sensor data periodically and reports the readings to a
server. The type of sensor, the frequency of reading etc. are specified in a file ‘config.properties’.
Server: The server receives readings for various data from different clients and saves this to a
repository. This server runs on static CentMesh nodes, and not on the CentMesh Mobile Node.

The VCL image has a basic sensing daemon that achieves this functionality, and sample cod
that demonstrates its usage. The sample code works with sample application 1. In this
example, the GPS readings are treated as sensor data. To recall, the sample application
keeps saving the GPS readings to a file every 5 seconds. In addition to that, it also writes the
current GPS reading to a file “/tmp/gps_data”. So each time the UAV receives a message wit
GPS information, the older reading is replaced by the current one in this file. The sensing
application reads this file periodically and sends it to the server. Whenever the sensing
application reads the file, it is guaranteed to get the latest GPS reading (as that is written
continuously).

Part Il: Virtual Environment Usage Guide

2.1 Using SITL with Sample applications

This section describes how to validate a sample application using SITL.
Sample application 1

Steps for running the sample application

Step 1: Make a reservation for ‘APM_Copter_3DRobotics_SITL_Image’ using
https://vcl.ncsu.edu/

Step 2: Use the Windows Remote Desktop Connection to this computer using the following
credentials:

Username: droneusr

Password: drone123

Step 3: Running SITL: Double click start_SITL.sh. Select ‘Run’ when prompted:

https://www.google.com/url?q=https%3A%2F%2Fvcl.ncsu.edu%2F&sa=D&sntz=1&usg=AFQjCNF6JapgxbgtgD7ohJpSGQmmGy7VLg

start_SITL.sh

Do you want to run "start_SITL.sh", or display its
contents?

"start_SITL.sh" is an executable text file.

Display | Cancel

| Run in Terminal | |

Terminal

refox

] i »

This should open 4 tabs one of which runs the qgroundcontrol (the Ground Control Station that is
bundled with this image):
% 152.1.13.70 - Remote Desktop Connection ML A T wmd

QGroundControl v. 2.0.0 (beta) (vclvl3-70: 10.10.3.70/152.1.13.70) =
QGroundControl v. 2.0.0 (beta) (vclvl3-70: 10.10.3.70/152.1.13.70)
P g =

-

e [.3 mssion |, conng | 3 D|MANUAL|STABILIZED

} P F AN 3 x
- we E i
- Yo HORTS1 AMERICA

Gy

EYROPE

n

4 AFRICA®

2.
@
Ly
&

SOUTH
altitudeAMSL AMERICA
0.0000 §

altitudeRelative
0.0000

distToWP

0.0000

groundSpeed v

? clfo® &« & ClICIEAEAl IEILIR T

Zoom in using the side-bar on the right so that you have get a decent view of the UAV:

b 152.1.13.70 - Remote Desktop Connection —
© rion
orimary Fli
- _

30 J0

¥

269

altitudeAMSL

0.0000
altitudeRelative
0.0000
distToWP
0.0000

groundSpeed

0.0000 pOEL

Logging

.

NOTE: This has to be performed manually the first-time you run SITL after reserving an
image.For subsequent runs, you can click on ‘Last Pos’ and you will be taken to the last position
that you were looking at

Step 4: Running sample app 1:

Open a new terminal and enter the ‘sample_prog’ directory:

% 152.1.13.70 - Remote Desktop Connection - - . .
droneusr@vclvl3-70:~$ cd sample prog/
droneusr@vclvl3-70:~/sample progs I

m

‘ . *

Enter program_1 directory and start the app using the following syntax:

Juav_auto_mode.py <MAVProxy port to connect to> <name of the file>

In our example, the MAVProxy port is always 12345. We specify a file named gps_data to which
the readings are saved periodically (every 5 seconds).

Step 5: Provide throttle input by entering the following command on MAVProxy terminal:

AUTO>rc 3 1300
£ 152.1.13.70 - Remote Desktop Connection — - h — " = | @ -3

AUTOPILOT R PHYSICS_SIMULATION ¥ MAVPROXY # QGroundControl Station
APM: Unknown parameter RC_TYPE
APM: barometer calibration complete

E APM: GROUND START

Init Gyro**INS

G_off: 0.00, 0.00, 0.00
A off: 0.00, 0.60, 0.00
A scale: 1.00, 1.00, 1.00

Ready to FLY ublox 0K
Received 330 parameters
GPS lock at © meters
waypoint 1

: command received:

: ARMING MOTORS
APM: GROUND START
Init GyroAUTO> Mode AUTO

Initialising APM...

G_off: 0.00, 0.00, 0.00
A off: 0.00, 0.00, 0.00
A_scale: 1.00, 1.00, 1.00

: Calibrating barometer
barometer calibration complete
MAVLink msg: COMMAND_ACK {command : 400, result : 0}

Step 6: Observe the file ‘gps_data’ getting populated with GPS readings every 5 seconds (run tail
-f gps_data in program_1 directory):

| droneusr@vclvl3-70: ~/sample_prog/program_1
{time_usec : 535758000, fix_type : : 357713121, lon : -786743912, alt : 584090, 3 z 655357
satellites visible :
{time_usec : 541153000, fix_type : : 357713121, lon : -786743912, : 584090, 3 = B55357
satellites visible : 10}
{time usec : 54637300 3 : 357713121, lon : -786743912, : 584090, 3 21655355
satellites_visible : 10}
{time usec : 551377060,
satellites visible : 10}
{time_usec fix type : : 357713121, lon : -786743012, : 584090, 3 = h55h35
satellites visible : 10}
{time usec : 561995000, fix type : : 357713121, lon : -786743912, : 584090, 3 = 655357
satellites_visible :
1 i {time usec : 567015000, fix type : : 357712967, lon : -786744114, : 586870, 3 2655357
185, cog : 22643, satellites visible
GPS_RAW_INT {time_usec : 572255000, 3 : 357711903, lon : -786745497, : 586920, 3 655358
423, cog : 22666, satellites visible
GPS_RAW_INT {time_usec : 577475000, 3 : 357711043, lon : -786746630, : 586920, 3 = 165535
36, cog : 22886, satellites_visible :
GPS_RAW INT {time usec : 582697000, fix type : : 357711017, lon : -786746515, : 586900, 3 = 655357
134, cog : 10158, satellites_visible : }
GPS_RAW_INT {time_usec : 587922000, X 3 : 357710705, lon : -786744906, : 586920, 3 : 65535,
304, cog : 10516, satellites visible : 10}
GPS_RAW_INT {time_usec : 593143000, fix_type : : 357710531, lon : -786744176, : 587030, 3 =65 535
2, cog : 9138, satellites visible : 10}
GPS_RAW INT {time usec : 598364000, fix type : : 357710551, lon : -786744189, : 593020, 3 z 65535,
3, cog : 28741, satellites_visible : 10}
GPS RAW INT {time usec : 603565000, fix type : : 357710909, lon : -786744186, : 598160, 3 s 655357
251, cog : 352, satellites visible : 10}
GPS_RAW_INT {time_usec : 608786000, fix_type : : 357712547, lon : -786744010, : 598230, : : 65535,
325, cog : 635, satellites visible : 10}
GPS_RAW INT {time usec : 614010000, fix type : : 357713158, lon : -786743924, : 598380, 3 =65 535
4, cog : 27966, satellites_visible : 10}
GPS RAW INT {time usec : 619231000, fix type : : 357713096, lon : -786743959, : 594320, : = 65535,
8, cog : 20707, satellites visible : 10}

fix_type : : 357713121, lon : -786743912, : 584090, : : 65535,

Step 7: Stop the sample application (by giving a Ctrl-C) after the UAV has completed going
through all the waypoints:

%5 152.1.13./0 - Remote Desktop Connection W

altitudeAMSL
585.59
altitudeRelative
1.2100
distToWP

0.0000

groundSpeed

0.0000

to
to save!!!!
to save!!!!
to savellll
to savel!!ll
to save!!l!
to save!!!!
to save!!!!
to save!!l!l!
to save!!l!
to save!!!!
to savel!ll!
to save!!ll
to save!!l!
to save!!!!
to
to save!!!!
to save!!!!

“CTraceback (most recent call last):

File "./uav_auto_mode.py", line 177, in <module>
main()
File "./uav_auto_mode.py", line 163, in main
int (INTERVAL))
KeyboardInterrupt
droneusr@vclvl3-70:~/sample_prog/program_1% I

Following video demonstrates the working of this sample application (this uses Mission planner
as the ground control station).

Sample application 2

Steps for running the sample application

Step 1: Make a reservation for ‘APM_Copter_3DRobotics_SITL_Image’ using
https://vcl.ncsu.edu/

Step 2: Use the Windows Remote Desktop Connection to this computer using the following
credentials:

Username: droneusr

Password: drone123

Step 3: Running SITL: Click start_SITL.sh. Select ‘Run’ when prompted:

http://www.youtube.com/watch?v=uS6Iht-lK7c
https://www.google.com/url?q=https%3A%2F%2Fvcl.ncsu.edu%2F&sa=D&sntz=1&usg=AFQjCNF6JapgxbgtgD7ohJpSGQmmGy7VLg

start_SITL.sh

Do you want to run "start_SITL.sh", or display its
contents?

"start_SITL.sh" is an executable text file.

Display | Cancel

| Run in Terminal | |

Terminal

refox

] i »

This should open 4 tabs one of which runs the qgroundcontrol (the Ground Control Station that is
bundled with this image):
% 152.1.13.70 - Remote Desktop Connection ML A T wmd

QGroundControl v. 2.0.0 (beta) (vclvl3-70: 10.10.3.70/152.1.13.70) =
QGroundControl v. 2.0.0 (beta) (vclvl3-70: 10.10.3.70/152.1.13.70)
P g =

-

e [.3 mssion |, conng | 3 D|MANUAL|STABILIZED

} P F AN 3 x
- we E i
- Yo HORTS1 AMERICA

Gy

EYROPE

n

4 AFRICA®

2.
@
Ly
&

SOUTH
altitudeAMSL AMERICA
0.0000 §

altitudeRelative
0.0000

distToWP

0.0000

groundSpeed v

? € fom & w [= CICNOIEAr TS

Zoom in using the side-bar on the right so that you have get a decent view of the copter:

Remote Deskiop Cannection 1l

269

altitudeAMSL
0.0000
altitudeRelative
0.0000
distToWP
0.0000

groundSpeed

0.0000

Latflon Go Home

Logging Mo lc
« i

NOTE: This has to be performed manually the first-time you run SITL after reserving an
image.For subsequent runs, you can click on ‘Last Pos’ and you will be taken to the last position
that you were looking at

Step 4: Running sample application 2: We make use of the file that was generated by sample
application 1. Copy the file to ‘program_2’ directory and enter ‘program_2’ directory:

to sava!!l!l
to save!!!!
to save!!!!
to savel!!!!
to save!!!!
to save!!!!
to save!!l!
to save!!l!
to save!l!ll
to sava!!l!
to sava!!ll
to save!!lll
to save!!ll
to save!!!!
to save!!!!
to savel!!!!
~CTraceback (most recent call last):
File "./uav_auto _mode.py", line 177, in <module>
main()
File "./uav_auto_mode.py", line 163, in main
int(INTERVAL))
KeyboardInterrupt
droneusr@vclvl3-70:~/sample_prog/program_1%
droneusr@veclvl3-70:~/sample prog/program 1%
droneusr@vclvl3-70:~/sample prog/program 1%

droneusr@vclvl3-70:~/sample_prog/program_1$ cp gps_data ../program 2/
droneusr@vclvl3-70:~/sample prog/program 1$
droneusr@vclv13-70:~/sample prog/program 1$ cd ../program 2
droneusr@vclvl3-70:~/sample prog/program 2%

Step 6: Start the sample application:

W) 152.1.13.70 - Remote Desktop Connection 4
droneusr@vclvl3-70:~/sample_prog/program_1$ cd ~/sample_prog/program_1
droneusr@vclvl3-70:~/sample_prog/program_1$ cp gps_data ../program_2/
droneusr@vclvl3-70:~/sample prog/program 1$ cd ../program 2/
droneusr@vclvl3-70:~/sample prog/program 2$./uav_guided mode.py 12345 gps data
created UDP socket for MAVProxy
Binding socket for MAVProxy connection
Waiting for heartbeat message...

F Got the address of MAV, proceeding..
’ ('127.0.0.1', 41156)
ARMED

ACK for this way-point received received...
ACK for this way-point received received...

Step 7: Provide throttle by entering the following command on MAVProxy terminal:

AUTO>rc 3 1300
£ 152.113.70 - Remote Desktop Connection — — N —- " ol T S

AUTOPILOT ® PHYSICS_SIMULATION ¥ MAVPROXY ® QGroundControl Station

APM: Unknown parameter RC_TYPE
APM: barometer calibration complete

APM: GROUND START
w Init Gyro**INS

G_off: 0.00, 0.00, 0.00
A off: 0.00, 0.00, 0.00
A scale: 1.00, 1.00, 1.00

Ready to FLY ublox 0K
Received 330 parameters
GPS lock at © meters
waypoint 1
: command received:
: ARMING MOTORS

[APM: GROUND START
Init GyroAUTO> Mode AUTO
Initialising APM...

0.00, 0.00, 0.00
A off: 0.00, 0.60, 0.00
A scale: 1.00, 1.00, 1.00

APM: Calibrating barometer
barometer calibration complete
MAVLink msg: COMMAND_ACK {command : 400, result : 0}

Step 8: The UAV should follow a similar path as the UAV that flew in AUTO mode (sample
application 1).

altitudeAMSL
593.67
altitudeRelative
10.000
distToWP
0.0000

groundSpeed

0.0100

Go Home Cache Clear Map

Logging

m AUTOPILOT ¥ PHYSICS_SIMULATION ® | MAVPROXY ® | QGroundControl Station]

MAVLink msg: MISSION ACK {target system : target_component : 0, type :
MAVLink msg: MISSION ACK {target system : target component : 0, type :
MAVLink msg: MISSION_ACK {target_ system : target_component : type :
MAVLink msg: MISSION ACK {target system : target component : type :
MAVLink msg: MISSION_ACK {target_system : target_component : type :
MAVLink msg: MISSION ACK {target system : target_component : type :
MAVLink msg: MISSION ACK {target system : target component : type :
MAVLink msg: MISSION_ACK {target_system : target_component : type :
MAVLink msg: MISSION ACK {target system : target component : type :

height 10
MAVLink msg: MISSION ACK {target system :
MAVLink msg: MISSION ACK {target system :
MAVLink msg: MISSION_ACK {target_system :
MAVLink msg: MISSION ACK {target system :
MAVLink msg: MISSION_ACK {target_system :
MAVLink msg: MISSION ACK {target system :
MAVLink msg: MISSION ACK {target system :
MAVLink msg: MISSION_ACK {target_system :
MAVLink msg: MISSION ACK {target system :
MAVLink msg: MISSION_ACK {target_system :
MAVLink msg: MISSION ACK {target system :
MAVLink msg: MISSION ACK {target system :
MAVLink msg: MISSION_ACK {target_system :
MAVLink msg: MISSION ACK {target system :

height @

Got MAVLink msg: MISSION ACK {target system : target component : type :

Got MAVLink msg: MISSION ACK {target system : target component : type :

Got MAVLink msg: MISSION_ACK {target_ system : target_component : type :

Got MAVLink msg: MISSION ACK {target system : target component : type :

RTL> Mode RTL

height 10

height ©

cooooee@

target_component
target component
target_component
target component
target_component
target_component
target component
target_component
target component
target_component
target_component
target component
target_component
target component

type :
type :
type :
type :
type :
type :
type :
type :
type :
type :
type :
type :
type :
type :

cCoooEEEEERROO@

cCooCEORERROO@

RTL> ||

Following video demonstrates the working of this sample application.

Running the sensing platform:
Run the file sensor_cm_infra.sh in /home/droneusr/Desktop/:

http://www.youtube.com/watch?v=tmaeOJ1ngfY

%4 152.1.13.70 - Remote Desktop Cannection

start_SITL.sh L
= sensor_cm_infra.
sh

n config. properties

eeprom.bin

n =% Do you want to run "sensor_cm_infra.sh", or display its
mav.tlog @ contents?

"sensor_cm_infra.sh" is an executable text file.

Run in Terminal Display || Cancel |

. m B

It spawns a new terminal with two tabs - one tab has the client running and the other has server
running:

SENSING APPLICATION (CLIENT) ® | SERVER ¥
E Packet [preamble=CENTMESH, actionCode=HEARTBEAT, id=00-50-56-18-20-44, sequenceNumber=-1, data=[Quantity, GPS reading, Represen

tation, String, Max Sensing Freq, 50000]]

= > Client Measurement Time 1392123340233

Performing Sensor Reading

GPS _RAW _INT {time usec : 697170000, fix type : 3, lat : 357713123, lon : -78674391@, alt : 584090, eph : 0, epv : 65535, vel

0, cog 0, satellites visible : 10}

> Client Reporting Time 1392123340234

Broadcast method called for CLIENT BROADCAST MEASUREMENT packet

Broadcast Report

Following information being to sent from Client to Server:

Packet [preamble=CENTMESH, actionCode=REPORT SENSEN_DATA. id=00-50-56-18-20-44. seauenceNumber=589304. data=[0Ouantitv. GPS read

ing, Representation, raw, Readin

84090, eph : 0, epv : 65535, velent from Client to Server:

Representation, raw, Reading, GnCode=REPORT SENSED DATA, id=00-50-56-18-20-44, sequenceNumber=589304, data=[Quantity, GPS read

ing, Representation, raw, Reading, GPS_RAW_INT {time_usec : 697170000, fix_type : 3, lat : 357713123, lon : -786743910, alt : 5

84090, eph : 0, epv : 65535, vel : 0, cog : 0, satellites visible : 10}, Timestamp, 2014/02/11 07:55:35, Quantity, GPS reading,

Representation, raw, Reading, GPS RAW INT {time usec : 697170000, fix type : 3, lat : 357713123, lon : -786743910, alt : 58409
: 0, epv : 65535, vel : @, cog : 0, satellites_visible : 10}, Timestamp, 2014/02/11 07:55:40]] |

Received a Packet

Client Operation begins

++++++> [B@211d0a4f

Packet Type is ACKNOWLEDGE_SENSED DATA

Packet [preamble=CENTMESH, actionCode=ACKNOWLEDGE SENSED DATA, id=00-50-56-18-20-44, sequenceNumber=589304, data=null]
Log Report Acknowledgement function

Sequence Number: 589304 matched

Removed measurement: ClientMeasurement@6791d8cl
Removed measurement: ClientMeasurement@l82d9cP6
21000

Socket timed out

No socket is open!

= |>2000

From the tab in which the client process is running, it can be seen that this is accessing the gps
reading in /tmp/gps_data.
NOTE:
e If you run this without the sample application, the same data will be read by the client
again and again (as there is no process refreshing the file).

e If you run this without running the sample application at least once, each time the client
tries to read the file, there will be an exception (as the file does not exist).

Following snapshot shows the tab in which server process runs. Whenever some data is
received from the client, it is printed by the server:

SENSING APPLICATION (CLIENT) ®& | SERVER -

SensorRecord [timeStamp=2014/02/11 08:60-56-18-20-44]

ime_usec : 697170000, fix_type : 3, la 55, sensorQuantity=GPS reading, sensorRepresentation=raw, sensorReading=GPS_RAW_INT
tellites visible : 10}, deviceName=00-% : 357713123, lon : -786743910, alt : 584090, eph : 0, epv : 65535, vel : 0, cog : O,
Teltl1tBs visiblé :"lvp, d8VICBREME=00-50-56-18-20-44]

SensorRecord [timeStamp=2014/02/11 0O 00, sensorQuantity=GPS reading, sensorRepresentation=raw, sensorReading=GPS_RAW_INT
ime usec : 697170000, fix type : 3, la 357713123, lon : -786743910, alt : 584690, eph : 0, epv : 65535, vel : 0, cog : 0,
tellites visible : 10}, deviceName=00-50-56-18-20-44]

SensorRecord [timeStamp=2014/02/11 08: 05, sensorQuantity=GPS reading, sensorRepresentation=raw, sensorReading=GPS_RAW_INT
ime usec : 697170000, fix type : 3, la 357713123, lon : -786743910, alt : 584690, eph : 0, epv : 65535, vel : 0, cog : O,
tellites visible : 10}, deviceName=00-50-56-18-20-44]

SensorRecord [timeStamp=2014/02/11 0O 10, sensorQuantity=GPS reading, sensorRepresentation=raw, sensorReading=GPS_RAW_INT
ime usec : 697170000, fix type : 3, : 357713123, lon : -786743910, alt : 584090, eph : @, epv : 65535, vel : 0, cog : O,
tellites visible : 10}, deviceName=00-50-56-18-20-44]

SensorRecord [timeStamp=2014/02/11 0O 15, sensorQuantity=GPS reading, sensorRepresentation=raw, sensorReading=GPS_RAW_INT
ime_usec : 697170000, fix_type : 3, la 357713123, lon : -786743910, alt : 584090, eph : O, epv : 65535, vel : 0, cog : @,
tellites visible : 10}, deviceName=00-50-56-18-20-44]

SensorRecord [timeStamp=2014/02/11 O 20, sensorQuantity=GPS reading, sensorRepresentation=raw, sensorReading=GPS_RAW_INT
ime_usec : 697170000, fix_type : 3, la 357713123, lon : -786743910, alt : 584090, eph : 0, epv : 65535, vel : 8, cog : O,
tellites visible : 10}, deviceName=00-50-56-18-20-44]

SensorRecord [timeStamp=2014/02/11 ©8:02:25, sensorQuantity=GPS reading, sensorRepresentation=raw, sensorReading=GPS RAW INT
ime_usec : 697170000, fix_type : 3, la 357713123, lon : -786743910, alt : 584090, eph : 0, epv : 65535, vel : 8, cog : @,
tellites visible : 10}, deviceName=00-50-56-18-20-44]

SensorRecord [timeStamp=2014/02/11 0 30, sensorQuantity=GPS reading, sensorRepresentation=raw, sensorReading=GPS RAW INT
ime_usec : 697170000, fix_type : 3, : 357713123, lon : -786743910, alt : 584090, eph : O, epv : 65535, vel : 0, cog : @,
tellites visible : 10}, deviceName=00-50-56-18-20-44]

/10.10.3.70

4000

java.net.DatagramPacket@626f50a8

Following information being to sent from Server to Client:

Packet [preamble=CENTMESH, actionCode=ACKNOWLEDGE_ SENSED_DATA, id=00-50-56-18-20-44, sequenceNumber=514554, data=null]
Packet has been properly processed.

432000

=5 133000

LA

