
Abstract

AZIDEHAK, ALI. Design of Fault-tolerant Controller for Modular Multi-level Converters.
(Under the direction of Dr. Subhashish Bhattacharya.)

Almost all power electronic circuits are using a digital controller to drive switching devices,

handle faults, measure signals and communicate to other systems. The controller for most

applications is required to have high degree of robustness, since the failure can cost money or

may cause serious injuries to people. Therefore it is necessary to find out if the controller is

functioning correctly and if it is not, required procedures must be done to handle the failure.

The first fault-tolerant computer was designed in 1950 and its application was limited to station-

ary systems such as nuclear plant control system. By 1970, microprocessor developments made

it easy to embed chips into every device. There was a big problem with such microprocessors

when used in critical applications like aerospace. A failure in the controller could fail the whole

project; therefore it needed some layers of protection against faults. Lots of efforts have been

done to design a fault-tolerant controller which is the base for this research and will be discussed

in the following chapters.

Application of fault-tolerant controllers is not limited to high-end products and even in commer-

cial products like servers, fault-tolerant and non-stop machine is required for packet processing,

data storage and computation. With advancement in power electronic systems and control theo-

ries, microprocessors become popular in designs. There are more difficulties in power electronic

circuits than other systems. The operating frequency of power circuits can exceed hundreds of

kilo hertz; therefore real-time response to failure is one of the challenges in the design. Any

fault in the controller should be diagnosed instantly; otherwise it is possible to get destructive

overshoots in voltage or current. There are also different converter topologies and some need

specific controller architecture. It is not possible to use one controller in every design. One of



the new topologies is Modular Multi-level Converter (MMC) that is going under lots of test and

development. The biggest benefit associated with this topology is modularity and ability to work

even when a fault has happened in one of the modules [8]. To get the most of this converter,

controllers should also be fault proof and if a fault happens to one of the controllers, it should

be diagnosed and other controller should take the responsibility. That means having no single

point of failure in the system and single fault can never interrupt the functionality of the system.

The goal of this report is to review researches that have been done for designing fault-tolerant

systems and use it for power electronic controllers. In the first chapter, an introduction to the

research will be presented. It will define the motivation for this research and the contribution of

this dissertation. In second chapter, the techniques for designing a distributed controller system

will be investigated. The techniques presented will be about control and synchronization of dis-

tributed controllers using a supervisory controller. Third chapter would focus on the architecture

of the fault-tolerant controller and failure in the controller systems. Fourth chapter focus on

reliability assessment which is a process in fault-tolerant controllers to reveal the perfectness of

the functionality and Markov chain is the mathematical tool to model each controller's reliability.

Fifth chapter is about firmware design and techniques to avoid failure in the system as much as

it is possible. Sixth chapter presents experimental result for two types of converter including

modular multi-level converter (MMC) and cascaded h-bridge converter (CHB). Seventh chapter

makes the final conclusion and proposes the future researches in this field.
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Chapter 1

Introduction

1.1 Research Background

Facing the challenge of designing fault-tolerant control systems goes back to invention of

the microprocessors. Microprocessor functionality is based on physical principles to execute

instructions and proceed to the desired result of programmer. The problem with all physical

devices is that they are obliged to fatigue and aging during their life time that can cause the

device failure. Even if they don’t get damaged, they can get affected by transient physical

disturbances and give wrong results. All these hard and soft failures in the controller chip can

cause the system failure. In some systems, the failure is not tolerated and the harm the failure can

cause, motivates the engineers to design a system that can handle the failures. Power electronic

systems are a good example for demand of such controllers. All electronic devices need power

to function and without it, they are dead. Therefore, failure in power section always leads to a

failure in the whole system. In order to design a fault-tolerant controller for power electronic

systems, it is good to look in to other controllers that have been designed in the past. Server

computers, space shuttle controllers and re-configurable VLSI chips are some of the examples.
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1.1.1 Tandem Computer

Server computers should process the data correctly and reliably. They should always be available

to process the data coming in and going out. In a research done for the risk of data corruption,

one error per month was seen in 10000 computers running continuously [40]. Although this is a

small error rate, the effect can be huge when it is related to money exchange or stock market. One

of the most used computer for non-stop server applications is Tandem computer®[48] [10] [11]

. The development of this computer has been started in 1974 and is continuing through different

brands and corporations. This computer is based on dual or triple module redundancy (DMR or

TMR) [12] and the computing power of each module is evolving with time. Figure 1.1 shows

the architecture of early Tandem computer that consisted of two to 16 independent processors

connected by a pair of interprocessor buses collectively referred to as the Dynabus. Each

processor had its own memory and ran its own copy of the operating system. Each processor

also had an I/O bus. Each dual-ported I/O controller was connected to two processors'I/O buses,

and had internal logic that selected which port was currently the primary path. If a processor

or its I/O bus were to fail, the controllers whose primary paths were currently configured to

use that I/O bus would switch ownership to their backup paths. Controller configuration was

flexible enough that the workload of a failing processor could be spread over multiple surviving

processors rather than all being taken over by a single processor. The general design principle

was that there be at least two of everything, including power supplies and fans as well as the

more obvious processors, controllers, and peripherals. Dual-ported controllers and dual-ported

peripherals provided four paths to each device. For disks, the use of host-based RAID-1 mirrored

pairs of drives provided eight paths to the data and offered improved data integrity. All of these

precaution were done to proof the system from single point of failure (page 4 of [11]).
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Figure 1.1: Original Architecture of Tandem Computer (1976)

1.1.2 NASA Shuttle Guidance System

In space shuttles, the degree of robustness is much higher and penta module redundancy is the

common controller [88] [71] [80]. Figure 1.2 [99] demonstrate one of the controllers used by

NASA during 1970’s in different shuttle projects. It consists of five processor unit based on

IBM AP-101 which is coupled with I/O processor (IOP) to process the data transfer between

different units through data bus. All subsystems on the spacecraft are connected redundantly

to at least a pair of data buses. There are 24 of these buses, and the subsystems share them,

using multiplexers to control the sharing. Eight of the 24 are "flight-critical data buses" that help

fly the vehicle; 5 are used for intercomputer communication among the five general-purpose
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computers; 4 connect to the four display units; 2 run to the twin mass memory units; 2 more are

"launch data buses," and connect to the Launch Processing System; 2 are used for payloads, and

the final pair for instrumentation [71]. All these precautions are necessary to gain high rate of

reliability in aerospace projects.

Figure 1.2: Block Diagram of NASA Shuttle Data Processing System

1.1.3 Automotive Control Units

In today’s vehicles, as much as 70 micro-controllers may exist for handling the control and

safety tasks[56]. Some control tasks like anti-lock braking system (ABS), engine control unit

(ECU) and traction control unit (TCU) are directly connected to the safety of the passengers and

the design must be fail-safe to decrease the possibility of injuries. Unlike the space and aviation
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technology in which designing systems with high availability is desired, in automotive industry

the focus is on fail-safe systems. Systems with high availability require much more resources

and would increase the cost of the final product. That is not possible in automotive industry

with high competition between car manufacturers in decreasing the cost of the vehicle. Instead,

the design must be fail-safe and lots of validation tests must be done to make sure there is no

bug in design and fabrication stages. In the firmware design, specific standards like MISRA-C

have been defined to address the problems in computer programming[20]. These standards help

reducing the common error that programmers make in development stages.

The new microprocessors for the automotive industry are much sophisticated than before. Figure

1.3 shows the architecture of a tri-core processor on a single chip. Using multiple core to

perform a task will enables the firmware development group to design a fault-tolerant controller

architecture. Since all the hardware is integrated, the overall cost won’t change very much.

Figure 1.3: Architecture of TricoreTM ver-1.6 Automotive Micro-controller[2]
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1.1.4 Fault-tolerant WSI/VLSI Architecture

In most of the digital signal processing (DSP) applications, a huge amount of data is processed

to get the final result. One of the good examples of fault tolerancy in DSP systems is the

re-configurable processor array that has been designed by a team of researchers in Stanford

university [98]. As it is shown in Figure 1.4, an array of processing elements (PE) have been

connected to each other through a set of configurable data bus. Many computations in matrix

algebra can be conveniently carried out on an array of identical processing elements. VLSI

technology provides an inexpensive approach to building such arrays. However, during the

fabrication process or during operation, some of the processing elements in a large array are

inevitably going to be faulty. Spare PEs and extra routing hardware are often provided so that a

fault-free array can be constructed; such reconfiguration capability can be used to increase the

yield, and to guarantee fault tolerance in applications where failure is not permissible.

Figure 1.4: Re-configurable Processor Array (a)Before Configuration (b)After Configuration
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There are difficulty in hardware and software design of the system. A systematic design

procedures for a class of structured algorithms that often encountered in signal processing

applications has been developed by that team which is called regular iterative algorithm (RIA).

Once a Regular Iterative Algorithm is designed for a given problem, then one can use the

systematic design theory to generate efficient processor arrays. The general models that has

been explored consist of a set of identical processors embedded in a flexible interconnection

structure that is configured in the form of a rectangular grid. This grid can be configured to

implement the desired DSP algorithms. In each column of the grid, one extra PE is available to

form a N(N+1) matrix of PE( 1.5). In the case of failure, the faulty module will be bypassed and

the restructured array processor is able to perform the same function like the time before failure.

Figure 1.5: Architecture of Array Processor with Spare Processing Element at the Edges
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The similarity between array processors and modular multi-level converter is that several

modules are available and the architecture of these modules is changeable. In the following

chapters, the architecture of fault-tolerant array processor will be investigated in detail and will

be modified to match the criteria of controller for modular multi-level converter.
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1.2 Motivation

Distributed controllers are much complicated than centralized controllers, hence, there should

be justification for using such controllers in the system. In multi-level converters, the are several

power modules connected to each other to convert energy from one form to another form. This

type of converter is distributed and using distributed controllers doesn’t make big change in

the system. In the following sections different architectures of multi-level converters will be

reviewed and best converter for distributed controller will be selected. After that, application

and benefits of such converter systems using fault-tolerant controller will be evaluated.

1.2.1 Comparison of Multi-level Converters and Feasibility of Using Dis-

tributed Fault-tolerant Controller

Multi-level converter is a power electronics converter that synthesizes the modulating waveform

(usually a sinusoid) using multiple voltage levels. These voltage levels are created using capacitor

voltage division network. Figure ?? and ?? shows four different multi-level converters. By

turning on the IGBTs, it is possible to connect to capacitors and change the output voltage[89,

26].

In clamped diode multi-level converter (figure 1.6a), it is necessary to turn on the IGBTs that

are in the conduction path to the phase output in order get the voltage level of that capacitor.

Therefore the sink and sourcing current don’t pass a symmetrical line. In flying capacitor

multi-level converter, the output voltage is synthesized by arranging the connection style of the

floating capacitors. The number of capacitor in series and the polarity of them defines the output

voltage. These two type of multi-level converters are not modular and there are not the best

options for implementing the fault-tolerant controllers.

Figure ?? demonstrate another category of multi-level converters in which the power modules
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(a) Clamped Diode Multi-level Converter (b) Flying Capacitor Multi-level Converter

Figure 1.6: Diagram of Two Non-modular Multi-level Converters

can be scaled up easily by adding them in series. Modular multi-level converter (MMC) as

well as Cascaded H-bridge converter synthesize the output voltage by changing the capacitors

arrangement from DC grid to the output phase (details in Appendix A and B). Each sub-module

is separable as a whole block, therefore if one module fails, it is possible to bypass the failed

module and converter can continue its operation. By taking advantage of this capability and using

distributed controllers, it is possible to form fault-tolerant controller as well as fault-tolerant

converter.
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1.2.2 Performance and Reliability Enhancement in Power Delivery us-

ing Modular Multi-level Converter with Distributed Fault-tolerant

Controller

Along with the big changes in power generation, transmission and distribution, the need for

intelligent controllers has increased. The new systems need high speed signal processors to

handle the tasks. Renewable energy is one of the areas that require intelligent converters. Figure

1.7 shows the renewable energy usage of each country in 2010 [54] [5].

Energy conversion in renewable sources is not as same as the traditional fossil sources. In most

Figure 1.7: Renewable Energy Usage by Each Country

cases, the energy harvested from renewable sources can’t be used directly by customers and need

conversion by power electronic systems. The voltage and current rating of the generated energy

is high and simple converters can’t be implemented for this application. Modular multi-level

converter (MMC) is one of the converters that can handle this power rating (Figure 1.8a). The
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problem with this converter is its complexity in control and drive. Tens or hundreds of modules

are connected together and each one should be triggered separately.

(a) Double-Stat-Configured MMC Converter
(b) Cascaded H-bridge Converter with Isolated DC
Capacitor

Figure 1.8: Diagram of Modular Multi-level Converters [54]

One of the biggest advantage of this converter is that the total rating of all the modules are

higher than the generated power and it is possible to take out some of the modules without

interrupting its functionality [25]. To achieve this benefit, controllers must have this capability

too. If controllers are distributed just like the power modules, then it is possible to have fault

tolerant controllers for the converter.

The dissertation is trying to implement distributed control of the MMC and convert the designed

system with fault-tolerant controllers. If failure happens in one of the modules (either in the
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controller or the power electronic circuit), it would be detected and isolated from the system.

This will increase the availability and reliability of the converter by a large factor because

the faulty module can be replaced meanwhile the converter system is operating. From the

economical point of view, repairing modular multi-level converters might take a lot of time and

in conventional controlled system, power converters should be turned off for the repair period.

Down time will increase the cost of repair and it is not desirable. These improvements as well as

the economical benefits are the main motivation for the proposed architecture in the dissertation.
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1.3 Research Contributions

This dissertation contains many contributions to fault-tolerant controller design for multi-level

converter. Some of these contributions are listed as follows:

• Defining different architectures for distributed control of multi-level converters

• Proposing synchronization methods for distributed controllers in multi-level converters

• Applying the control method to cascaded H-bridge converter (CHB) and modular multi-

level converter (MMC)

• Reviewing literature related to fault origins in hardware controllers and available solutions

in controller architectures and apply it to the proposed controller

• Proposing a new controller architecture for multi-level converters with fault-toleration

capability

• Proposing second generation of fault-tolerant controller for modular multi-level converters

and focus on synchronization methods related to this type of controller.

• Categorizing fault-detection methods and implementing them for hardware controller and

power devices

• Simulating the proposed controller for cascaded H-bridge multi-level converter

• Estimating the lifetime for the controller card and components that have been used inside

the controller card

• Modeling the controller architecture using Markov chain, estimating the availability of

the proposed controller and assessing the reliability of the proposed controller
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• Researching fault-tolerant firmware design methods and techniques to limit failure in

software and techniques to bypass those failures

• Implementing proposed controller architecture in hardware in the loop (HIL) simulation

for CHB and MMC converter and designing a real CHB converter to test the proposed

controller
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Chapter 2

Synchronization and Architectures of

Distributed Controllers for Modular

Multi-level Converters

2.1 Introduction

Due to limited breakdown voltage and nominal current of controlled switches (SCRs or IGBTs),

several devices must be connected in series and parallel to tolerate the required line voltage and

current. In some applications, designers are forced to utilize several converter modules working

together to deliver the electrical power. As a result, several controllers might be required to

generate the switching signals of the controlled switches. These controllers must be synchronized

with each other in order to work properly. To achieve this goal, proper control architecture is

required to synchronize all the controllers and determine how each controller communicates

with other controllers. In this chapter, different control architectures including series (daisy

chain), parallel and parallel-daisy are explored and compared. There are different problems
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associated with designing such converters including synchronizing the distributed controllers to

the observatory controller and timing consideration in communication. The focus of this chapter

would be on architectures that fit for the design of a fault-tolerant controller.

2.2 Architectures of Distributed Controllers

There are different ways to connect distributed controllers together and to the master controller.

Architectures of distributed controllers for modular multi-level converters can be categorized in

three sections.

In daisy chain architecture, each controller is connected directly to the adjacent controller

(Figure 2.1). The nearby controllers can communicate fast, but since the entire process is being

controlled by a supervisory controller (master controller), this benefit cannot be utilized in the

system. A data packet from master should pass through all modules to reach the last controller.

This can cause data latency and can lead to instability in some cases. To overcome this issue,

the data packet must be transferred faster compared to control time step (using fiber optic) and

be sent bit by bit without being buffered in each module. The latency in data arrival is more

critical when pulse width modulation (PWM) signal synchronization is required to be done. Due

to harmonics considerations, each PWM signal in any controller should be synchronized to a

reference time stamp and the resolution of time difference should be in the order of tens of nano

seconds.

Beside all these cons, the major benefit of this architecture is its ability to be implemented by

fiber optic based decoupled hardware. Since data line is point to point, fiber optic communication

is possible and this will give a high degree of robustness to the entire design. The other benefit

is that adjacent controllers can share data with each other to assure correct functionality. This

would be helpful in the design of fault-tolerant controller.
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Figure 2.1: Daisy-Chain Distributed Controller Architecture

In parallel architecture (Figure 2.2), all controllers share a common communication link

and they are able to send and receive data through the same link. However, the permission is

being controlled by the master controller and slave controllers are not able to communicate

directly with each other. When a data packet is sent, it will propagate to all controllers at the

same time and they can read the packet. This will make the synchronization process much easier

but bandwidth would be limited due to the fact that all controllers share the same data link.

This architecture can easily be implemented using differential pair signals. Good example of

this type of communication is RS-485 standard. This standard enables us to have up to 256

devices in the system with baud rate up to 10 Mbps. The communication is half duplex i.e. only

one device can transmit data at any time. The pay off in this architecture is the ability of master
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controller to send data packets to all of the controllers simultaneously. Electrical precautions

must be considered in the design and twisted wire pair should be used in transmission to avoid

interference and noise issues.

Figure 2.2: Parallel Distributed Controller Architecture

To overcome limitations of two architectures, we can combine both of the typologies

together in the modular multi-level converter. In parallel-daisy architecture (Figure 2.3),

adjacent module can communicate with each other just like the daisy chain architecture. This

communication like is used to check the status each controller and in the case of failure in

the controller, its function can be done by the neighbor controller. There is also a parallel

communication link that connects all slave controllers to the master controller and it would be
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used to synchronize the controllers (like parallel architecture). This architecture would be used

in other chapter as the base for designing fault-tolerant distributed controller.

Figure 2.3: Parallel-Daisy Distributed Controller Architecture

The comparison between all architectures can be summarized in table 2.1.
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Table 2.1: Comparison between Architectures of Different Distributed Controller Systems

Architecture Network Realization Advantages Disadvantages
Daisy Chain Any type of serial

communication
including UART,
SPI, Fiber Optic

Short signal path,
Scalability, Fiber op-
tic compatibility

Data latency (from master
to slave), Vulnerable data
link (one connection short-
age can stop the system)

Parallel One to many pro-
tocols (RS-422/485,
CAN, I2C)

Scalability, Broad-
casting ability

Vulnerable data link (short
circuit in data link can stop
system functionality)

Parallel-Daisy Combination of se-
rial protocols

Scalability, Broad-
casting ability, Fault
tolerancy

Complex Packet process-
ing
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2.3 Synchronization of Distributed Controllers in Packet Switched

Networks

In distributed systems, slave controllers must be synchronized with the master controller [59].

The synchronization process helps the controllers to accomplish tasks in a timely manner and

follow the schedule. Frequency (rate of oscillation), phase (start of the oscillation) and time

(number of oscillations) are three important parameters that must be passed during synchroniza-

tion from the master to the slaves. All of these variables are function of the oscillator frequency

and any frequency difference may cause error in the system. These error can be formulated as

given below:

fe = fm− fs⇒ ωe = 2π fe

te =
fe
fm
× t

ϕe = ωe× t +θe0

(2.1)

In the above equations, the frequency of the master controller oscillator ( fm) is assumed as the

reference frequency and its difference with the slave controller oscillator frequency ( fs) is the

error ( fe). The time error (te) and phase error (ϕe) are function of the oscillator frequency as

well.

One of the most important synchronization parameters in network controlled systems is the

phase. Since the control tasks are scheduled to be done in sequence, the phase difference may

introduce error in task management. It also introduces interference in communications if any

time division multiple access (TDMA) method has been used.

The error in timing parameters may also be introduced during the synchronization process. The
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synchronized time of the slave clock k ∈ {1,2,3, ...,K} by the master is as below:

ts,k = tm +θ(tm) (2.2)

In this formula, θ(tm) is the offset of the slave controller time compared to the master controller

reference time. The offset is equal to:

θ(tm) = γs,k · tm +ωs,k(tm)+θ
0
s,k (2.3)

where γs,k is the deterministic skew, ωs,k(tm) is the variable deviation relatively to deterministic

skew and θ 0
s,k is the initial offset between the master controller to the slave controller.

In order to synchronize slave clocks to a master clock, the master clock time (tm) must be

transmitted to the slave clock passing through the communication link. This will introduce an

error between the slave and master clock as given below:

ts,k← tm + d̄ +θ (2.4)

Since the data must be passed through packet-switched network, the round-trip time (RTT) must

be calculated which is base on the delay between the master to slave (Dm→s) and slave to master

(Ds→m) and can define the delay error as below:

d̄ =
RT T

2
=

Dm→s +Ds→m

2
(2.5)

Delay error always exist in the packet-switched networks and will decrease the accuracy of the

synchronization by a great factor. In recent network synchronization protocols like Synchronous

Ethernet (Sync-E), the synchronization channel has been separated from the data channel and
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there is no need for packet processing to synchronize the slave controllers. This can increase the

synchronization accuracy up to ±4.6ppm.
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2.4 Implementation of Clock Synchronization in First Gen-

eration of Fault-tolerant Controllers Using TI-ConcertoTM

Micro controller

In network controlled systems, all controllers must be synchronized to a time reference. In

the proposed fault-tolerant controller for modular multi-level converters, the synchronization

between slave controllers and the master controller must be implemented in the following cases:

• Scheduling the control tasks and communication data flow.

• Acquisition of data and variables at the desired time (start of the control procedure).

• Phase alignment of the switching signals in comparison to each other.

Control tasks in the slave and master controller must follow a sequence in order to obtain the

desired result. It is necessary to synchronize all the slave controllers at each time interval to

calibrate and compensate the effect of time drift. In the implemented circuitry for synchroniza-

tion, a dual processor controller card (28M36) which contains an ARM processor (M3) and a

C28 processor (power electronic controller) has been used in both master and slave controllers.

In normal operation, data is being transferred from master to slaves in a periodic manner after

sampling and computation of the control loops in highest level. Figure 2.4 shows the data

flow between controllers. In the supervisory controller, the control loop runs based on the

switching frequency of the converter (when analog signals have been converted to digital at start

of PWM signal). The result is being transferred from the control subsystem (C28) to the master

subsystem (m3). This processor is responsible to form a packet frame and send the data to the

slave controllers.

The Slave controller use the same process to send/receive data and analyzing them. The differ-
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ence is that the data from master is being broadcast to all slaves , which means sending only one

packet is enough to synchronize all the slave controllers, but from slaves to master is not the

same and the channel is being shared between controllers. To divide the communication channel

between slave controllers, two principle solutions are available:

• Time Division Multiple Access: The receive channel can be divided based on time

division multiple access (TDMA) technique. Whenever the master sends request to slave

to get updated data, a scheduler will start counting and based on the module number

(assigned automatically or by installer), each module sends out its status and variables.

The biggest problem in this method is the error in crystal oscillators of slave controllers

and the probability of data frame overlapping. Therefore, a dead time must be allowed

between data packets to avoid this problem.

• Carrier Sense Multiple Access: In this mode, all the slaves listen to the master controller

and when the master requests for data from a slave controller, then slave starts to send

data to the master controller. The other slaves can listen to the transmitting slave and when

it ends the process, the next slave can start sending data immediately.

Due to the difference in the operating frequency of the crystal oscillators in each module

and desynchronization of controller after each hardware fault, periodic module synchronization

is necessary for switching signals. For synchronizing the PWM waveform, a fast trigger signal

must be applied to all slave controllers to inform them about the reference phase (start of PWM

signal). The easiest way is to consider a separate signal line to all the modules, but it is costly

and similar to having a data link again.

The most efficient way is to using the data link to send the reference signal, but the problem is

the baud rate of the data link. Transferring single byte would take several microseconds and this

accuracy is not good enough for phase synchronization (the complete packet has several bytes
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Figure 2.4: Example of Data Flow Diagram (Capacitor Voltage) between Master and Slave
Controllers
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and it takes even more time). The solution is to send a data packet and make the controllers

ready to sense a transition in Rx signal and then doing the phase adjustment procedure. Figure

2.5 represent a simple hardware that can do this in the easiest way.

Figure 2.5: PWM Phase Synchronization Hardware for Slave Controllers

Whenever the slave controllers receive ready to synchronize (ROS) packet (which makes

them ready to adjust the PWM phase), each controller enables the phase adjustment input (low

level) and wait to receive interrupt signal to load the phase value (based on module number)

to the PWM counter register. When control function is called in the master controller (which

is synchronized to internal oscillator and triggers at specific times), a dummy data is sent

to the serial port. The change in communication link will trigger the entire slave controller

and therefore synchronize them to the reference phase value. Figure 2.6 show the flow chart

implemented in controllers to handle signal synchronization.

The proposed synchronization method has been implemented in the system and the result

can be seen in figure 2.7 and 2.8. In figure 2.7, there is a phase difference between the

controllers which has been accumulated after 100 control cycles. By reaching this time, the
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Figure 2.6: PWM Phase Synchronization Flowchart

master controller sends data packet to prepare the slave controllers for the synchronization

process. While controller is in this mode, all communication tasks would be halted (not to

interfere with synchronization process). Master controller waits until the reference phase become

zero, then it signals all slave controller with a dummy byte. This will set the phase register of the

controllers to zero and synchronize all controllers together. Figure 2.8 shows the synchronized

controllers after the completion of this procedure.
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Figure 2.7: Synchronization Procedure in Proposed Controller (a)Data Packet Sent by the
Master Controller (b)Phase Zero-crossing for Slave and Master Controllers

Figure 2.8: Magnified Synchronization Procedure after Initialization of Process by Master
Controller
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2.5 Second Generation of Fault-tolerant Controller and Dom-

inant Output (DOMINO) Synchronization Algorithm

As depicted in figure 3.12, in the second generation of fault-tolerant controller there is no single

controller as master (synchronizer). Instead, there is a group of the controllers which can measure

global variables and can synchronize other slave controllers through serial communication. In

case of failure in the master controller, another controller with synchronization capability will

take the control and will synchronize all other controllers. In this architecture, communication

links are point-to-point (full duplex), therefore fiber optic implementation is feasible. In each

module, there are four serial ports (north, south, east and west) in which the controller can

communicate to other controllers. Since data signal should pass through several controllers to

reach the last controller, the latency must be minimum or synchronization may not be valid

anymore (reference time between master controller and the slave controllers will be huge). The

problem here is to find the shortest path between master controller and all other slave controllers.

This will guarantee the least amount of latency in the synchronization process[51].

2.5.1 Shortest Synchronization Path in Second Generation Controller

The set of controllers in second generation architecture can be shown by a graph (figure 2.9). In

this graph each controller is represented by a vertex (V ) and the communication links are shown

with edges (E). Therefore, the ordered pair G = (V,E) represents the graph representation of the

controller set. The weight of edges are different (due to the physical length of communication

links). For horizontal edges, the communication delay is Dh and for vertical edges it is Dh.

The problem is to find the shortest path from the master controller (M) to all other slave

controllers (S). In this problem, some slave controllers or communication links might be
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Figure 2.9: Graph Representation of the Second Generation Controller

unavailable. The problem can be classified as single source shortest path and there are different

algorithms to find the shortest path from the source to other nodes [33, 34]. Among all the

algorithms, Dijkstra’s algorithm has been used in different problems and has good efficiency

in comparison to other algorithms. Algorithm 1 demonstrate the method of find shortest path

using Dijkstra’s algorithm. In this algorithm, all the distance are initialized as infinity. After

that, it starts from the source and finds the distance to all outgoing nodes. The table of distances

would be update and the node with smallest distance would be chosen as the next node for
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finding distance. If the distance from the node is in addition to the other distances are smaller

that the value in the table, the table would be updated and the node with smallest distance would

be chosen for the next iteration. This will be done for all nodes and the distance table at the end,

represents the shortest path from the source to all other nodes[23].

Data: Graph and source as inputs

for each vertex v in Graph do

dist[v] = infinity;

previous[v] = undefined;

end

dist[source] = 0;

Q = the set of all nodes in Graph;

while Q is not empty do

u = node in Q with smallest dist[ ];

remove u from Q;

for each neighbor v of u do

alt = dist[u] + dist-between(u,v);

end

if alt < dist[v] then

dist[v] = alt;

previous[v] = u;

end

return previous[];
Algorithm 1: Pseudo-code of Dijkstra’s algorithm

33



2.5.2 Hardware Synchronization Using Dominant Output (DOMINO) Al-

gorithm

Dijkstra’s algorithm is one of the greatest algorithms in finding shortest path. This algorithm is

beneficial if the graph of controllers is available and there is enough time to process the algo-

rithm. The time complexity of the Dijkstra’s algorithm with Fibonacci heap is O(E +V logV ).

Therefore, it is not an optimistic solution of online applications[90]. The other problem is

gathering data from all controllers to the master controller for the algorithm and sending back

the data to slave controllers. This requires using huge amount of capacity from the data link in

the system which is not possible on the proposed controller.

The proposed solution is to use hardware method based on Dijkstra’s algorithm for finding

the shortest path which also implement fault-tolerant synchronization for the controllers. This

algorithm may be called Dominant Output (DOMINO) synchronization algorithm. In this

method, the master controller will start sending the bit-stream for the data packet. Whenever the

first bit arrives, the internal circuit of the controller will use that serial port for propagating data

to other serial ports. In order to decrease the latency, the received signal at serial port input of

each module must be written to other serial outputs of the controller instantaneously, therefore

it can propagate to the other controllers in the least amount of time. The arrival of the signal

will be the reference time for the controllers. The pseudo code for the algorithm is shown in

algorithm 2. By activating the synchronization circuit, the controller waits for the first coming

bit on the receive input (RX) to set the direction flag. After locking to the first incoming signal,

this signal will be routed to all other serial outputs (TX). This will propagate the data packet as

well as synchronization signal to all controllers. This synchronization algorithm may be done
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based on a time schedule which is related to the controller’s oscillator precision.

Result: Synchronization of slave controllers to the master controller with minimum

latency

Clear flags;

Enable Synchronization Circuit;

while (Synchronization Enable == True) do

if (Direction flag != NULL) then

TX[north, south, west, east] = RX[Direction flag];

else

if (first bit arrives from north direction == True) then

Direction flag = north;

else if (first bit arrives from south direction == True) then

Direction flag = south;

else if (first bit arrives from west direction == True) then

Direction flag = west;

else if (first bit arrives from east direction == True) then

Direction flag = east;

end
Algorithm 2: Pseudo-code of Dominant Output (DOMINO) Synchronization Algorithm

The proposed algorithm may be synthesized with digital circuits to increase the speed and

decrease the latency (figure 2.10). To show the effectiveness of the algorithm, a simulation

based on Verilog has been done. In this case, a 10×3 matrix with Dh = 7 and Dv = 5 has been

simulated under different fault conditions (figure ??).
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Figure 2.10: Hardware Implementation of DOMINO Synchronization Algorithm

(a) No Fault (b) Single Fault (c) horizontal Fault 1

(d) horizontal Fault 2 (e) vertical Fault (f) Complete Failure

Figure 2.11: Simulation Result for DOMINO Algorithm
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2.5.3 Proof of Minimal Time Synchronization for DOMINO Algorithm

By implementing DOMINO algorithm, all slave modules will be synchronized in the minimum

time by the master controller (synchronizer). In this problem, each communication link (edge)

has non-negative weight (propagation delay) and controllers (node) are placed in a net grid.

DOMINO algorithm is a divergence of Dijkstra algorithm and it can be proved in the same

manner.

The delay between the synchronizer (s) to controller at vertex vi is called di. The set of controllers

S can be chosen where[4]:

∀vi ∈ S, ∀v j ∈ V −S, di ≤ d j (2.6)

Second, for all slave controllers v j ∈ S, there is a shortest delay from s to v j using controllers of

S as intermediates.

For controllers outside the S, delay d j ∈V −Sk can be defined as:

dest
j = mindi +ω(ei, j) (2.7)

Lemma 1: The estimated delay dest
j is the smallest delay from s to d j, using only controllers in

S as intermediates.

Proof: Any path from s to d j using controllers of S as intermediates, consist of a smallest delay

path from s to some vi ∈ S and then one more path from vi to v j. The last path is only choice for

the synchronization and therefore the total delay is the minimum delay from s to v j.

Lemma 2: Let vm be an another controller in V −S such that dest
m is minimum. Then dest

m ≤ d j

for all j ∈ V −S(i.e. if vm is the first controller to get synchronized, it will have the smallest

delay than to synchronizer that other un-synchronized controllers).
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Proof: This can be proved by contradiction. Assume there is controller v j ∈V−S, with d j < dest
m .

Since dest
m < dest

j , we would have d j < dest
j . Therefore, any shortest path P from s to v j is shorter

that the length of a shortest path using only controllers from S as intermediates. Therefore, P

must use at least one controller from V −S as intermediate. Let vx be the first controller from

V −S as we go from s to v j. Since vx comes before v j, then dest
x ≤ d j < dest

m . But vm is defined

to be a controller from V −S such that dest
m is minimum. This leads to a contradiction, so the

assumption that there is some v j that d j < dest
m has to be wrong.

Now, it can be set that the new set of synchronized controllers S′ has the two properties of

previously synchronized controllers S.

Theorem: S′ is a set of controllers nearest to s that:

∀vi ∈ S′, ∀v j ∈V −S′, di ≤ d j (2.8)

Since the lemma is true for vm as well as other controllers in V −S, we have dest
m ≤ dm ≤ dest

m ,

that means dest
m = dm. So it is the path with smallest delay to vm. Also, since dest

m = dm ≤ d j, for

all v j ∈V −S, then it is true that dm ≤ d j for all v j ∈V −S′.

Therefore, based on this, the newly generated set of synchronized controllers will also have the

smallest synchronization time from the s.
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2.5.4 Synchronization Using Fiber Optics

Due to the use of controllers in high voltage applications, insulation is one of the problems

in implementation of the controller circuits and it is desired that no electric connection exist

between the controller cells. Fiber optic communication is suitable for this application because

communication cables are made of non-conductive materials and the data rate is much higher

than the copper wires. Fiber optic cables can carry data from point to point using light beams,

hence they are much immune to external interference.

Figure 2.12: Pulse Width Distortion in Fiber Optic Output Signal at Receiver

One of the biggest problems in using fiber optics for synchronization and data transfer is the

pulse width distortion (w) caused at the optical to electrical conversion (figure 2.12). This type

of error can be added up by repeating the conversion in the series controller modules in which

data would be lost after passing several controller modules (second generation controller). One

of the methods for eliminating this error is using voltage comparator at the receiver buffer and

controlling the threshold voltage of the reference [67]. This method decreases the jitter at the

receiver but it can’t eliminate all the error.

The other method is re-sampling the received serial data and transmitting it with the delay equal

to half of the transmission period. The re-sampling circuit is synchronized by the first falling

edge (start of the transmission), then it waits for period of T/2. After that, it starts sampling
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with period of T until the last bit of the data. Since the sampling is done in the middle of the

data bit, this method guarantees signal reconstruction if pulse width distortion (w) is less than

T/2.

Figures 2.13a and 2.13b show two cases in which the pulse width distortion (PWD) is less

than T/2. The reconstructed signal has the same value of the received data but the distortion has

been fixed and there is a delay of T/2 from the receiver to the transmitter.

If the jitter at the receiver exceeds T/2, the data is no longer valid. Figures 2.13c and 2.13d are

two cases that jitter has exceeded T/2 and the output of the correction circuit is not useful.

(a) Output Result When Pulse Width Distortion is Less than T/2

(b) Output Result When Pulse Width Distortion is Less than T/2

(c) Output Result When Pulse Width Distortion is Higher than T/2

(d) Output Result When Pulse Width Distortion is Higher than T/2

Figure 2.13: Result of the Correcting Circuit at each Repeater Module
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2.6 Timing Consideration in Design of Distributed Controllers

To have better insight about the behavior of the distributed controller, timing parameters of

the system must be investigated [60]. Figure 2.14 show the performance of continuous time,

discrete time and network controlled systems in different sampling times.

Figure 2.14: Performance of Control Systems versus Sampling Time

In continuous time systems (e.g. analog systems), sampling time has no meaning; therefore

the performance is always the same. In digital control system, higher sampling rate will make

the system looks more like the continuous system and therefore the quality of performance

(QoP) will increase drastically.

In Network Controlled Systems (NCS), the bandwidth of the communication link is limited.

Increasing the sampling rate means transferring more amount of data in the network that could

decrease the functionality of the system. By having knowledge about the timing in the system,
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the maximum safe sampling rate can be selected for the AMMC. The rule of thumb is whenever

network bus gets crowded the performance will decrease. In the scheduled NCS, the optimum

performance can be gained by using the maximum baud rate of the network link.

Figure 2.15: Time Diagram Showing the Time Spend to Transfer Data Between Different Node
of a Network Control System

Figure 2.16: Waiting Time Diagram

Figure 2.15 and 2.16 demonstrate the delay time between controllers. The delay in different

part of the system can be defined as follow:

1- Tpre: The time required to process control signal from the outside world in the controller

(analog to digital conversion is most important one).

2- Twait : The time that the imported data shall be buffered in the sender’s data frame until it

reaches the network link.
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3- Ttx: The duration of data frame transmission from one node to another node. This delay can

be very different in master to slave and slave to master modes. The major part of the Tdelay is

this part because it is out of the controller and in the network link.

4- Tpost : The delay time after data frame has been received in the destination. It consist of packet

parsing loop procedure and the delay until measured signal is used in the main control loop.

Based on the defined delays, the final delay would be:

Tdelay = Tpre +Twait +Ttx +Tpost The total delay from the signal to the control loop can be used

in modeling. The difference between single and distributed controller system is in two facts:

1- Network delay: There is always delay between measured signal to the control loop and from

the control loop to the plant.

2- Rounding error: Due to speed and latency requirement of the converter, variables should be

rounded to decrease the overload on the network.

Therefore, the finalized model to be used in simulation would be like Figure 2.17.

Figure 2.17: Signal to Controller Simulation Model
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Chapter 3

Fault-tolerant Controller Architecture for

Modular Multi-level Converters

3.1 Introduction

There are different factors that can limit the functionality of a controller. All controllers are

made from components and materials that have limited lifetime. External factors and working

environment play their role to decrease the expected life of the designed system. Even human

errors in software coding can cause failure in some exceptional situations. Although it is not

possible to avoid failure in the controller, it is possible to lower the failure rate of control system

by changing its architecture. There are several types of fault-tolerant controllers and each one is

suitable for specific application and based on the requirements and available resources, the best

controller can be chosen. In this chapter, different controller architectures will be investigated

and a novel architecture for modular multi-level converters will be proposed. It has distributed

architecture and failure in one of the module can be handled by the adjacent controller. Therefore,

the failure rate of the final control system would be lowered by a great factor.
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3.2 Design Techniques for Fault-tolerant Controllers

Implementation of a fault-tolerant controller must be realized both in hardware and software.

In the hardware design, the designer must use the components with low failure rate and long

expected life-time. This would increase the mean time to failure (MTTF) of the designed con-

troller board. The other help from designer would be choosing the right controller architecture

that can handle the failure conditions. Majority voting redundancy and standby controller are

two major techniques that is used to gain fault-tolerant controllers.

3.2.1 Hardware Architectures for Fault-tolerant Controllers

In recent years, the cost of the hardware has decreased a lot and compared to importance of tasks

that is done by the controller, it is still logical and economical to use extra hardware in the system

design. Therefore, most of the controllers use redundant hardware to achieve fault-tolerancy.

There are different ways to arrange the controllers, find the fault in system and rearrange them

if a failure happens in the system. The common property between all fault-tolerant controllers is

that they try to atleast avoid single point of failure in the system. Some controllers may even be

capable to stay functional if more failure happens in the system.

Based on the failure handling method, fault-tolerant controllers can be divided into static and

dynamic categories[94]. Static controllers try to mask the fault using voting methods. There

would be several controllers and each one generates output signals based on the input signals it

is reading. The voting module (which may consist of different blocks) compare the results and

generate the majority signal. In dynamic controllers, fault is detected by the controller itself or

the spare controller in the system. Whenever fault happens, the active and passive controllers

will switch the roll and the passive controller will take the control of the system. There is also
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another architecture (Hybrid) that combines two methods and add extra module in the system

for replacement in the case of failure.

Static Redundancy: In this architecture, a masking algorithm is used to detect the fault in the

controllers. The minimum of three controller is needed to form a static controller and it is called

triple modular redundancy (TMR). The same inputs are given to all three controllers and it

is desired that all three generate the same result. The output of the controllers is given to the

voting mechanism which compares output result and select the one which has higher vote. In

this method, if one controller fails, the other two are still operational and the output result would

the result from these controllers.

Figure 3.1: Architecture of Triple Modular Redundancy

Figure 3.1 show the image of a basic TMR controller. The main problem in this configuration

is that if any fault happens in the voting section or input signals, the whole controller would fail

too. This is called single point of failure and to overcome that, it is necessary to duplicate the

inputs and voting sections.

The idea of static controllers can be extended to N module redundancy, and the controller is
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called M of N modular redundancy controller (NMR). In NMR controllers we have:

Maximum Number o f Controller Failure =
N−1

2
, N ∈ {3,5,7,9, . . .} (3.1)

Adding more modular controller will increase the fault-tolerancy of the system and increase

the cost of total system. It will also complicate the voting module exponentially because of the

number of comparison required to find the majority result. In practice, more that 5 modules is

not being used for static redundant controllers.

Dynamic Redundancy:In static controllers, masking method is used to detect the faults. This

method requires huge amount of redundancy in which minimum of three modules is required

for operation. In static systems, instead of masking, the fault detection method is used. In the

case of the fault detection, the active system would be changed and a standby module would be

replaced instead of the active module. Fault detection can be internal or external using hardware

or software resources. As it shown in figure 3.2, this system can operate with the minimum of

two modules. The output result of each controller is checked to make sure the active controller

is working properly and otherwise the standby controller would be switched over.

The standby module can operate and reconfigured in two method. In hot standby, the spare

module is operating continuously with the active module. In the case of the failure, it can be

replaced immediately with the active module, therefore decreasing the response time to the

failure. The disadvantage is the constant power consumption when it is not useful. In the cold

standby, the spare module is powered down and will be activated in the case of failure detection.

In the table 3.1, a comparison between static and dynamic redundancy has been done. Each

method has it’s own application and the proposed architecture for modular converters, the best

architecture would be used.
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Figure 3.2: Architecture of Standby Redundant System

Table 3.1: Comparison Between Static and Dynamic Redundant Controllers[92]

Static Redundancy Dynamic Redundancy
Resource utiliza-
tion

Resource intensive:Resources are
always use, regardless whether
faults are present or not. Faults
are tolerated by fault masking

Resource friendly:Resources are
used on demand in presence of
faults by reconfiguration

Timing behavior Requires no failover time, i.e. the
time consumption is low

Additional failover time required

Reliability Provides highest short term relia-
bility

Provides high long-term reliabil-
ity
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3.3 Re-configurable Controller Arrays and their Application

in Power Electronics

The idea of developing a distributed fault-tolerant controller for modular multi-level convert-

ers has originated from fault-tolerant array processors. These VLSI chips contain a mesh of

interconnected processing elements that can be configured to compute Regular Iterative Algo-

rithms (RIA). These algorithms are useful for high-speed Digital Signal Processing (DSP) of

complicated signals (e.g. 2D filtering). In case of failure, the array can be reconfigured to do

the same algorithm by bypassing the faulty elements. In the following section, a new controller

architecture will be evolved from such arrays to add fault-tolerant capability to the modular

multi-level converters.

3.3.1 Fault-tolerant Array Processors for Regular Iterative Algorithms

During the lifetime of a VLSI system, it is probable that the wafer become faulty in some parts.

Instead of treating the whole chip as defective, it is possible to reconfigure the architecture

of chip to implement the same algorithm as before. An example for such system is processor

arrays that consists of a grid of N(N+1) processing elements (PE). Based on the research of

T. Kailath and his research team in 1991 [103] [105], it is possible to reconfigure the faulty

system into (N+1)N elements and bypass the failed PE. In this case, N×N of the elements are

functional and N modules are faulty. Figure 3.3 demonstrate the array processor proposed by

Thomas Kailath and his team. Each element in the grid can be connected to another element by

data bus through configuring switches. In the proposed array, there is only one set of data track

available between to switches and the reconfiguration algorithm must connect the functional

elements using single-track switches [45] [53]. The factory configured array is called physical
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Figure 3.3: Architecture of Array Processors Proposed by Kailath

array and the reconfigured fault-free array is called logical array. Both physical and logical

arrays are the same at factory and they would be different after fault happens. Based on the

reconfigurability theorem, an (N +2)× (M+2) physical array is configurable to N×M logical

array using one-track routing if and only if there exist compensation paths covering all faulty

PEs and they are continuous, straight, non-intersecting and non-overlapping. The proof of the
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theorem can be found in [44].

Reconfiguration process includes placement and routing. When placement is fixed (like VLSI

Figure 3.4: (a)-(f)Screening process, (g)Equivalent fault pattern after screening,
(h)Contradiction graph for (g), (i)The placement solution

chips), the faulty elements must replaced with spare elements through re-routing. This process

consist of two stages[83][91][64]:

• Screening: Determining the obvious choice of the compensation path for as many faults

as possible (figure 3.4)
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• Contradiction graph: By constructing the contradiction graph (figure 3.5) for the remain-

ing (un-screened) faults and finding the maximum independent set equal to F (number of

non-spare failed elements).

Figure 3.5: (a)Fault pattern, (b)Corresponding contradiction graph with a "crossed" vertex,
(c)Reduced equivalent contradiction graph

After screening process and assigning the logical index of failed elements to the spare parts, the

equivalent fault pattern with less number of non-spare faulty PEs and more spare faulty PEs will

be formed. The contradiction graph for the remaining failed PEs can be formed as steps below:

• Generation of Vertices: For each non-spare faulty PE (e.x. k-th faulty PE), four vertices

can be assigned (i.e. kN, kS, kE, kW). Therefore four compensation paths are available

per failed element. Furthermore, the "crossed" vertices which correspond to non-valid

paths must be deleted.

• Construction of Edges: For each vertex pair (u,v), an edge may connect them if they are

"non-intersecting", "non-overlapping" and do not belong to the same faulty element.
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To find the replacement spare PEs for the faulty elements, the Maximum Independent Set

of the contradiction matrix must be found. That means finding the biggest independent set of

vertices that are not connected to each other by an edge. Such problem is classified as NP-hard

optimization and it is unlikely that there exist an efficient algorithm for finding the set.

An efficient method for finding the maximal independent set is proposed by Bron and Kerbosch

in [15] which is a tree search method. Algorithm consists of forward step and backward step.

In a forward step (e.g. k-th step), an independent vertex set Sk is augmented by another proper

vertex to produce new independent set Sk+1. In the best condition, the forward step continues

until the set become maximal independent set. Otherwise, backward step has to be used to

achieve the goal. Two independent sets Qk
− and Qk

+ are used for this algorithm. For solving

the routing problem, only one maximum independent set with the size of F is enough. After

finding this set, the rest of the faulty elements can be assigned to the corresponding spare cells.

In the reconfiguration problem, only PEs are considered faulty. Failure in the switches or the

connection path is possible. In order to re-configure the array with such errors, PEs status must

be re-assigned equivalent to having fault in the connected PEs. Therefore no bypass track can

pass through the faulty connection and that part will be left alone.
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3.3.2 Evolution of Fault-tolerant Distributed Controlled Power Modules

The same idea of array processors can be applied in power electronics. In multi-level converters,

a set of converter modules are connected to each other to form an architecture. Figure 3.6

demonstrate a grid of controllers and power module connected to each other to form a fault-

tolerant converter. Each power module has connection to 4 controller (2 main controller and 2

auxiliary controller). If one controller fails, another controller can controller the power module

and if a power modules fail, it is possible to re-route the from one power module to another

power module.

Figure 3.6: Distributed Controller and Converter Module over Meshed Network
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In figure 3.6, there are auxiliary controllers in the grid that have no direct access to the power

modules. For connecting such controllers to the power modules, 3 switch and 2 data bus must

be used. Due to cost and complexity of the data track and the controllers, these controllers may

be omitted. The result has been depicted in figure 3.7. Each power module in the grid still has

connection to 4 controllers and they can communicate to each other through the data bus.

Figure 3.7: Omission of Unusable Auxiliary Controllers from the Grid

The auxiliary controllers can be embedded inside the main controller. This will save resources

in routing data bus and switch. As it can be seen in figure 3.8, each controller block has one

main controller and two auxiliary controllers for other power modules. Figure 3.9 shows the
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grid without spacing between modules.

Figure 3.8: Embedding the Auxiliary Controllers Inside the Main Controllers

Figure 3.9: Omission of Unused Space and Integrating the Power Modules and Controllers
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There are limitations in power electronics that makes integration of controllers and converters

different than integration of processing arrays on a chip. These difference can be list as below:

• Due to the high-voltage nature of the power converters and the requirements for isolation,

power modules on one converter leg may not be connected to the controllers on another

converter leg. They must be separated and there should be a gap between them.

• Controllers must be synchronized to a master controller in order to get shared variables

(e.x. grid voltages, currents, phase ...). It is not possible for all of the distributed controllers

to read the analog signals to complete the tasks.

Figure 3.10: Architecture of Customized Array Interconnections for Power Electronics Appli-
cation
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Based on the power electronics requirements, power modules are isolated, controllers are

synchronized with a master controller and the revised architecture in figure 3.10 can be

achieved.

The last parameter that must be considered is the switch for the power modules and the controller

signals. In array processors, the switch is a multi-track data switch that has been implemented

by logical gates. In the new architecture, the switch for the power modules is usually a power

device which can be turned on to bypass the power. Due to the cost of such switches, it is not

economical to complicate the high-power switch.

The switch for controller may still be implemented by logical gates. Since there are three

controllers connected to each power module, each controller switch may have 3 states. By

default, power module is connected to the closest controller and in the case of failure, power

module will be switched over to another controller.

Figure 3.11 demonstrate the final architecture of controllers and power modules in 1st generation

of the fault-tolerant controller. In the following sections, the implementation of proposed

architecture will be discussed in details.
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Figure 3.11: Architecture of 1st Generation Fault-tolerant Distributed Controlled Power Mod-
ules
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3.3.3 Second Generation of Fault-tolerant Distributed Controller

One of the biggest disadvantages of the 1st generation controller is the synchronization method

used for the controllers. The global data (i.e. grid voltages, currents, ...) is being acquired

by the master controller (synchronizer) and shared between all other controllers through the

communication bus. In this case, the master controller must have redundant architecture (static

or dynamic) with redundant communication bus to avoid single point of failure. This will

make the architecture complicated and increase the required resources for implementation of

the system. One of the solutions for this problem is connecting all the controllers in a grid

format. In this case, some of the controllers are capable of gathering the global variables and can

share them to other controllers through the communication bus. If one of the controllers fails,

another one of the controller can take the responsibility and synchronize the whole controllers

(figure 3.12). There are two types of controller in this architecture. Some of the controllers

have measurement devices for measuring common variables between all the controllers. only

one of these controller will act as the master controller to synchronize all other controllers. The

controllers that have access to global variables will perform voting algorithms to ensure the

correctness of the module that is synchronizing other controllers. If the master controller fails,

the next controller will take responsibility of the master controller.

The connection between controllers is point to point and can be realized by fiber optics. This will

increase the speed and the performance of the communication link. In this architecture, there is

no single point of failure because minimum of two (maximum of four) communication link is

available for each controller. The synchronization packet (which contains global variables) will

be sent at the start of each control step time. In assigned time for synchronization, the incoming

data from the serial bus will be copied to other serial ports. This method will propagate the

synchronization packet to all of controllers in the minimum amount of time (like domino tiles).
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Figure 3.12: Architecture of 2nd Generation Fault-tolerant Distributed Controlled Power Mod-
ules
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3.4 Proposed Distributed Fault-tolerant Controller for Mod-

ular Multi-level Converters

Based on the methodologies for designing fault-tolerant systems, a distributed controller for

MMC is proposed. The proposed controller has the capability to reconfigure itself in the case of

failure. The restructured converter, can work continuously without interruption by bypassing the

faulty modules and dividing the workload over other modules. Different methods have been used

to detect the fault in the controller and converter modules and after detection, a signal would be

sent to the responsible control block. Based on the failure type in the system, a module might

be bypassed completely or the adjacent modules take control of the faulty module (fail-over

decision). The reconfigured system will continue its operation and in the meanwhile, the faulty

module can be taken out and be replaced.

3.4.1 Architecture of Fault-tolerant Controller for MMC

The proposed fault-tolerant controller is a distributed controller based on dynamic controller

architecture (figure 3.20). Dynamic controllers are much simpler in implementation and give

better result for the same hardware resource in power electronic system. Since static controllers

use masking to find faults, it would be complex to mask the output PWM signals and find

the errors. For the minimum static fault-tolerant controller, three controller is required which

can tolerate only one failure. In a dynamic controller with three modules, two failure in three

adjacent modules is possible. Therefore dynamic fault-tolerant controller is the best option for

the proposed controller [75][29][24][87].

In this controller, each module shares the input signals with the adjacent module and they can

communicate through data link and flag bits. All of the modules are being synchronized with
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the master controller through the shared data link. The data on main communication link is

responsible to synchronize modules of a single leg to the reference values of that particular

converter leg. There is also a communication link between two adjacent modules, therefore they

can transfer flag bits and control variables with each other. The switch block is responsible to

Figure 3.13: Architecture of Proposed Distributed Controller for Modular Converter

select the output of the best functional controller and feed it to the power devices. The selection

is based on the fault signals and condition of the main and adjacent controllers. In case of a

failure in all of the three available modules, it bypasses the power devices so the converter can

continue its operation.
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3.4.2 Fault Detection in Converter Modules

There are different techniques to discover fault in the system. The major fault-detection meth-

ods can be categorized as built-in self-test, output results comparison and watchdog timer

[30][31][6][73][76][32][47].

• Built-in self-test (BIST): In this method, an auxiliary circuit (inside the module) checks

the health of the operational components based on the defined behavior of each one[17]. If

the measured parametric values are different than the critical threshold, a fault signal can

be generated for the component. For the proposed controller architecture, it is necessary

to make sure each of the power switches in H-bridge are functional. In this case, IGBT is

used as the switching device and whenever gate voltage is higher than a threshold, it must

turn on (saturation region). Figure 3.14 show an example for fault detection in IGBT[52].

Base on the gate voltage and collector-emitter voltage, it can detect if IGBT is turning

on-off at the desired moments (collector-emitter voltage of IGBT must be near zero when

turn on and higher than that when turned off).

Figure 3.14: IGBT Fault Detection Based on Desaturation Checking
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• Output results comparison: The functionality of the controller board can be checked

by comparing the output result of adjacent modules when feeding the same inputs to

all of them (similar to voting mechanism in static controllers). In this case, any failure

in the measurement sensor, control block and output signal generation can be detected.

The difference between this method and voting mechanism is that here each adjacent

module compare the output result with the main controller and there would be 2 fault

indication signals coming to each module. Based on the fault signals, the main module

can be bypassed or its control can be rolled over to the adjacent modules. Figure 3.15

demonstrate this method in the proposed controller.

Figure 3.15: Output Comparison Between Adjacent Modules

• Watchdog timer: Some control tasks are time critical and delayed response means

corresponding control section has been failed. In the proposed controller, a watchdog

timer can detect any disconnection between the main controller and adjacent controllers.

If there is no update from the adjacent module, it means either the control module or the

communication bus has failed. Figure 3.16 depicts the watchdog implementation.
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Figure 3.16: Watchdog Timer for Detection of Communication and Controller Failure
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3.4.3 Fail-over Strategy

In the event that a failure happens, the output must be switched from the failed module to a

standby module (in dynamic controller). This event is called fail-over and decision about how to

make this transition is based on the fault signals and condition of the adjacent modules. Fail-over

process consists of two steps:

• 1- Fail condition detection: Based on the fault signal check if the fault in the system is

fatal and the main controller is no longer operational.

• 2- Switch-over to standby controller: Choosing the right standby controller to take control

of the main controller depending on the status of the standby controllers.

Figure 3.17: Fail-over Strategy Diagram in each Module

Figure 3.17 demonstrates the strategy of the proposed controller. There two situations that

means the main controller is not functioning correctly:

• 1- Comparison between output of main controller and adjacent controllers are different. If

both comparison are wrong, then it means the main controller is not creating the correct

output signal since it is reading the wrong input signal or the microprocessor which is

calculating the control block is damaged.
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• 2- The synchronization between adjacent modules experience timeout. If both of the

modules experience timeout, then it means the main controller has no supply voltage

(power failure) or the microprocessor is experiencing a failure (e.x. stack overflow).

Whenever each of these conditions come true, the fail-over signal is turned on and the best

controller would be chosen to replace the main controller. Inside each module, a circuit checks

the health status of the module and feeds the signal to adjacent modules (figure 3.18). Based

on this status signal, a healthy controller module would be selected and if there is no available

module to handle the converter, the module would be bypassed.

Figure 3.18: Diagram of Controller Health Indicator
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3.5 Mathematical Model of the Proposed Fault-tolerant Dis-

tributed Controller

Modeling the proposed controller will help to understand the behavior of the system. In the

reliability assessment, the mathematical model will help to implement Monte Carlo simulation.

Therefore, it is necessary to systematize the controller model for different applications. In the

first section, the performance model will be reviewed. This model tells if the controller is still

available and functional which will be helpful in Monte Carlo simulation. The other model is

re-configuration matrix of the controller which assigns each controller to the corresponding

power module based on the faults in the controllers or the power modules. The following

nomenclature exist in system model:

• FBIST : n×1 matrix that contains the failure status for built-in self test in the controllers

• FOC: n×1 matrix that contains the failure status for output comparison failure detection

• FTO: n×1 matrix that contains time-out failure status of controllers

• FSOFT : n×1 matrix that contains soft failures in the controller blocks

• FPOWER: n×1 matrix that contains failure status of power modules

• FMODULE : n×1 matrix that contains failure status of each module

• UPHASE : number of the completely failed modules per phase (unavailability of each phase)

• UMAX : maximum number of permitted module failure per phase (maximum permitted

unavailability)

• CAM: n×1 control availability matrix (CAM) that contains availability of controller for

each power module (0 as unavailable and 1 as available)
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• SP: n×1 matrix in which each element represent the flag for the power bypass switch

• SC: n×1 matrix in which each element represent the routing path for control signals of

each power module. 0 means that control signals come from the main controller, +1 for

upper and -1 for the lower controller.

3.5.1 Performance Modeling of the Proposed Controller

The proposed controller is designed to handle limited amount of failure and still function

continuously. The performance model of the controller will check all the failures in different

sections of the system to form the performance matrix. The soft failures in the controllers can

be calculated as following:

FSOFTi,1 = (FBISTi,1)∨ (FOCi,1)∨ (FT Oi,1) (3.2)

Due to the implemented fault-tolerant controller algorithms, control of each power module

may be done by the directly-connected controller or the adjacent controllers. The controller

availability matrix (CAM) tells if there is any available controller for the desired power module

as given below:

CAMi,1 =


0 if [(FSOFTi−1,1 ∧FSOFTi+1,1 ∧FSOFTi,1) = 1]

1 o.w.
(3.3)

A totally failed module has no available controller or the power module has been failed. There-

fore:

FMODULE = (CAM)∨ (FPOWER) (3.4)
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The number of the unavailable modules per phase will be:

UPHASE =
n

∑
i=1

FMODULEi,1 (3.5)

If UPHASE ≥UMAX , then the converter may not function for the desired rating. In this case, the

system has failed completely.

The discussed model is helpful in reliability assessment of the controller system and will be

investigated more in reliability assessment chapter.

3.5.2 Re-configuration Matrix of the Proposed Controller

The reconfiguration matrix (SP and SC) represents the current connection style for each set of

switches in the system. It is important to find the reconfiguration matrix in case of the failure and

change the arrangement of the controllers and converters in order to bypass the fault. Whenever

a fault happens, the reconfiguration is done locally and data may be reported to master controller

to form a matrix for the current status of switches. The reconfiguration matrix of the system can

be defined as given below:

SP = FPOWER (3.6)

SCi,1 =


0 if (FSOFTi,1 = 1)

+1 if [(FSOFTi−1,1 ∧FSOFTi,1) = 1]

−1 if [(FSOFTi+1,1 ∧FSOFTi,1 ∧FSOFTi−1,1) = 1]

(3.7)
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3.5.3 Re-configuration Matrix for Second Generation Fault-tolerant Con-

troller

In the second generation controller, a matrix of controllers are connected together. In case of

failure in the communication link between controllers, slave controllers or the master (super-

visor) controller, the architecture should re-structure (be redoing the synchronization process)

to bypass the failure. As discussed in synchronization section ( 2.5), the controller matrix will

be transformed into a tree during the process. This enables instantaneous signal delivery from

master controller to the slave controllers(figure ??). For reliability assessment and controller

(a) Controller Matrix Before Synchroniza-
tion Mechanism

(b) Controller Tree After Synchronization
Mechanism

Figure 3.19: Controller Architecture During Synchronization Mechanism

modeling, it is necessary to formulate the mathematical model of the second generation con-

troller [50]. The complete state of the controllers and communication link in system may be

represented by adjacency matrix (Mad j). The proposed controller has horizontal (h) and vertical
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(v) control elements(Cx), therefore Mad j would be a (h× v) by (h× v) matrix and each element

(mi, j) can be defined as following:

mi, j


0 (Ci ≡ failed)∨ (C j ≡ failed)∨ (Ci and C j have no data link)

1 otherwise
(3.8)

Based on the definition, adjacency matrix of the second generation controller with 4 module per

phase(3 phase system) and fully functional components is demonstrated in equation 3.10.

Mad j =
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(3.9)

In the controller structure, delay between horizontal(dh) and vertical(dv) modules are different.

Therefore, adjacency matrix may not be used directly and weighted adjacency matrix(Wad j)
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must be used. Each element(wi, j) in the weighted adjacency matrix may be defined as following:

wi, j



0 i = j

dh Horizontal connection

dv Vertical connection

∞ otherwise

(3.10)

By definition, weighted adjacency matrix for the fully functional controller with 4 module per

phase(3 phase module) would be as following:

Wad j =



0 dv ∞ ∞

dv 0 dv ∞
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(3.11)
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By using single-source shortest path algorithm (e.g. Dijkstra), it is possible to find the synchro-

nization path (if it exist) for the controller matrix.

Data: (V, E, Async, w, s) as inputs

VT := {s};

Async := /0;

for ∀v ∈ (V −VT ) do

if ∃e ∈ E(s,v) then

l[v] := w(s,v);

else
l [v] := ∞;

end

while VT 6=V do

l[u] := min{l[v]|v ∈ (V −VT )};

vt = min{w(u,vt)|vt ∈ (V −VT )};

VT :=VT ∪{u};

Async := Async∪E(u,vt);

for ∀v ∈ (V −VT ) do

l[v] := min{l[v], l[u]+w(u,v)};

end

end
Algorithm 3: Pseudo-code for finding the shortest path and associated synchronization delay

in the Second Generation Controller

Adjacency matrix of the synchronization path helps identifying the network links which

will be used in the synchronization path. However, that is not enough and the associated delay
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between master controller and slave controllers is necessary for finding the maximum delay in

the system. It is necessary to check if the synchronization can be scheduled or not. Therefore

we have:

∀u ∈V,max(l[u])< dsync_max⇔ system is synchronizable

Tsync =
1

Fsync

Tsync > 2.dsync + tpacket + tparsing

⇒ dsync_max =
T−tpacket−tparsing

2

(3.12)

In the synchronization process, data has to be sent from the master controller to slave

controllers and they must response back with their status(one at the time). Therefore, syn-

chronization delay(dsync) must be calculated twice with packet transfer delay(tpacket) and pars-

ing delay(tparsing) by the controllers. All of these time delay must fit in the communication

period(Tsync) or it would interfere with the next synchronization time frame.
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3.6 Simulation of Proposed Fault-tolerant Controller

Simulating controller, its software and power converter in the same simulation environment is

not easy. In order to investigate the performance of proposed controller, a simulation setup based

on Matlab Simulink® is prepared. The design has been partitioned to four sections(figure 3.20).

The console is responsible for acquering data from different sections and set the references for

control blocks. The other three blocks simulate the master controller, slave controllers and the

power converter[108][13].

Figure 3.20: Overview of the Block Diagram of the Fault-tolerant Controller Simulation
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The master controller is responsible to regulate the DC grid voltage, current control, phase

voltage balancing, grid synchronization(phased locked loop) and power flow control. It looks

at the multi-level converter as a simple converter and generates the reference points for slave

controllers(figure 3.21). Slave controllers are synchronized to the reference points of the master

controller and they implement the fault-tolerancy over system(figures 3.22, 3.23, 3.24, 3.25).

Figure 3.21: Simulation Diagram of Master Controller
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Figure 3.22: Simulation Diagram of Slave Controllers

Figure 3.23: Connection between Slave Controllers
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Figure 3.24: Slave Controllers at the Edge of the Converter Leg

Figure 3.25: Internal Block Diagram of Slave Controllers
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The switching frequency of the converter is 10 kHz, therefore it requires simulation time of

less than 1µS. This will increase the simulation time by a great factor and development time

would be higher than normal. In order to overcome this problem, power electronic components

have been chosen for Opal-RT™ RT-Event® library. This library looks at transitions of the PWM

signals and can fasten the simulation time by a great factor. By using this library, the simulation

step time may increase to 100µS which is the same as period of switching frequency(figure

3.26, 3.27). The DC/DC converter has also been simplified by an average model(voltage-current

source). Table 3.2 summarizes the parameters of components used in the simulation.

Figure 3.26: Block Diagram of Multi-level Converter
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Figure 3.27: Internal Block Diagram of Converter Modules

Table 3.2: Power Parameters for Simulated Fault-tolerant Controller of Cascaded H-bridge

Total module number (per terminal) 4
Module DC capacitor voltage 35 V
Terminal rated power 1 kVA
Switching Frequency 10 kHz
AC input voltage (phase peak) 100 V
AC/DC Capacitor value 6.8 (mF)
DC/DC Capacitor value N/A(Average model for DC/DC)
Input Filter Inductance 5 (mH)
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3.6.1 Converter Output Result Under Normal Operation

In the normal operating mode, the converter act as voltage regulator for DC grid(rectifier mode).

In this case, the input current must be sinusoidal and output voltage must reach its reference

value at the minimum possible time. The voltage on each phase and their modules must be equal

and balanced. Since each leg of converter has the same capacitance, the power flow in each

phase must be equal to the other phase. Figure 3.28, 3.29, 3.30 and 3.31 show the simulation

result of cascaded H-bridge multi-level converter with distributed controller.

Figure 3.28: Grid Voltage and Current at Normal Operation of Converter
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Figure 3.29: Grid Phase Power at Normal Operation of Converter

Figure 3.30: DC Voltage of each Phase at Normal Operation of Converter
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Figure 3.31: Module Capacitor Voltages for Phase A at Normal Operation of Converter
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3.6.2 Converter Output Result at Power Electronic Failure(Mode 1)

Whenever a fault happens in the power devices of the converter, it must be identified and

the corresponding module must be bypassed. There is a fault detection circuit inside power

converters and it continuously checks the health status of all switches. The fault signal will

be transmitted to slave module to bypass the whole module. In this case, the power coming to

converter leg that holds the failed module would be different and would be higher because the

equivalent capacitance of the converter leg is higher and maintaining the same voltage on that

leg requires more power.

For simulating the failure in power module, an IGBT inside the H-bridge has been shorted to the

trigger the fault detection circuit at t=1. The following result is acquired at failure moment:

Figure 3.32: Grid Voltage and Current when Failure Happens in Power Module at t=1s
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Figure 3.33: Grid Phase Power when Failure Happens in Power Module at t=1s
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Figure 3.34: DC Voltage of each Phase when Failure Happens in Power Module at t=1s

Figure 3.35: Module Capacitor Voltages for Phase A when Failure Happens in Power Module
at t=1s
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3.6.3 Converter Output Result at Controller Input Failure(Mode 2)

In this test, functionality of the PWM output comparator is investigated. If the input voltage of

one module changes because of the error in measurement unit or the sensor, the result of PWM

comparator between two adjacent modules would not be the same. In this case, an error flag

will be created that indicates the error in main controller and a fail-over will be made to switch

the input of power converter to the adjacent PWM generator. In this fault, the capacitor voltages

should not feel any disturbance and the result would be the same as the moment before failure.

Figure 3.36 and 3.37 demonstrate the result of this test.

Figure 3.36: PWM Output of Main Controller and Adjacent Controller when Input Sensor
Failure Happens in Module 1(Phase A) at t=1s
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Figure 3.37: Module Capacitor Voltages for Phase A when Input Sensor Failure Happens in
Module 1(Phase A) at t=1s
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3.6.4 Converter Output Result at Controller Synchronization Failure(Mode

3)

In this test, the failure is located on the data synchronization of the main controller(Module 1).

The cause of this failure can be related to the functionality of the microprocessor or any problem

with the data link between main controller and adjacent controllers. After failure detection, a

fail-over signal will connect the input of power converter to the adjacent controller. Figure 3.38

and 3.39 show the result of this test.

Figure 3.38: PWM Output of Main Controller and Adjacent Controller when Synchronization
Failure Happens in Module 1(Phase A) at t=1s
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Figure 3.39: Module Capacitor Voltages for Phase A when Input Synchronization Failure
Happens in Module 1(Phase A) at t=1s
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Chapter 4

Reliability Assessment of Proposed

Fault-tolerant Controller Architecture

4.1 Introduction

Reliability and availability analysis is one of the main stages in product development. The final

system must go through different tests for grading its performance over the life time. Failure

rate of an individual element may be identified using experimental or analytical methods. In

experimental method, large sample of a particular component will be tested for a period of

time and by using statistical formulas, it is possible to extend the failure rate of that particular

component. Since most of the electronic components have complicated functionality, it is not

possible to directly use analytical method (which uses physical formulas to guess fatigue)

and find the failure rate. The final failure rate depends on the architecture of the system. The

proposed controller has its own unique architecture and reliability of the system will be analyzed

based on its architecture and components. This chapter contains the result of the analysis done

to figuring out the failure rate of the final controller.
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4.2 Failure in Controller Systems

Failure in control systems may have internal, external or human factors. Internal causes are

happening due to the physics of the devices that has been used to build the controller. Over

time, material may loss its properties, change shape and become inapplicable for the intended

task it’s been designed for. Operating environment and interference can cause instantaneous

or permanent failure in the system. It is not possible to control the external factors, but it is

possible to design the system in order to endure harsh conditions. Humans play a great role in

embedding failure agents when designing the firmware of the control system. These errors may

be transparent for a long time and appear on a special occasion. In the following section, some

of the important failure causes would be reviewed and techniques in design would be suggested.

4.2.1 Lifetime of Silicon Devices

Although silicon devices are solid and have very stable physics, there are different parameters

that can limit the lifespan of these devices [106]. The failure in embedded processors can happen

in three stages of life (Figure ??):

• Early life: Failure rate is declining and it is due to early defects (most of them can be

eliminated with post-silicon verification)

• Useful life: The steady-state life in which the failure rate is the lowest. This is the main

failure rate that would be used for analysis

• Wear-out stage: In this stage, device failure rate would be high and microprocessor is no

longer reliable

Most of the advanced embedded processors are fabricated based on CMOS technology. The

main failure cause in CMOS IC is electromigration (EM) in the interconnections. EM is a term

94



Figure 4.1: Bathtub Curving Showing Different Stage of Reliability

applied to the transport of mass in metals when high current is conducted [14]. The failure rate

of a wire follows the black’s formula:

λwire =
1

MT F
= AJ2 exp(− φ

kT
) (4.1)

In equation 4.2, A is a constant based on the cross-sectional area of the interconnect, J

is the current density, φ is the activation energy (e.g. 0.7 eV for grain boundary diffusion in

aluminum), k is the Boltzmann’s constant, T is the temperature in Kelvin.

Mean time to failure (MTF) is greatly depended on the material type used for interconnects.

Aluminum used to be the main material for interconnects, due to its adherence to the silicon

base. It also has low MTF and is has not good property when used purely. Adding 2-4% copper

to aluminum can increase resistance to EM by 50 times.

As it can be seen in black’s equation, increasing temperature can lower the MTF and increasing

the failure rate. In figure 4.7, failure rate of a sample processor has been shown. In higher
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temperature, mean of failure rate would be increased. Therefore, it is necessary to have heat

transfer mechanism in controller design to dissipate the excess heat.

Figure 4.2: Impact of Temperature Increase on Embedded Processors (Texas Instrument)

There are more phenomenons that can change transistor parameters and limit the lifetime

of an embedded processor. The other failure mechanism in silicon devices can be listed as

following:

• Time Dependent Dielectric Breakdown: Refers to the physical process whereby a

dielectric stored under a constant electric field, less than the materials breakdown strength,

will break down with time. It can be accelerated by operating voltage and temperature[70].

• Hot Carrier Injection: When a hole or electron get enough kinetic energy to break the

potential barrier. This effect is the basis for NOR flash memory, but can be destructive in

other cases. It can change the properties of the transistors and decrease the reliability of
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the embedded processor.

• Negative Bias Temperature Instability: This phenomenon change the absolute thresh-

old voltage and degrade mobility, drain current and transconductance of the PMOS

transistors[84].

4.2.2 High-energy Particles (Ionizing Radiation) Effect on Microproces-

sors

Exposure of cosmic rays or high energy particles (neutron and alpha) to electronic devices can

cause local ionization (Figure 4.8). This would cause a beam of electric current or move of the

charge in the material that leads to different consequences.

Figure 4.3: Local Ionization by Charged Particles (Space Radiation Associates)

It is impossible to avoid ionization effects. Cosmic rays are everywhere in the space (with

greater potential) and on the ground with less concentration. They have enough energy to cause

charge movement when passing through the integrated circuit. Decaying nuclear materials (e.g.

uranium and thorium) can produce alpha particles and these material may exist in integrated

circuit packaging materials[69]. The alpha particle collision with semiconductor body can
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induce soft errors in the embedded processor. Figure 4.9 demonstrate effect of such particles on

a MOSFET transistor.

Figure 4.4: Effect of High-energy Particle Collision with MOSFET Transistor

Transistors are building blocks for semiconductor devices like charged-coupled device

(CCD), static RAM (SRAM), dynamic RAM (DRAM) and embedded processors. These devices

integrate large amount of transistor on a single die, therefore increasing the chance of particle

collision on the surface of the die. Single event phenomena can be categorized into three

sections:

• Single event upset: It is defined as any radiation-induced error that has reversible effect.

Single event upset (SEU) are soft errors, non-destructive and can be brought back to

normal condition by reset or rewriting to the affected memory cell[74][86]. Since random

access memory (RAM) devices are more vulnerable to this effect, in design of fault-

tolerant controllers they should be avoided as much as possible. A good example for the

SEU effect would be field programmable gate arrays (FPGA) that use memory cells to

store the configuration of the logical functions (Figure 4.5).
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Figure 4.5: SEU Effect on SRAM-based Field Programmable Gate Array (FPGA)

SEU can change the memory bit that defines logical function of the FPGA cell or routing

matrix of interconnections. Although this error can be detected by error detection bits

(e.g. CRC) and be fixed by re-configuring the device from backup image in the non-

volatile memory, it has temporary effect on the hardware behavior of device. To avoid

temporary failure in configurable digital circuits, complex programmable logic device

(CPLD) or flash-based FPGA that use flash memory cells to store the configuration must

be implemented in the control systems.

• Single event latch-up: It is a condition that causes loss of device functionality due to the

induced current. Latch-up can happen in CMOS ICs if negative or positive spike on input

or output pin exceed the rail voltage more than diode drop. In single event latch-up (SEL),

latch-up will be triggered by ionizing radiation and the current induced by it. SEL is a

hard error that can destroy the device, drag down the bus voltage or damage the power

supply.

• Single event burnout: It can cause destruction due to the high current in a power transistor.

Single event burnout (SEB) is a hard error that include burnout of power MOSFET, gate

destruction and pixel failure in CCDs. In the turn-off power MOSFETs, SEB can turn on

the device (which is blocking high voltage) and conduct high current in the device which
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cause permanent failure.

4.3 Reliability Prediction for Controller Components

In order to predict the reliability for the controller system, individual components must be

analyzed. After predicting the individual reliability, it is possible to predict the final reliability

based on the series or parallel arrangement of the components. In industry, there are three

methods for predicting the reliability of a component:empirical method, physics of failure

and life time test

Empirical method use the data of failure result from previous tests that have been done in the

field. In this method, statistical curve fitting is used to predict the failure of the component and

by using engineering method, it is possible to match the result for similar components too. There

are different standards that defines the failure rate which is mentioned in Table 4.1.

Table 4.1: Prediction Methods for Electronic Components Failure

Prediction Method Applied Industry Last Update
MIL-HDBK-217F Military 1995
Bellcore/Telcordia Telecom 2006

RDF2000 Telecom 2000
SAE method Automotive 1987

NTT procedure Telecom 1985
SN29500 Siemens Products 1999

China 299B Chinese Military 1998
PRISM Military/Commercial 2000

Among all these empirical methods, MIL-HDBK-217F [1],[22] is the most internally known

standard and it is being used worldwide to predict the component failures. In the handbook,
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part count and part stress are two of the methods for predicting the component failure. In part

count method, it assumes that components are working in normal conditions. Therefore, the

total failure rate is summation of all the failure rates of components used in the controller:

λb,i =
n

∑
i=1

(λre f )i (4.2)

In part stress method, different working parameter is being included that would give better

prediction for the failure. In equation 4.3, πS is the stress factor, πT is temperature factor, πE is

environment factor, πQ is quality factor and πA is adjustment factor. In the handbook, there is a

range for each factor and based on the working condition they can be set.

λ =
n

∑
i=1

(λre f ,i×πS×πT ×πE ×πQ×πA) (4.3)

The benefit of empirical method is that a wide library of components is available and there are

different software available to perform calculations regarding the prediction. On the other hand,

these standards are not updating very often and new components or new technologies are not

considered in failure rate calculation. Therefore it is good to use other prediction methods to

increase the precision.

Another method of failure prediction is using physics of failure to predict the rates. Arrhenius

equation is one of the famous formulas to calculate acceleration for failure in electronic

components. In equation 4.4, L(T) is the lifetime characteristic to temperature, A is the scaling

factor, Ea is the activation energy, k is Boltzmann constant and T is the temperature.

L(T ) = Aexp(
Ea

kT
) (4.4)

Arrhenius equation has different forms and it can be used to predict the acceleration factor (AF)
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for failure if we have gathered previous data when temperature is changing(equation 4.5).

AF = exp
(

Ea

k

(
1

Tuse
− 1

Tstress

))
(4.5)

For new electronic devices or complicated ICs that failure prediction can’t be done by empirical

methods, life time of device will assessed by testing a large sample of a particular component

over time under normal working condition. In this case, statistical methods (Weibull distribution)

can be used to fit the curve of failure rate in device. The result can be extended to different

temperatures and stresses using Arrhenius equation. Equation 4.6 is one of the statistical

prediction methods which can be used to calculate failure rate (λ ).

λ =
β

∑
i=1

 xi(
k
∑
j=1

T DH j×AFi j

)
×M×109

β

∑
i=1

xi

(4.6)

λ = failure rate in FITs (Number fails in 109 device hours)

β = Number of distinct possible failure mechanisms

k = Number of life tests being combined

xi= Number of failures for a given failure mechanism i = 1, 2,...β

T DH j= Total device hours of test time for life test j, j = 1, 2,... k

AFi j= Acceleration factor for appropriate failure mechanism i , j = 1,2,3,...k

where X2= chi square factor for 2r+2 degrees of freedom

r = total number of failures (∑xi )

α = risk associated with CL between 0 and 1
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4.3.1 Failure Rate Calculation for Controller Card

There are different software available that can calculate the failure rates of electronic components

using mentioned techniques. Isograph™ Reliability Workbench (RWB) is capable to predict

failure rate based on MIL-HDBK-217F handbook. It is possible to define working environment

and get the result over wide temperature range. The first stage in prediction is to list the critical

component in the control board in which failure of one them can stop the functionality of the

whole system. The micro-processor and the power management circuit contain the main critical

components (Table 4.2).

Table 4.2: Mean Failure Rate of Critical Components in TI-F28377 Control Card

Component
Failure Rate

(FIT)
Description

Failure Prediction
Method

10uF Ceramic Capacitor 304.79 PSU Capacitor Empirical
2.2uF Ceramic Capacitor 186.27 PSU Capacitor Empirical

12 XTAL Oscilator 77.67 Oscilator Empirical
TMS320F28377 2.4 Micro Controller Life test
TPS62420DRC 0.65 Power Management IC Life test

REF3030 3.16 Voltage Reference Life test
LMP7709 12.44 Operational Amplifier Life test

22uF Ceramic Capacitor 495.76 PSU Filter Empirical
3.3 uH Inductor 0.44 PSU Filter Empirical

The next stage is to enter all components in the software, therefore it can use physics of

failure to extend the operating temperature range and add up all failure rates together. For

common components like capacitors, inductors, oscilators,... it is possible to use one of the

empirical method (e.g. MIL-HDBK-217F) to predict the failure rate and for custom components

like microprocessors, power management IC (PMIC),... the failure test data from the vendor is
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usable (usually good products come with failure test results). Figure ?? demonstrate the result

of prediction for TI-F28377 control card.

(a) FR - 10uF Capacitor (b) FR - TMS320F28377

(c) FR - TPS62420DRC (d) FR - 22uF Capacitor

(e) FR - 3.3uH Inductor (f) FR - Control Card

Figure 4.6: Failure Rate (FR) Prediction for TI-F28377 Control Card over Temperature Range
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It is possible to find some important design techniques from figure ??. Capacitors are responsible

for a great amount of failure rate in the controller card while ICs have very small impact. That

is because of the nature of capacitor and usage of material to store electric energy. Even in

ceramic capacitors, the chance of cracking make them vulnerable in long time applications.

Therefore it is a good idea to use fewer capacitors in the design or use high grade capacitors

in power supply unit. Meanwhile silicon chips have evolved greatly with failure and thanks to

the research and advancement in fabrication, they have small portion of static failure (Although

they are responsible for transient faults). Figure 4.7 demonstrates portion of each component in

failure rate of the controller card.

Figure 4.7: Portion of Failure Rate for each Component in Controller Card
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The other parameter in predicting failure rate is stress. Stress can be in the form of voltage,

temperature, environment,... Each of these stresses has its own variable and final stress is the

multiplication of all of them. Figure 4.8 is the result of simulation for failure rate with different

stresses.

Figure 4.8: Failure Rate of Controller Card versus Stress

In reliability analysis, the average time a system functions before it fails is called mean time to

failure (MTTF). This parameter will help the user to know when the system life is over and is

the time to renew the whole plant. Figure 4.9 & 4.10 demonstrate the MTTF versus temperature

and stress variation.
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Figure 4.9: Mean Time to Failure of Controller Card versus Temperature

Figure 4.10: Mean Time to Failure of Controller Card versus Stress
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4.4 Monte Carlo Simulation for Reliability Estimation of the

Proposed Controller

One of the numerical methods for estimation of a mathematical model is Monte Carlo simulation[9,

46, 96]. This method is used for solving mathematical and physical problems using statistical

tools. Each simulation consists of four steps:

• 1- Defining domain for input

• 2- Generate results from random variables in the defined domain

• 3- Sorting the results in to different categories

• 4- Counting the occurrence number of specific states among total events

The convergence rate of the Monte Carlo method is slow and it requires huge amount of samples

for estimation of the desired value with low error. Thanks to the advancement in computer

simulation, it is possible to perform the simulation much easier. Therefore, it is possible to use

it as tool for reliability estimation.

The reliability of a component is governed by the following formula:

dR(t)
dt

=−λR(t) (4.7)

with initial condition (Rt=0 = 1), reliability becomes:

R(t) = exp(−λ t) (4.8)
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Therefore, the reliability at any given time is equal to:

R(t +∆t) = R(t)exp(−λ∆t) (4.9)

Using the mentioned reliability formula and the performance matrix of the proposed controller,

estimation process for reliability can be summarize as following steps:

• 1- Choosing exponential probability distribution function (pdf) for the reliability of

components where R(t) ∈ℜ

• 2- Generating uniform random variable (u ∈U(0,λ )) and compare them to R(t) where

t ∈ (0, li f etime)

• 3- Count the number of failure cases base on the performance matrix model

u > R(ti)→ component i is failed

u < R(ti)→ component i is functioning

• 4- Calculate the availability of the controller by calculating the Total trials−Failure cases
Total trials

The above procedure has been simplified in the algorithm 4. In order to perform simulation,

1000000 sample for each point has been gathered and simulation has been applied to (figure

4.11). In order to find the failure case, binary decision based on performance matrix ( 3.5) can

be used[61].
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Result: Reliability estimation of the proposed controller

NumberOfTrials = 1000000;

TimeStep = 100;

lambda = 1,count = 1,LifeTime = 1;

LifeTimeStep = LifeTime/TimeStep;

for (i=0;i<LifeTime;i+=Step) do

Time = i;

FailedControllers = 0;

for (j=1;j<NumberOfTrials;j++) do

ReliabilityThreshold = lambda * exp(-i);

fail-count = 0;

for (k=1;k<=4;k++) do

if (random(’unif’,0,lambda) > ReliabilityThreshold) then

ControllerAvailability[k] = 1;

else

ControllerAvailability[k] = 0;

end

if (CheckForFailure(ControllerAvailability[])) then

FailedControllers ++;

Availability(count) = (NumberOfTrials - FailedControllers)/NumberOfTrials;

Availability-t(count) = i;

count ++;

end

end
Algorithm 4: Pseudo-code of Monte Carlo Simulation for Reliability Estimation
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Figure 4.11: Monte Carlo Simulation Result of the Proposed Controller with 4 Module per
Leg and Failure Acceptance of 1 (n=1) with 100 steps and 1000000 iteration per step
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4.5 Markov Process and Reliability Assessment

Fault-tolerant controllers appear in different architectures (e.g. static,dynamic,...) and each

architecture has its own advantage and failure rate. Single controller has failure rate (λ ) which

was calculated in previous section. In fault-tolerant controllers, multiple controllers have been

arranged to function in a specific way. Therefore at a specific time, each controller is at defined

state (functional or failed). Transition between states and the rates can be defined with the

Markov model of the controller[78]. State and time in Markov modeling can be continuous or

discrete ( 4.3). In reliability analysis of controller boards, state which defines the controllers

status are defined discrete and the time is chosen to be continuous.

Table 4.3: Markov Model Types

Type Acronym State Space Time Space
1 DSMC Discrete Discrete
2 DSMP Discrete Continuous
3 CSMC Continuous Discrete
4 CSMP Continuous Continuous

The important tool in reliability analysis is Poisson process. This process can be used to model

systems in which number of occurrence per time interval is being evaluated. Let’s assume a

non-negative interval constant which has dimension of (time−1). This is the rate of occurrence

or transition rate. If Kt,t+h denotes the number of events occurring in time interval (t,t+h), where

h is a very small time interval, then we can assume:

P(Kt,t+h = 0) = 1−λh+o(h) (4.10)
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P(Kt,t+h = 1) = λh+o(h) (4.11)

and it follows that:

P(Kt,t+h > 1) = o(h) (4.12)

o(h) denotes function with powers of h greater than first. Under these conditions, o(h) will

approach zero as h→ 0. Assume a Poisson process with rate λ , the mathematical model can be

represented with a set of differential equations. By assuming that system can exist in one of N

state from 1,2,...N then the probability that system is in state j is given by Pj(t). On a system

level, the state probabilities are given by the state probability vector P(t) as following:

P(t)≡ [P1(t) P2(t) ... PN(t)] (4.13)

The state space defining the system behavior is given by:

d
dt

P(t) = P(t)×A (4.14)

Where A is a N×N state transition rate matrix for the system.

The element of the A matrix is defined by:

1- Off-diagonal elements(i 6= j)

ai j = lim
dt→0

{
Prob[StateChange(i→ j)during(t, t +dt)]

dt

}
(4.15)

2- Diagonal elements:

aii =−∑
j 6=i

ai j (4.16)
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To solve the differential equation, we also need initial conditions, that is the probability vector

at t = 0, given by P(0). Then the state probabilities cab be evaluated from:

P(t) = P(0)× exp(−At) (4.17)

The set of differential equations representing system can also be shown by state-space equations.

By doing that, it is possible to use computer programs to solve the equations and find numerical

value for answer. Figure 4.12 shows the block diagram for state-space representation of a system

and equations 4.18 and 4.19 show the mathematical representation.

Figure 4.12: Block Diagram Representation of State-space Equations

x′ = Ax + Bu (4.18)

v = Cx + Du (4.19)

In this diagram, A-matrix contains the transition rates of the states. B-matrix represents
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the input signals and since the inputs are represented through initial states, this matrix is zero.

C-matrix represents the output of the system and it contains elements for availability and

unavailability of the system. D-matrix is related to transmission coefficients. This matrix can be

used if a failed component has been replaced, otherwise this can also be zero.

4.5.1 Markov Model of Common Fault-tolerant Controllers

Instead of mathematical representation of the differential equations, it is possible to represent

them using graphical method. In graphical representation, each state of the controller can be

represented by a circle and if there is any possible transition between states, it can be shown be

a arrow line. Figure 4.13 show a single controller (simplest controller architecture) which has 2

Figure 4.13: Markov Model of a Single Controller

state of operating. At P1, the system is functional and it is desired to stay at this state. However,

a fault in the controller change the state of the system to P2. In this case, the system has failed

and it is no longer functioning. Since the probability of transition between states are assumed

exponential (based on Poisson process result), only the rate of transitions will be shown. In a

controller system, there might be several available (green) and unavailable (red) states in the
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system. In calculating each type of states, the probability of presence in each type of state will

be calculated based on the transition and failure rate matrices. Based on the model discussed in

the previous section we have:

P1(t +h) = P1(t)[1−λh+o(h)] (4.20)

P1(t +h)−P1(t)
h

=−λhP1(t)
h

+
o(h)

h
(4.21)

Taking the limit as h→ 0, we obtain:

lim
h→0

P1(t +h)−P1(t)
h

=
d
dt

P1(t) = P′1(t) (4.22)

by noting that lim
h→0

o(h)
h = 0, then:

P1
′(t) =−λP1(t) (4.23)

The same method can be used for P2 to get the following result:

P2
′(t) = λP1(t) (4.24)

Therefore, we have the following equation set with initial conditions:


P′1(t) =−λP1(t) P1(0) = 1

P′2(t) = λP1(t) P2(0) = 0
(4.25)
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The solution to these equations is as below:

P1(t) = e−λ t

P2(t) = 1− e−λ t
(4.26)

It is desired that system stays in P1 and avoid P2. The probability that system is in P1 is called

reliability (availability) and the probability of system in state P2 is called unavailability.

R(t) = P1(t) = e−λ t (4.27)

In this case, λ is the summation of all failure rates for components in the controller card.Therefore

we have:

λ = λ1 +λ2 +λ3 + · · ·+λn (4.28)

In some systems, the failure would not follow exponential model. It is possible to have non-

exponential transition probability (semi-Markov modeling), but it makes calculation more

complicated[18]. In repairable systems (systems with recovery blocks and transient failure),

back transition from failed state is also possible (repair rate known as ε). In the current failure

rate calculation, static failure is being modeled therefore repair rate is not included in the

calculation. In fault tolerant controllers (figure ??), Markov model can be used to calculate the

reliability of the system. In static fault-tolerant controller (TMR) the approximate formula for
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(a) Markov Model for Static Redundancy (b) Markov Model for Dynamic Redundancy

Figure 4.14: Markov Model for Fault-tolerant Controllers

probability of failure is given by:

P(t)≈ 3(λ t)2 (λ t� 1) (4.29)

and the exact formula for reliability is:

R(t) = P1(t) = e−3λ t +3e−2λ t(1− e−λ t) (4.30)

For dynamic controller with 2 controller (two-component parallel system), the approximate

formula for probability of failure is given by:

P(t)≈ (λ t)2 (λ t� 1) (4.31)

The exact formula for reliability of a two-component parallel system is given by:

R(t) = P1(t) = 1− (1− e−λ t)2 (4.32)
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In the proposed controller, for each converter module, three parallel controller are available

(figure 4.15). This controller architecture has better reliability in comparison with triple module

redundancy (TMR) and for the same amount of hardware, more reliability can be achieved. For

Figure 4.15: Markov Model of Three-component Parallel Controller

three-component parallel redundancy, the approximate probability of failure is given by:

P(t)≈ (λ t)3 (4.33)

Therefore, the exact formula for the reliability of a three-component parallel system is:

R(t) = 1− (1− e−λ t)3 (4.34)

In order to choose the best controller method, reliability of different controller architecture has

been calculated (figure 4.16). For the same amount of time-failure rate (λ t), three-component

parallel fault-tolerant controller shows better reliability than other architectures. Therefore this

architecture could be the best option for the proposed controller in MMC.

The analytical method discussed here can be used for simple systems. In complicated controllers
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Figure 4.16: Reliability Assessment of Different Controller Architectures

(e.g. proposed controller), numerical method is used to solve the differential equations and

find the solution for reliability [18][78]. In the following section, reliability of the proposed

controller will be investigated by using computer analysis.
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4.6 Computer Aided Reliability Assessment of the Markov

Chain Model

The process of reliability assessment starts with defining the cases in which system would fail.

Therefore, it is possible to complete Markov chain, assign failure rates, extract system matrix

representation and solve the equations. A computer program will compute all the statistical

values necessary for evaluation of fault-tolerant system based on the mathematical model.

Markov model of basic controller for modular multi-level controller (MMC) with no bypass

Figure 4.17: Markov Model of MMC with No Bypass Capability

capability is depicted in figure 4.17. In this mode failure of one module leads to failure of whole

converter, therefore we have:

λMMC = Number o f Modules×λSingle module +λController (4.35)

To benefit from modularity of MMC, it is necessary to bypass modules in case of a failure. If

open circuit happens in one module, current can’t pass through that converter leg and MMC

would not function correctly. Short circuit can cause wrong functionality in the system and it
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is not desired too. After detection of failure that module must be bypassed and a fault signal

should be sent to master controller to compensate the voltage of other modules. Markov model

of a MMC with bypass capability (in which it becomes unavailable with n module failure) is

depicted in figure 4.18.

Centralized controller for MMC is extremely vulnerable to fault. Since there is only one

Figure 4.18: Markov Model of MMC with Bypass Capability

controller in the system, failure in the controller stops the functionality of the entire system. By

using distributed controllers in converter and fault-tolerant control architectures, it is possible

to increase availability of the converter. In the proposed controller architecture, the adjacent

controllers act as standby controller for each other. Failure in one of the controllers, triggers the

neighbor controller to handle the task of the failed controller. A module is called failed, only if

there is no adjacent controller to handle its tasks. In this case, the module and its controller will

be bypassed completely since there is no way to control it. Based on the voltage rating of the

power semiconductor in each module, each leg can handle up to a maximum of failed modules

(n modules).

Figure 4.19 shows the controller for a MMC with 4 modules per leg (the same converter for
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simulation and experimental result). Each state must be reviewed one by one to check if system

is available or not. In this case, there are three unavailable states (0111,1110 and 1111). Failure

rate from each state to the other one is equal to the failure of one controller (λUnit). As it can

Figure 4.19: Markov Model of MMC Controller (One Leg) with 4 Module per Leg and Failure
Acceptance of 1 (n=1)

be seen, modeling of such controller can be complicated because each failure case is one state

and the total number of states is 2n. Equations 4.36 to 4.41 represent state-space equations for

Markov model of proposed controller (one leg). In order to evaluate larger systems (e.g. 100

modules per leg), a computer program must be written to define all the possible states, extract

the state-space equations and solve the equations to find statistical data of the model.
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A =



−4λ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ −3λ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ λ −3λ 0 0 0 0 0 0 0 0 0 0 0 0 0

λ λ 0 −3λ 0 0 0 0 0 0 0 0 0 0 0 0

λ λ 0 0 −3λ 0 0 0 0 0 0 0 0 0 0 0

0 0 λ 0 0 −2λ 0 0 0 0 0 0 0 0 0 0

0 0 0 λ 0 0 −2λ 0 0 0 0 0 0 0 0 0

0 0 0 0 λ 0 0 −2λ 0 0 0 0 0 0 0 0

0 0 λ λ 0 0 0 0 −2λ 0 0 0 0 0 0 0

0 0 λ 0 λ 0 0 0 0 −2λ 0 0 0 0 0 0

0 0 0 λ λ 0 0 0 0 0 −2λ 0 0 0 0 0

0 0 0 0 0 λ λ 0 λ 0 0 −λ 0 0 0 0

0 0 0 0 0 λ 0 λ 0 λ 0 0 −λ 0 0 0

0 0 0 0 0 0 λ λ 0 0 0 0 0 −λ 0 0

0 0 0 0 0 0 0 0 λ λ λ 0 0 0 −λ 0

0 0 0 0 0 0 0 0 0 0 λ λ λ λ λ 0



(4.36)

B = [ /0] (4.37)

C =

 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

 (4.38)

D = [ /0] (4.39)

xt=0 =

[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
(4.40)


x′ = Ax+Bu

v =Cx+Du
(4.41)

124



One of the software for evaluating the proposed Markov model is Isograph™ Reliability

Workbench (RWB). This software is capable to calculate reliability parameters for Markov

model of a system based on state-space method. Figure 4.20 shows the Markov model for

one leg of the converter. Failure rate for this model has been calculated in the previous section

(λ = 9.04×10−7 per hour@25◦C) and unavailability mode is set to 0111, 1110 and 1111 cases.

The result of availability for precise modeling has been shown in figure 4.21. Part a shows

Figure 4.20: Precise Markov Model of MMC Controller in RWB

the availability for λ = 1 which is the normalized form and part b shows the result for λ =

9.04×10−7 which is the failure calculated from previous section.

Unavailability of a system equals 1−R(t) and is another reliability property of a system. Figure

?? demonstrate the unavailability of the proposed controller.

To summarize of the reliability analysis of the proposed controller, the result of reliability
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Figure 4.21: Availability for Precise Model of MMC Controller (One Leg) with 4 Module per
Leg and Failure Acceptance of 1 (n=1)

(a) with λ = 1

(b) λ = 9.04×10−7

assessment has been included in table 4.4.
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(a) with λ = 1

(b) λ = 9.04×10−7

Figure 4.22: Unavailability for Precise Model of MMC Controller (One Leg) with 4 Module
per Leg and Failure Acceptance of 1 (n=1)
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Table 4.4: Summary of Reliability Analysis for Proposed Controller and Other Controllers

Single
Controller

Distributed
Controller

(with Bypass)

Proposed
Controller

Proposed
Controller

λ = 1 λ = 1 λ = 1 λ = 9.04×10−7

Lifetime 1 1 1 1000000
Unavailability 0.9817 0.8558 0.3454 0.2960
Availability 0.0183 0.1442 0.6545 0.7039
Unreliability 0.9817 0.8558 0.3454 0.2960
Reliability 0.0183 0.1442 0.6545 0.7039

Failure Frequency 0.0732 0.3777 0.5102 0.0000
Repair Frequency 0 0 0 0

Conditional Failure Intensity 4 2.619 0.7796 0.0000
Conditional Repair Intensity 0 0 0 0

No of Expected Failures 0.9825 0.8551 0.3454 0.2960
No of Expected Repair 0 0 0 0

Total Downtime 0.7544 0.4693 0.1238 102915.093
Total Uptime 0.2456 0.5307 0.8761 898084.907

Mean Values
Mean Unavailability 0.7544 0.4693 0.1238 0.1029
Mean Availability 0.2456 0.5307 0.8761 0.8970

Table 4.4 shows that the performance of the proposed controller is superior compared to

single controller and distributed controller only with bypass capability. The mean availability is

0.24 for single controller, 0.53 for distributed controller and 0.87 for proposed controller. In this

reliability assessment, the repair rate is not considered for the controllers otherwise the proposed

controller could have higher availability rate.
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Chapter 5

Fault-tolerant Firmware Design for

Proposed Controller

5.1 Introduction

In this chapter, methods of designing fault-tolerant firmware will be investigated. The proposed

methods are helpful to insure that software has the minimum amount of fault and in the case

of failure due to the firmware design, it would be handled efficiently. First, methods for fault

avoidance and fault-tolerant firmware will be investigated. Later in this chapter, special topics in

design of the second-generation fault-tolerant controller like Agreement on the master controller

and grouping of the slave controllers will be presented.

5.2 Software Fault Categorization

Software is not a physical entity and unlike hardware, it can’t get affected by environmental

or aging effects. Therefore, some studies suggest that software faults are permanent (unlike
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transient hardware faults)[41] and the code is already broken. Gray[35] has classified software

bugs into Bohrbugs and Heisenbugs(Figure 5.1). Bohrbugs are permanent design fault and

can be revealed in the first design stages. They can be detected and removed in the development

stages of the software through debugging tools. Although some bohrbugs may exist in the

final version of software, they can easily be debugged. Heisenbugs on the other hand have

complicated structure. They can only be detected on certain collision of events and rarely

reproducible. Therefore, heisenbugs are transient failures and may not happen again if software

is restarted. Studies have shown that 70% of the bugs in Tandem computer are cause by transient

faults mainly by race conditions and timing errors[57]. The third category of fault is aging

Figure 5.1: Classification of Software Fault Based on Gray Model

related bugs. These faults can accumulate during run-time of the software and may lead to

performance degradation or transient errors[101]. Most cause of the errors are memory related

including data corruption, unreleased file locks,... Rejuvenation process is necessary for fault

management and is based on restarting the application occasionally.
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5.3 Fault Avoidance Techniques in Firmware Design

It is always good idea to avoid any fault in the firmware before deploying fault-tolerant methods

to handle these faults. In development of the firmware, different techniques, tools and methods

may be used which decrease the chance of failure in the firmware and speed up software

validation in the testings. In the following, these methods will be investigated [81].

5.3.1 MISRA-C Coding Style and Application in Fault-tolerant Firmware

Design

Automotive industry is one of the areas in which robustness of firmware design is extremely

important. Each car has several modules like engine control unit (ECU), anti-lock braking

system (ABS), ... that protect the life of the passengers. These modules must operate in the best

possible way and that requires good firmware design too. C language is the leading tool for

developing firmware and it has several benefits that makes it preferable to other programming

languages. The common ISO C gives a lot of freedom to developers such as memory access

using pointers and coding styles that is not desired for robust firmware design. This freedom

may also lead to failure in some cases and it is better to avoid using features that can cause it.

UK’s Motor Industry Software Reliability Association (MISRA) has came up with a set of 127

rules for C language programming that helps code developers avoid unwanted results [72]. The

standard is called MISRA-C and out of proposed rules, 93 are required and 34 are advisory.

These rules may be used in development of fault-tolerant firmware design to avoid Bohrbugs

and Heisenbugs in early stages. Some compilers have the capability to check for the MISRA-C

rules and message if any offense is detected. The following are some of the example rules:

• Rule 17.5 (advisory): The function argument corresponding to a parameter declared to
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have an array type shall have an appropriate number of elements.

Passing an array with different number of elements to another array parameter is possible

in C language. This may result in unexpected result.

• Rule 7.3 (required): The lowercase character "l" shall not be used in a literal suffix.

Using the upper case "L" removes the ambiguity between "1" (logic one) and "l" (letter

el) when declaring literals.

• Rule 9.3 (required): Arrays shall not be partially initialized.

Providing explicit initialization for each element makes it clear that every element has

been considered.

• Rule 14.8 (required): The statement forming the body of an "if", "else if", "else", "while",

"do ... while", or "for" statement shall always be enclosed in braces.

This rule prevents unintended code design, because all the code for one condition sits in

the braces of that condition. It is not possible to have one sentence code following the

condition.

• Rule 12.3 (required): The comma operator should not be used.

The comma operator may be harmful to the readability of the code.

• Rule 17.4 (mandatory): All exit paths from a function with non-void return type shall

have an explicit return statement with an expression.

If a non-void function does not return a value but the calling uses the returned value, the

behaviour is undefined. Therefore all control path must be checked to return a value.
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5.3.2 Software Partitioning

In hardware design, parts of circuit that do different tasks are isolated from each other by using

different power sources. The reason may be power, frequency or signal ratings, but what they all

have in common is that they can’t share the same resources and this can affect their performance.

In high-reliability software that contains multiple tasks, the same technique may be used to

separate software tasks from each other and separate resources (memory and time) that is being

used by each module [104, 27, 49, 28]. Software partitioning will help the extendibility of the

software design in the future without affecting current software architecture.

In correspondence with federal aviation regulations/joint aviation requirements 25, software

safety level may be categorized as in table 5.1.

Table 5.1: Software Safety Level and Its Impact Factor

Software Safety Level Failure Impact Failure Rate
Level A Catastrophic 10−9/h
Level B Hazardous 10−7/h
Level C Major 10−5/h
Level D Minor 10−3/h
Level E No effect n/a

In each level, consequence of software failure has been specified and based on that, develop-

ers may separate software partitions. In this architecture, data and control registers of each level

may only accessed by the same or higher software level. This will prevent unintentional data

access which leads to memory corruption in the critical software sections.

Figure 5.2 [49] demonstrates the architecture of memory (spatial) partitioning mechanism
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Figure 5.2: Architecture of Software Partitioning Based on Safety Levels

based on the safety level of avionics systems. In this mechanism, each software level use

separate memory pages, stack, private data and inter-level shared data. Kernel is responsible

for controlling the interactions between these levels and schedule tasks based on the safety

levels. Memory management unit (MMU) is responsible to separate memory usage of tasks and

allocate each task with separate memory space. Whenever each task is being executed, MMU

will switch to the memory page of the running task and context switch will happen as fast as

possible with isolating content of each task from other tasks. Inter-layer data between tasks

can be passed through shared memory and mutual exclusion (mutex) mechanism. Based on the

software level, having a backup of the available data might be necessary. In this case, a copy of

the variables would be stored and restored in case of the fault detection. Multiple copies of data

for catastrophic tasks are necessary. After completion of each operation, all available copies

would be compared and the majority value would be chosen as the correct value.

In single thread firmware design, there is no kernel or MMU available to handle memory parti-

tioning. In this case, memory access can be checked to make sure it is in the allowed memory

range. In pointer memory access, the range may be defined for each task and each task may only
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access an specified range of memory.

The other resource that must be partitioned is time (temporal partitioning) [27]. Based on the

scheduling method, each task will be given a time slot to complete its procedures. The scheduler

must make sure each task is not taking processing time of other tasks and it is limited to its

predefined time slot. In case of failure in satisfying this criteria, that task must be isolated and its

effect should not propagate to other software modules. Figure 5.3 demonstrate an example of

such scheduling where each task has specific time slot and it would be preempted by scheduler

if timing criteria is not met.

Figure 5.3: Temporal Partitioning in Reliable Systems
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5.3.3 Scheduling, Timing and Interactions

In hard real-time systems, each task must meet the required deadline, otherwise it may be

accounted as a failed task [16, 82]. In order to reach required deadline for each task, a task

scheduler must be used to manage task handling based on task execution time (Ci), priority,

period (Ti) and waiting time (Ri). Based on the application, task scheduling might be static or

dynamic. In static scheduling (round-robin loop), task follow a static sequence and each task is

run in order. In this case, worst case response time for high priority task is sum of all task times.

In dynamic scheduling, tasks are run based on priority, execution time and the specified rate for

each individual task. Tasks don’t follow an order and may preempt each other if the priority of

the new task is higher.

Dynamic scheduling is more complicated than static scheduling and usually a real-time operating

system (RTOS) is used for handling it. In the proposed controller, no RTOS has been used for

scheduling task and operations, therefore static scheduling has been used to schedule tasks. In

this scheduler, each task runs once in each loop cycle and only interrupt routines may interrupt

the running task (task run until compilation). In static scheduler, it is important to measure

execution time for each task and the period that each task run during the round robin loop. The

necessary condition for static scheduling is as following:

i

∑
1

Ci

Ti
< 1 (5.1)

In equation 5.1, Ti refers to the period of each task and Ci is the execution time for each task.

Usually, interrupts may happen more than once in each loop and worst cast must be considered

when designing the scheduler.
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Table 5.2: Execution Time for Main Tasks in Master Controller

Task Execution Time (Ci) (µS) Period (Ti) (µS)
Master_Control_Loop() 37 200 (called @ 150)

Update_Slave_Controller() 42 200 (called @ 10)
RX_Data_Parsing() 10 200 (called @ 100)

RX_Interrupt_Handling 0.5 3
Round_Robin_Loop (total) 122.3 200

Table 5.3: Execution Time for Main Tasks in Slave Controller

Task Execution Time (Ci) (µS) Period (Ti) (µS)
Slave_Control_Loop() 6 200 (called @ 150)

Update_Master_Controller() 2 200 (called @ 10)
Master_RX_Data_Parsing() 9 200 (called @ 100)
Update_Upper_Controller() 5 200 (called @ 195)
Update_Lower_Controller() 5 200 (called @ 195)

Parsing_Data_From_Upper_Controller() 3.5 200 (called @ 0)
Parsing_Data_From_Lower_Controller() 3.5 200 (called @ 0)

RX_Interrupt_Handling 0.5 3
Round_Robin_Loop (total) 67.3 200

In table 5.2 and 5.3, timing characteristics of tasks in master and slave controllers have been

represented. Total utilization of processor in master controller is higher than slave controllers

(due to complicated control loop in master controller). Processor utilization in slave controllers

will increase as the number of power modules which are being controlled by each slave controller

increase (represented result is for one power module per controller). Since the total execution

time for each round robin loop in controllers is lower than the control period, controller structure

is realizable and it is working in the safe region.
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Interactions between master and slave controllers have been visualized in figure 5.4. Master

controller is responsible for synchronizing all slave controllers in the system, therefore slave

controllers will follow scheduling mechanism of the master controller through synchronization

process. Whenever control timer interrupt is called, master controller compute the supervisory

control and sends out the global data to all slave controllers. In each transmission, a slave

controller would be requested to sends back the local data and status of the controller. In the

remaining time in the control step time (which is 200 µS in the implemented controller), slave

controllers check the status of the adjacent controllers to makes sure everything is as desired.

Figure 5.4: Sequence Diagram of Controller Interactions in First Generation Fault-tolerant
Controller
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Figure 5.5 demonstrates the sequence diagram of tasks in each controller. Each task

is scheduled by the scheduler function to happen in the right time. Since all controllers are

synchronized and they share data bus with each other, each task must happen in the right moment

or it cause failure in the system. As discussed before, the scheduler is a round robin loop which

is timed by an interval timer and only high priority interrupt like serial communication may

preempt the scheduled task.

Figure 5.5: Sequence Diagram of Task Interactions in First Generation Fault-tolerant Controller
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5.3.4 Software Rejuvenation

As discussed in the first section of the chapter, some types of software bugs are age related.

Therefore as time passes, failure rate increases due to this type of software fault [100, 36, 42,

110, 102]. There are different reasons that aging related bugs may develop in the system and

cause failure. Table 5.4 summarizes several reasons for aging related bugs in software. Age

related bugs are very common in computers with operating systems. Whenever each task is

created, fix amount of memory resource will be assigned to it. If these resources are not depleted

after the task is done, that resource will be leaked and may not be available to the operating

system (OS). As time passes, the leakage would be so much that there is no more memory

available.

Table 5.4: Classes of Aging Related Bugs in Software

Class Extension Examples

Resource Leakage
(1) OS-specific
(2) App-specific

-Unreleased
memory (1,2)

File handlers (1)
sockets (1)

-Unterminated
processes (1)
Threads (1,2)

Fragmentation
(1) OS-specific
(2) App-specific

-Physical memory (1)
-File system (1)

-Database files (2)

Numerical error accrual
(1) OS-specific
(2) App-specific

-Round-off (1,2)

Data corruption accrual
(1) OS-specific
(2) App-specific

-File system (1)
-Database files (2)
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Fragmentation in memory has the same effect and will decrease the available memory to the

OS. Garbage collector may decrease the amount of leaked or fragmented memory from tasks

which are not running anymore, but it takes processing power and may not be effective all the

times.

Numerical error in data variables is another type of age related bug. In floating point data, the

resolution of variable decreases as the stored value gets bigger. This might happen in control

blocks that store variables in floating point or where fix point data is converted to floating point

and converted back to fixed point again. This rounding error is not OS related and might happen

in all processor based systems. If the variable that has been stored get corrupted (that might

happen due to high energy radiation), it might cause the same failure in the system.

Aging effects can be classified into volatile or non-volatile effects. volatile effects may be

removed by fresh start of the computer. All of the mentioned bugs are volatile unless the bug is

stored in a non-volatile memory or some type of memory which is not cleared by system restart.

In the rejuvenation process, system would have a fresh start and all of its states must return

to the initial values. Therefore, software rejuvenation is a periodic preemptive roll-back to the

initial checkpoint to prevent failure in a continuously running application [42]. In the proposed

controller, rejuvenation process may be scheduled whenever adjacent controllers are functional

and there is no problem for the controller to go in rejuvenation process and become temporarily

inactive. Rejuvenation model for the proposed controller is represented in figure 5.6 [110]. In

Figure 5.6: Rejuvenation Model for Fault-tolerant Controller
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state 0, system is Up and is functioning correctly. State 1 is the rejuvenation state (RJ) and

state 2 is the Down state. Based on the model, general distribution functions F1(t) to F4(t) may

be defined. In the model, t0 is the rejuvenation trigger interval and the mean time to carry out

rejuvenation and reactive repair from Down state are respectively t1 and t2. Two-parameter

Weibull pdf for the TTF is:

f (t) = β

η
( t

η
)

β−1e−(
t
η
)
β

where : f (t)≥ 0, t ≥ 0,β ≥ 0,η ≥ 0

η = scale parameter

β = shape parameter (or slope)

(5.2)

The CDF of this Weibull distribution is:

F(t) = 1− e−(
t
η
)
β

(5.3)

The sojourn time in Up state is then given by:

h0 =

t0∫
0

(1−F(t))dt =
η

β
Γ(

1
β
)G(

1
ηβ

tβ

0 ,
1
β
) (5.4)

where G(x,β ) = 1
Γ(β )

x∫
0

e−uuβ−1du is the incomplete gamma function. Therefore steady state

availability is:

Aweib =
h0

h0 +(1−F(t0))t1 +F(t0)t2
(5.5)

In the equations above, Aweib and d(Aweib)
dt0

= 0 system of equations may be solved to find the

optimum value of t0. Controller may be scheduled for rejuvenation whenever interval time
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arrives and the adjacent controller are Up and there is no side effect regarding this process.

In embedded systems, rejuvenation process may be applied to software drivers and initialization

programs of peripherals in the system. Device registers may get corrupted and settings of the

peripherals might not be as desired. Scheduler may set a free time slot to rejuvenate these

peripheral and make sure they are functioning correctly.

Watchdog timer is a helpful tool in rejuvenation process. Not only it does rejuvenate the software

in case of failure in the critical tasks, but it may be used as a force to rejuvenate the software

based on the schedule. In this case, the timer would not be reset in the critical tasks and by over

flowing it, the system would have a fresh start whenever it resets.

143



5.4 Fault-tolerant Firmware Design Methods

In the previous section, different design techniques have been used to avoid the possibility of

failure in the firmware design and increase the reliability of the software. These techniques are

necessary to decrease the cost of verification in the final stages. Although these techniques are

necessary, but they are not enough. Fault-tolerant firmware design techniques help handling ex-

ceptions and faults in case it happens. In the following sections, these techniques are investigated.

5.4.1 N-version Programming

In N-version programming, different versions (N ≥ 2) of software are implemented by different

developers and these implementations are designed to give the same result [62, 19]. There

are two different approaches in arranging the software module in functional behavior. In one

method, all of the implementations will run simultaneously on the same processor or on different

processors. The output of the software modules are compared and the majority in the output

result is chosen as the correct value. This diversity in the software can remove the systematic

errors in development stage just like using multiple hardware in the system. Common faults

between different versions can’t be detected and they still may cause error in the system. The

cost of this method gets higher than N times the cost of single version. This software method is

equivalent to the static redundancy in hardware implementation.

In the second approach, there are multiple versions of software for one particular functionality.

Not all of the software versions are running in the system and only in case of fault detection,

that specific version would be invoked to take over the failed software module. Figure 5.7

demonstrate the state transition in this approach. The methodology of the approach is similar to

dynamic redundancy in hardware design. In power electronics control, fault-tolerant software
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Figure 5.7: State Transition for Dynamic N-version Programming

techniques may be used in different sections. Grid synchronization in power system is one of

the categories that requires fault-tolerancy. There are different methods to extract phase value

from the grid voltages [43] and each one has its own benefits.

Figure 5.8 presents N-version programming implementation in grid synchronization. Out of

available methods, zero crossing (ZC) method and phase locked loop (PLL) grid synchronization

methods have been chosen to extract the phase value of the grid voltages. By default, ZC method

is being used to for synchronization due to its fast settling time. In this method, zero crossing

points of the measured voltages will be measured and according to that, frequency of the grid

will be calculated. Those points also identify the reference phases of the grid (i.e. 60, 120,...).

This method may easily get affected by unusual variations in the measured voltage and may

give wrong output result.

In case of failure in this method (variation of frequency more that allowed threshold) due to

harmonics or high frequency noise in the measured voltages, controller will switch to the PLL

synchronization method. PLL method requires more processing power but it is more immune to

harmonics and high frequency noises in the system. Controller continue using PLL method for
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synchronization and it may goes back to the ZC method when the failure has been removed.

Figure 5.8: N-version Programming Implementation in Grid Synchronization
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5.4.2 Recovery Blocks

Design of recovery blocks is based on acceptance tests. These tests may include checking for

run-time errors (e.g. divide by zero), reason-ability, execution time and mathematical errors.

Test for each parameter has its procedure, for example mathematical errors can be checked by

inverting the mathematical formula and check if the same result is obtained. Systems using

recovery blocks should duplicate the software into primary and secondary blocks. In the first

module, the main code exist and at the end, its output would be tested for correctness. If the

result is correct, the program would be ended; otherwise the second module (backup module)

would be run. The final software code should looks like the following:

primary module

acceptance test

secondary module

acceptance test

Running the first module might corrupt the initial data memory, state of system and make it

unusable for running the second module. Therefore, it is better to backup the data at the start of

the first module and in the case of failure, recover the initial data. Therefore the final software

style would be as following:

backup the data memory

primary module

acceptance test

recover the initial state

secondary module

acceptance test
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5.5 Consensus on Selection of the Master Controller in Sec-

ond Generation of Fault-tolerant Controller

In the second generation fault-tolerant controller, there are several controllers which can syn-

chronize other slave controllers (vice-masters). Only one of these vice-master controllers may

handle the synchronization task and other controllers should function as slave. The process

of electing the best vice-master as the master controller is based on the transaction between

vice-master controllers that will lead to general agreement on the master controller [79, 93, 7].

The process is happening repeatedly to ensure that the master controller is functioning correctly

and in case of failure, it would be replaced by another controller in the least amount of time.

In the consensus process, several assumptions must be made before reaching the final agreement.

All of controllers either respond to a message before timeout or never give respond to it (packets

that arrive after timeout period are considered as dropped). Any modification of messages by

the controllers is not acceptable and will change the nature of the problem. Therefore, problem

is not cathegorized as a byzantine generals problem [55]. In other words, all of the faults in

the system are assumed symmetric (single-value) whose behavior is perceived identical by

non-faulty controllers.

The second assumption is that the system is synchronous. In synchronous systems, there are

finite bounds on processing and communication delays between non-faulty controllers. These

bounds are known to the controllers and they can make decision based on that. In asynchronous

systems, these bounds are not known, therefore it is not possible to design a deterministic

consensus protocol in an asynchronous system.

The goal is to form a voting algorithm which reaches the final agreement in a single step. The

decision of choosing the master out of the vice-masters is based on the functionality and health

of the controller. The chosen master controller would have the highest ranking among other
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controllers.

The first step of decision making starts with broadcasting a set of mutually-measured variables

by each vice-master controller to other vice-master controllers which has been acquired by mea-

suring physical variables or as a result of dedicated algorithms. Therefore, each vice-master will

have the data set from other vice-master controllers. After categorization of received variables

in the same data set and forming a multiset (V) of all variables, we would have:

V = {V1,V2, ...,Vi}

Vj = 〈v1, ...,vk〉 ∀ j ∈ {1, ..., i}

vk ≤ vk+1 ∀k ∈ {1, ...,k}

(5.6)

There are two properties of multiset for reaching the final agreement. Its range ρ(V ) and its

diameter δ (V ) which is defined as following:

ρ(Vi) = [v1 vk] : real interval spanned by Vi

δ (Vi) = (vk− v1) : arithematic di f f erence between maximum and minimum
(5.7)

The goal of proposed agreement algorithm is to achieve convergence in a single step. The voting

algorithm F(V ) is single-step convergence if two convergence conditions are met:

• Validity: For each non-faulty process i, the voted value is within the range of correct

values generated by functioning controllers, i.e. F(Vi) ∈ ρ(Uall)

• Convergence: For each pair of non-faulty process, i and j, the difference between their

voted value is smaller than the diameter of the correct values received. i.e. |F(Vi)−

F(Vj)| ≤Cδ (Uall) where 0≤C < 1.
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Parameter C is the convergence rate which tells the performance of the voting algorithm. Smaller

C means faster convergence rate for the voting algorithm.

Based on the Vi that has been gathered, it is possible to get the estimated correct variables (Ui)

for each set. There are different voting algorithms based on statistical methods to find the best

value for each set. The method which has been used is median-subsequent-reduce (MSR) and it

calculates the median of a selected sub-sequence of the set. Therefore we have:

F(Vi) = median[Selσ (RedT (Vi))]

RedT (Vi) =
〈
v(1+τ), ...,v(V−τ)

〉 (5.8)

In the equation 5.8, RedT (V ) omits the τ smallest and τ largest elements from the multiset.

The selection function Selσ applies a subsequent function to select a submultiset of σ from the

reduced multiset. The final voted value is the median of the selected multiset.

The next stage is to rank all the vice-master controllers based on the data they have provided and

their specification. The ranking process is happening inside each vice-master and the chosen

master controller will be announced to all vice-masters. For the i’th vice-master controller, Wi, j

is the rank that it has given to the j’th vice-master controller as it has given below:

Wj =
i

∑
1

Ci. |F(Vi)− vi|+D j

M = { j|Wj is minimum}
(5.9)

The ranking is based on the difference between the value vice-controllers have provided and the

voted value. The higher the difference, the less chance it would be chosen. Other factors like

position of the vice-master in the controller array also make difference in the ranking (D j).

The chosen master controller by each vice-master controller (Mi) will be broadcast to other
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vice-master controllers. Therefore, each controller knows which vice-master is the final master

controller. The chosen master will perform synchronization process and controllers that have

chosen a vice-master other than the selected master controller will be bypassed by other con-

trollers.

Consensus algorithm has been presented in pseudo-code 5. This agreement algorithm is happen-

ing continuously to make sure master controller is functioning correctly. If there is any error, the

faulty master controller would be bypassed and another vice-master would become the master

controller.

This algorithm has been simulated and the result is demonstrated in figure 5.9 and 5.10. In

figure 5.9, horizontal delay is 3, vertical delay is 2 and the maximum permitted delay is 20 time

units. In the proposed algorithm, each vice-master reads a series of global data and broadcast

its reading. The voting algorithm finds the estimated value for the reading and based on the

difference, it selects the best master controller (controller 1). The proposed master controller is

broadcasted to other controllers, so they can know which controller is giving the right decision

(if the decision is different than the majority, they would be isolated). In this test, delays is less

than the maximum permitted and controllers are functioning correctly, the outcome of every

controller is the same.

In the next test (figure 5.10), horizontal delay is 6, vertical delay is 5 and the maximum permit-

ted delay is 20 time units. Due to the transmission delay between controllers, some controller

(C0, C8, C10 and C11) can’t make the right decision. These controllers would be bypassed by

the neighboring controllers to isolate any possible failure in the system.
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Result: Agreement on the master controller in the second generation fault-tolerant

controller

Acquire-global-variables();

Broadcast-acquired-global-variables();

Wait-until-deadline();

for 1 to i do

F(Vi) = median[Selσ (RedT (Vi))];

end

WM = ∞;

for 1 to j do

for 1 to i do

Wj =Ci. |F(Vi)− vi|;

end

Wj =Wj +D j;

if Wj <WM then

M = j;

WM =Wj;

end

Broadcast-selected-master-controller( j);

Gather-other-selected-masters();

Bypass-controllers-with-different-selected-master-controller();
Algorithm 5: Pseudo-code of Consensus Procedure on Selection of Master Controller for the

Second Generation Fault-tolerant Controller

152



Figure 5.9: Simulation Result for General Agreement on the Master Controller (4 module per
phase, horizontal delay of 3, vertical delay of 2, maximum permitted delay of 20)

Figure 5.10: Simulation Result for General Agreement on the Master Controller (4 module per
phase, horizontal delay of 6, vertical delay of 5, maximum permitted delay of 20)
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Chapter 6

Implementation and Experimental

Verification of Proposed Fault-tolerant

Controller for Modular Multi-level

Converters

This chapter will represent the experimental result of the implemented hardware for verifying

the feasibility of the proposed controller. Implementation of the controller system consist of

two main stages. In the first stage, the functionality and correctness of the control software

will be assessed. In order to do so, the controller will interact with an emulator through digital

and analog I/O. The emulation and interaction between controller and the emulator may be

in real-time (hardware in the loop) or in offline mode (processor in the loop). HIL emulation

requires advanced hardware but it gives output result faster, therefore it is the test method

which has been used for the controller firmware evaluation. The final test has been done on real

hardware setup in which scaled down model of the power converter is tested.
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6.1 Implementation of Proposed Methods on the Fault-tolerant

Controller Test-bed

A hardware test-bed has been designed (Figure 6.1) to demonstrate and test the behavior of

the proposed controller in connection with converter hardware or the hardware in the loop

(HIL) simulation. The test-bed consist of 13 texas instrument F28379D controller card (12 slave

controllers and one master controller). The output signals from controllers are fed into three

separate FPGA cards (ACM-204-40C8). These FPGAs help implementing the fault-detection,

fail-over, output comparison and other necessary circuits for the system. The analog signals

from external resources are leveled to match the range of the micro controllers. More detail

about the internal circuits may be found in the third appendix. Figure 6.2 demonstrates the block

Figure 6.1: Fault-tolerant Controller Test-bed

155



diagram of the test-bed. Fault handling circuits have been implemented in the FPGAs. Incoming

analog signals are leveled to match controller specification and have been shared between all

controllers. It is possible to select the associated analog inputs based on the architecture. The

Figure 6.2: Block Diagram of Fault-tolerant Controller Test-bed

final architecture of the fault-tolerant controller (after programming and configuring the FPGA)

has been demonstrated in figure 6.3. In each phase, four controllers are connected to the master

controller through the shared communication bus. Master controller will run the supervisory

control (high level control) and update the slave controller at each control step. Each slave
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controller does the control procedures for itself and the neighbor controllers. The output result

of the slave controllers are compared in the fault detector block, which detects errors if outputs

are not similar for the same module. Fault detection signal, external error from micro controller

(for signaling communication error) and the health status of the controller are given to the fail

over circuit. Fail over circuit decides which controller should control each converter block based

on the functionality status of the main controller and the adjacent controllers (discussed in detail

in chapter 3). As it can be seen in figure 6.3, all of the blocks which are related to fault handling

for module 2 have been high lighted. All of the fault injection results in the following sections

(both CHB and MMC configuration) are for module 2 and the nomenclature follows signals in

the picture.

Figure 6.3: Fault Handling for each Phase (4 module per phase) of Converter
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6.2 Theory of Operation for Hardware in the Loop (HIL)

Simulation

In most power electronics circuits, the exact power semiconductor model is required for few

cycles in which transient values are changing or exact calculation (e.g. loss) is required. After

this period, there is no need for exact model of the switch and simplified models may solve

the problem. In HIL emulation, it is not possible to use the exact model and run the model

in real-time, therefore the semiconductor switch (which is a non-linear component) must be

simplified[77].

There are different ways of simplifying the semiconductor switch to get the best result. By

assuming ideal model (a switch is either short circuit or open circuit) for n switch in a circuit, it

is possible to have 2n different states. Each state of the circuit can be represented by state-space

equations and it can be solved to find the new values in each simulation step. Drawbacks of

this method is the efforts needed for extraction of the state-space model and possibility of

state-variable discontinuity and/or changes in the number of states at switching transitions[77,

68, 65, 21].

Another method is putting numerical integration to element equation rather than network

Figure 6.4: Simplified Model of Switch (a)Ideal Switch (b)Discrete-time Switch Model
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state-space equations. This method is being used in general simulators like Spice. A small Ron

is used when transistor is on and a large Ro f f represent the switch when it is turned off. The

chosen value for resistors must be in range that convergence is possible. Even in this method,

simulation times might be long since more iterative step must be taken for solving the equations

specially in the switch transients.

Figure 6.4(a) demonstrate two simplified model for the power switch. In the ideal switch model,

the switch is either turn off or on. Therefore we have:

s = 0⇔ o f f ⇔ is = 0

s = 1⇔ on⇔ vs = 0
(6.1)

The ideal model is not the best model for real-time simulation. The other switch model that is

suitable for discrete-time simulation is represented in figure 6.4(b). In common simulators like

SPICE, this model represent a switch with low Ron when it is on, large Ro f f when it is off and

smooth transition rate from each state to another one. It is desired that Gs remains constant and

js varies, therefore only one matrix inversion is necessary for the entire simulation. This model

allows fixed nodal admittance matrix during the whole simulation, otherwise one matrix for

each state of switches was necessary. Based on this and assuming that T = tn+1− tn, the switch

model equations are:

jn+1
s =


−ins i f sn+1 = 1

Gsvn
s i f sn+1 = 0

(6.2)

Therefore introduced errors in this method (voltage when switch is on and current when it is

off) are: 
vn+1

s (s = 1) = 1
Gs
(in+1

s − ins )

in+1
s (s = 0) = Gs(vn+1

s − vn
s )

(6.3)
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The proposed mathematical model is not memory-less and it depends on values of the previous n

simulation steps. The representation of a capacitor using backward Euler algorithm is as below:

vn+1 = vn
c +

1
Cs

tn+1∫
tn

ic(t)dt

vn+1 ≈ vn
c +

T
Cs

in+1
c

in+1
c ≈ Cs

T vn+1
c − Cs

T vn
c = Gcvn+1

c − jn+1
c

(6.4)

In the same way, representation of an inductor may be achieved:

in+1
l ≈ T

Ls
vn+1

l + inl = Glvn+1
l − jn+1

l (6.5)

By comparing equation 6.2 with equation 6.4 and 6.5, it can be realized that the switch model

is discrete-time model of capacitor (or inductor). Moreover, it implies that switch is inductor Ls

when on and capacitance Cs when off (figure 6.5). In order to keep the conductance Gs constant,

we should have:

Gs = Gc = Gl =
Cs

T
=

T
Ls

(6.6)

Figure 6.5: Representation of the Pejovic Switch in On (inductor) and Off (capacitor) Mode
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6.3 Hardware in the Loop Simulation for the Proposed Fault-

tolerant Controller

The first stage of system test and development involves connecting the controller to the hardware

in the loop (HIL) simulator (figure 6.6). This type of simulation helps speeding up the simulation

with highest accuracy and no possibility of component loss. The first step is to draw the converter

Figure 6.6: Fault-tolerant Controller in Connection with Opal-rt System (front view)

circuit and extract the netlist using the circuit compiler. The netlist defines the circuit which

must be simulated in real-time using FPGA simulator. After loading the netlist on the simulator,
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it will run in a loop and will update the outputs based on the input signals and the current state

of the system. Therefore, controller must interact with the simulator in which it acts as the

converter circuit emulator (figure 6.7).

In the following sections, cascaded H-bridge converter and modular multi-level converter have

Figure 6.7: Fault-tolerant Controller in Connection with Opal-rt System (back view)

been emulated on the HIL simulator, different failure strategy have been tested and the output

result are acquired.
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6.4 Hardware in the Loop Simulation Result for Cascaded

H-bridge Converter Using Fault-tolerant Controller

Principle of operation for cascaded H-bridge converter (CHB) has been represented in appendix

A. The same converter has been modeled in Opal-rt HIL simulator to verify the feasibility of the

proposed fault-tolerant converter (figure 6.8). The converter system consist of 4 module per

Figure 6.8: Implemented Cascaded H-bridge Converter with Isolated DC/DC Output Converter
in Opal-rt HIL simulator
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Table 6.1: Setup Configuration for CHB HIL Simulation

Design Parameter Symbol Value
Grid line-line voltage E 120 (Vrms)

Line frequency f 60 (Hz)
Series inductance Lseries 5 (mH)

Switching frequency fswitching 10 (kHz)
Converter module per phase N 4

Nominal module capacitor voltage Vmodule 35 (V)
Converter module capacitance Cmodule 6800 (µF)

Nominal converter current Iconverter 10 (A)
Load Resistance Rload 250 (Ω)

phase. Each module is a cascaded h-bridge converter in which the AC sides are in series and the

DC sides are connected to dc capacitor. The capacitor is connected to a DC/DC converter which

has been simplified by a voltage/current source to decrease the required processing resource.

Detail of the converter setup has been presented in table 6.1. The converter regulates high

voltage dc side at 400 (V), which means each module would have dc voltage around 35 (V).

The load is a 250 ohm resistor which is connected in parallel with dc capacitor.

There are several measurement sensor in the converter setup which has been connected to analog

outputs. Analog scaling is done in a way that the output voltage never goes into saturation

region. The gating signal for the power switches comes directly from the digital inputs (which

provided by controller). Different failure case has been tested on this converter setup and result

is presented in the following sections.
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6.4.1 Cascaded H-bridge Converter under Normal Operation

This section demonstrate the experimental result in normal operation of the converter system.

Figure 6.9 shows the grid voltage (line to line) and the grid currents. The measured grid voltage

is fed in the synchronous reference frame PLL and the grid phase is shown in figure 6.10.

Figure 6.11 shows the capacitor voltages in phase A of the converter. The goal is to regulate all

capacitor voltages at 35 (V). Figure 6.12 shows the active and reactive current from the grid.

Since converter is operating in rectifier mode, active current (Id) is negative. Converter is not

compensating reactive power of the grid and no reactive current (Iq) is being injected to the grid.

Figure 6.13 shows the reference PWM which has been generated. The reference signal contains

third harmonics to increase the voltage range of the converter.

Figure 6.9: Grid Voltage and Current in Normal Operation of CHB (1:Vab 2:Vbc 3:Ia 4:Ib)
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Figure 6.10: Synchronous Reference Frame PLL and Phase A Voltage (3:Phase(radian) 4:Phase
A Voltage

Figure 6.11: Capacitor Voltage of each Module in Normal Operation (1:Module 1 2:Module 2
3:Module 3 4:Module 4)
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Figure 6.12: Active and Reactive Current in Normal Operation (3:Reactive Current 4:Active
Current)

Figure 6.13: PWM Reference Signals for Phase A and B in Normal Operation (3:Phase A
4:Phase B)
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6.4.2 Fault Injection Result In Controller Architecture for Cascaded H-

bridge Converter

In this section, functionality of the controller circuit has been investigated under different failure

modes. In each mode, different failure has been injected to the controller cards or the associated

control circuitry for each controller to emulate single point of failure in the system. In all of the

results, focus is on controller number 2 and it has been tried to show the experimental result

related to this controller (i.e. effect of failure in adjacent controllers on this controller). For

understanding definition of each signal, figure 6.3 may be used which has block diagram of

the fault handling circuit and the related signal names. All of the results have been captured by

oscilloscope or logic analyzer from the experimental test bed in connection with the converter

system.

Figure 6.14 shows the case in which communication link from controller 1 to controller 2 has

been failed. Therefore controller 2 may not receive any data and error flag for controller 1 will

turn on. Since it is not common failure, controller 2 may not get affected at all.

Figure 6.15 shows the case in which communication link from controller 2 to other controllers

has failed (this may happen as a result of failure in controller 2). Therefore controller 1 and 3

may not receive any data and error flag from controller 1 and 3 will turn on. Since it is common

failure, controller 2 will be bypassed.

Figure 6.16 shows the case in which built in self-test circuit (which turns on when internal

failure happens) in controller 1 has turned on and its effect of controller 2 has been demonstrated.

This failure will turn on the fault detection for controller 1 (FD1) and turn off the health status

for controller 1. Since it is not a common failure, controller 2 will continue its operation without

interruption.

Figure 6.17 demonstrates the case in which built in self-test circuit (which turns on when
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internal failure happens) in controller 2 has turned on and its effect of controller 2 has been

shown. This failure will turn on the fault detection related to controller 2 (FD2 and FD3) and

turn on external error indicators from controller 1 and 3. Since it is a common failure, controller

2 will be bypassed and controller 1 will take charge of controlling the second power module.

Figure 6.18 demonstrates the case in which power supply of the controller 1 has failed (by

turning off the controller card). This failure will turn on the fault detection related to controller 1

(FD1 and FD2) and turn on external error indicators from controller 1. Since it is not a common

failure, controller 2 will continue its operation without interruption.

Figure 6.19 demonstrates the case in which power supply of the controller 1 and 3 have failed

simultaneously (by turning off the controller card). This failure will turn on the fault detection

related to controller 1 and 3 (FD1 to FD4), turn on external error indicators from controller 1

and 3, and turn off health indicators related to controller 1 and 3. Since both health indicators

of the failed controller have been turned off, controller 2 will continue its operation without

interruption (i.e. controller 2 will switch its control circuitry when health indicators are still on).

Figure 6.20 shows the case in which power supply of the controller 2 has failed (by turning off

the controller card). This failure will turn on the fault detection related to controller 2 (FD1 to

FD4) and turn on external error indicators from controller 1 and 3. Since it is a common failure,

controller 2 will be bypassed by the first controller.

Figure 6.21 shows the case in which controller card 1 has been restarted (by external reset

pin). External restart will make it unavailable for a period of time and during this time, it may

not function correctly. This will turn on the external error for controller 1 and clears the health

indicator for this controller. Since it is not a common mode failure, controller 2 will continue its

operation without interruption.

Figure 6.22 shows the case in which controller card 2 has been restarted (by external reset

pin). External restart will make it unavailable for a period of time and during this time, it may
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not function correctly. This will turn on the external error for controller 1 and 3 and clears the

health indicator for these controllers too. Since it is a common mode failure, controller 2 will be

bypass by the first controller.

Figure 6.23 demonstrates the case in which voltage measurement sensor in module 1 fails.

This action has been emulated by a step change (40% decrease in the value) in the measured

capacitor voltage. The change in the measured value will trigger the external error signal in

module 1 but since it is not a common error, it will not bypass the controller module 2.

Figure 6.24 demonstrates the case in which voltage measurement sensor in module 3 fails

while module 1 has already been failed. This action has been emulated by a step change (40%

decrease in the value) in the measured capacitor voltage of module 3 while module 1 has been

turned off. The change in the measured value will trigger the external error signal in module

1 and 3 but since it is a common error, it will bypass the controller module 2 to its adjacent

controller (controller module 3).

Figure 6.25 demonstrates the case in which voltage measurement sensor in module 2 fails.

This action has been emulated by a step change (40% decrease in the value) in the measured

capacitor voltage of module 2. The change in the measured value will trigger the external error

signal in module 1 and 3 but since it is a common error, it will bypass the controller module 2 to

its adjacent controller (controller module 1).

Figure 6.26 shows the case in which power module has been failed (i.e. one of IGBTs has been

failed) and it has been bypassed. Due to this, the capacitor voltage would reach zero and phase

voltage must be compensated by other power modules. As it can be seen, phase voltage has

been compensated by slight increase in other module’s capacitor voltage.

Figure 6.27 shows the phase voltages in case of power module failure. Failure will cause

fluctuation in phase voltages as well as the total capacitor voltage but it will settle down after

some time.
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Figure 6.28 shows grid currents and voltages in case of power module failure. Failure will cause

unbalanced currents but it will be settle down after some time.
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Figure 6.14: Communication Failure in Module 1 and Its Effect on Module 2 in CHB
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Figure 6.15: Communication Failure in Module 2 and Its Effect on Module 2 in CHB
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Detection of Self-test failure

Figure 6.16: Built In Self-test (BIST) Failure in Module 1 and Its Effect on Module 2 in CHB
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Figure 6.17: Built In Self-test (BIST) Failure in Module 2 and Its Effect on Module 2 in CHB
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Figure 6.21: Micro-controller Reset in Module 1 and Its effect on Module 2 in CHB
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40% error in capacitor voltage measurement injected in sensor 1

External error detection by module 1

Figure 6.23: Voltage Sensor Failure in Module 1 and Its effect on Module 2 in CHB
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Controller 1 has been failed already 

External error detection by controller 3

40% change in capacitor 2 voltage measurement sensor

Fail-over to the controller 3 

Figure 6.24: Voltage Sensor Failure in Module 3 While Module 1 has failed and Its effect on
Module 2 in CHB
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Figure 6.25: Voltage Sensor Failure in Module 2 and Its effect on Module 2 in CHB
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Failure in power module 2

Capacitor voltage compensation

Figure 6.26: Capacitor Voltage in each Module at the Time of Failure in Power Electronic
Circuit (Power Module Bypassed)

Settling time after error 

Figure 6.27: Average Capacitor Voltages in each Phase of the Converter at the Time of Failure
in Power Electronic Circuit (Power Module Bypassed)
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Settling  time during error

Figure 6.28: Grid Voltages and Currents at the Time of Failure in Power Electronic Circuit
(Power Module Bypassed)
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6.5 Hardware in the Loop Simulation Result for Modular

Mult-level Converter Using Fault-tolerant Controller

Principle of operation for modular multi-level converter (MMC) has been represented in ap-

pendix B. The same converter has been modeled in Opal-rt HIL simulator to verify the feasibility

of the proposed fault-tolerant converter (figure 6.29). The converter system consist of 4 module

Figure 6.29: Implemented Modular Multi-level Converter (MMC) in Opal-rt HIL simulator

per phase. Each module is a cascaded h-bridge converter in which the AC sides are in series and

the DC sides are connected to dc capacitor. Detail of the converter setup has been presented in

table 6.2. The converter regulates high voltage dc side at 150 (V), which means each module

would have dc voltage around 75 (V). The load is a 250 ohm resistor which is connected in

parallel with dc capacitor.

There are several measurement sensor in the converter setup which has been connected to analog

outputs. Analog scaling is done in a way that the output voltage never goes into saturation

region. The gating signal for the power switches comes directly from the digital inputs (which
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Table 6.2: Setup Configuration for MMC HIL Simulation

Design Parameter Symbol Value
Grid line-line voltage E 120 (Vrms)

Line frequency f 60 (Hz)
Series inductance Lseries 5 (mH)

Switching frequency fswitching 10 (kHz)
Converter module per phase N 4

Nominal module capacitor voltage Vmodule 75 (V)
Converter module capacitance Cmodule 6800 (µF)

Nominal converter current Iconverter 10 (A)
Load Resistance Rload 250 (Ω)

Converter Arm Inductance Larm 1 (mH)

provided by controller). Different failure case has been tested on this converter setup and result

is presented in the following sections.
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6.5.1 Modular Multi-level Converter under Normal Operation

This section demonstrate the experimental result in normal operation of the MMC converter

system. Figure 6.30 shows the grid voltage (line to line) and the grid currents. The measured

grid voltage is fed in the synchronous reference frame PLL and the grid phase is shown in

figure 6.31. Figure 6.32 shows the capacitor voltages in phase A of the converter. The goal is to

regulate all capacitor voltages at 75 (V). Figure 6.33 shows the active and reactive current from

the grid. Since converter is operating in rectifier mode, active current (Id) is negative. Converter

is not compensating reactive power of the grid and no reactive current (Iq) is being injected to

the grid.

Figure 6.30: Grid Voltage and Current in Normal Operation of MMC (1:Vab 2:Vbc 3:Ia 4:Ib)
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Figure 6.31: Synchronous Reference Frame PLL and Phase A Voltage (1:Phase (radian)
2:Phase A Voltage

Figure 6.32: Capacitor Voltage of each Module in Normal Operation (1:Module 1 2:Module 2
3:Module 3 4:Module 4)
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Figure 6.33: Active and Reactive Current in Normal Operation (1:Active Current 2:Reactive
Current)
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6.5.2 Fault Injection Result In Controller Architecture for Modular Multi-

level Converter

In this section, functionality of the controller circuit has been investigated under different failure

modes. In each mode, different failure has been injected to the controller cards or the associated

control circuitry for each controller to emulate single point of failure in the system. In all of the

results, focus is on controller number 2 and it has been tried to show the experimental result

related to this controller (i.e. effect of failure in adjacent controllers on this controller). For

understanding definition of each signal, figure 6.3 may be used which has block diagram of

the fault handling circuit and the related signal names. All of the results have been captured by

oscilloscope or logic analyzer from the experimental test bed in connection with the converter

system. Result in this section might be very similar to the fault injection result for CHB converter.

The goal is to show that fault-tolerant controller is not converter dependent and It may be used

for different type of power converters.

Figure 6.34 shows the case in which communication link from controller 1 to controller 2 has

been failed. Therefore controller 2 may not receive any data and error flag for controller 1 will

turn on. Since it is not common failure, controller 2 may not get affected at all.

Figure 6.35 shows the case in which communication link from controller 2 to other controllers

has failed (this may happen as a result of failure in controller 2). Therefore controller 1 and 3

may not receive any data and error flag from controller 1 and 3 will turn on. Since it is common

failure, controller 2 will be bypassed.

Figure 6.36 shows the case in which built in self-test circuit (which turns on when internal

failure happens) in controller 1 has turned on and its effect of controller 2 has been demonstrated.

This failure will turn on the fault detection for controller 1 (FD1) and turn off the health status

for controller 1. Since it is not a common failure, controller 2 will continue its operation without
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interruption.

Figure 6.37 demonstrates the case in which built in self-test circuit (which turns on when

internal failure happens) in controller 2 has turned on and its effect of controller 2 has been

shown. This failure will turn on the fault detection related to controller 2 (FD2 and FD3) and

turn on external error indicators from controller 1 and 3. Since it is a common failure, controller

2 will be bypassed and controller 1 will take charge of controlling the second power module.

Figure 6.38 demonstrates the case in which power supply of the controller 1 has failed (by

turning off the controller card). This failure will turn on the fault detection related to controller 1

(FD1 and FD2) and turn on external error indicators from controller 1. Since it is not a common

failure, controller 2 will continue its operation without interruption.

Figure 6.39 demonstrates the case in which power supply of the controller 1 and 3 have failed

simultaneously (by turning off the controller card). This failure will turn on the fault detection

related to controller 1 and 3 (FD1 to FD4), turn on external error indicators from controller 1

and 3, and turn off health indicators related to controller 1 and 3. Since both health indicators

of the failed controller have been turned off, controller 2 will continue its operation without

interruption (i.e. controller 2 will switch its control circuitry when health indicators are still on).

Figure 6.40 shows the case in which power supply of the controller 2 has failed (by turning off

the controller card). This failure will turn on the fault detection related to controller 2 (FD1 to

FD4) and turn on external error indicators from controller 1 and 3. Since it is a common failure,

controller 2 will be bypassed by the first controller.

Figure 6.41 shows the case in which controller card 1 has been restarted (by external reset

pin). External restart will make it unavailable for a period of time and during this time, it may

not function correctly. This will turn on the external error for controller 1 and clears the health

indicator for this controller. Since it is not a common mode failure, controller 2 will continue its

operation without interruption.
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Figure 6.42 shows the case in which controller card 2 has been restarted (by external reset

pin). External restart will make it unavailable for a period of time and during this time, it may

not function correctly. This will turn on the external error for controller 1 and 3 and clears the

health indicator for these controllers too. Since it is a common mode failure, controller 2 will be

bypass by the first controller.

Figure 6.43 demonstrates the case in which voltage measurement sensor in module 1 fails.

This action has been emulated by a step change (40% decrease in the value) in the measured

capacitor voltage. The change in the measured value will trigger the external error signal in

module 1 but since it is not a common error, it will not bypass the controller module 2.

Figure 6.44 demonstrates the case in which voltage measurement sensor in module 3 fails

while module 1 has already been failed. This action has been emulated by a step change (40%

decrease in the value) in the measured capacitor voltage of module 3 while module 1 has been

turned off. The change in the measured value will trigger the external error signal in module

1 and 3 but since it is a common error, it will bypass the controller module 2 to its adjacent

controller (controller module 3).

Figure 6.45 demonstrates the case in which voltage measurement sensor in module 2 fails.

This action has been emulated by a step change (40% decrease in the value) in the measured

capacitor voltage of module 2. The change in the measured value will trigger the external error

signal in module 1 and 3 but since it is a common error, it will bypass the controller module 2 to

its adjacent controller (controller module 1).
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Figure 6.34: Communication Failure in Module 1 and Its Effect on Module 2 in MMC
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Figure 6.35: Communication Failure in Module 2 and Its Effect on Module 2 in MMC
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Health indicator show failure in module 1

Fault in module 1 is detected

Figure 6.36: Built In Self-test (BIST) Failure in Module 1 and Its Effect on Module 2 in MMC
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Figure 6.37: Built In Self-test (BIST) Failure in Module 2 and Its Effect on Module 2 in MMC
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Figure 6.41: Micro-controller Reset in Module 1 and Its effect on Module 2 in MMC
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Figure 6.42: Micro-controller Reset in Module 2 and Its effect on Module 2 in MMC
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Figure 6.44: Voltage Sensor Failure in Module 3 While Module 1 has failed and Its effect on
Module 2 in MMC
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Figure 6.45: Voltage Sensor Failure in Module 2 and Its effect on Module 2 in MMC
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6.6 Real Hardware Experimental Result for Cascaded H-bridge

Converter Using Fault-tolerant Converter

This section demonstrates experimental results related to the hardware setup of cascaded H-

bridge converter (CHB). Figure 6.46 shows the image of the experimental setup. Hardware

architecture of the converter is as same as configuration of the CHB in the opal-rt HIL simulation.

Fundamental of the controlling CHB has been represented in Appendix A.

Figure 6.46: Experimental Setup of Cascaded H-bridge Converter (CHB) in Connection with
Fault-tolerant Controller
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Figure 6.47: Side View of Cascaded H-bridge Converter (CHB)

Figure 6.48: Interconnection Between Interface Card, Measurement Board and Cascaded
H-bridge Converter (CHB)
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Figure 6.49: Voltage Measurement Board in CHB Setup

Figure 6.50: Interface Board in CHB Setup
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Table 6.3: Setup Configuration for CHB Hardware Experimental Setup

Design Parameter Symbol Value
Grid line-line voltage E 120 (Vrms)

Line frequency f 60 (Hz)
Series inductance Lseries 5 (mH)

Switching frequency fswitching 10 (kHz)
Converter module per phase N 4

Nominal module capacitor voltage Vmodule 27 (V)
Converter module capacitance Cmodule 6800 (µF)

Nominal converter current Iconverter 10 (A)
Load Resistance Rload 420 (Ω)

Table 6.3 demonstrates the specification of the CHB converter setup. It is pretty much the

same as the HIL simulation and the same controller firmware (with minor modifications) has

been used for achieving the results. Since all the tests have been done in the HIL simulation,

the transition process from simulation to real hardware accomplished quickly. All of the results

that has been presented are related to the second controller in phase C of the converter system.

Results show different case of failures and their effects on the fault handling system in the

converter.

Figure 6.51 demonstrates the normal operation of the converter when there is no failure in the

system. The first two row is the grid line-to-line voltages, the 3rd and 4th row is the grid currents

(Ia and Ib), the 5th row is the DC bus voltage, 6th row is the active current which is drawn from

grid and row 7 to 10 are the capacitor voltages in the third phase of the converter.

Figure 6.52 demonstrates converter operation in normal condition. All the results are the same

as the previous figure, however row 5 is the PLL measured phase and row 6 is the voltage of the

phase A.
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Figure 6.53 demonstrates failure in communication link of the controller 2. In this case, the

failure is common between adjacent controllers and it cause fail-over from the failed controller

(second controller).

Figure 6.54 demonstrates failure in communication link of the controller 3. In this case, the

failure is not common and it cause to fail-over in the system.

Figure 6.55 shows the power supply failure in the first controller. Since the failure is not

happening in second controller and it is not a common failure, no fail-over happens.

Figure 6.56 shows the power supply failure in controller 2. In this case, failure is a common

fault and controller 2 is bypassed by the adjacent controller.

Figure 6.57 shows the case in which controller 3 has been reset. This case emulates the case

that software is being rejuvenated. Since it is not a common failure in the system, no fail-over

happens in the system.

Figure 6.58 shows the case in which controller 2 has been reset. This case emulates the case

that software is being rejuvenated. It is a common failure in the system and it would be bypassed

by the adjacent controllers.

Figure 6.59 presents the case that voltage measurement sensor in the first controller has been

failed. Failure has been emulated with 40 percent difference in the measured signal. Since it is

not a common failure, controller 2 is not bypassed.

Figure 6.60 presents the case that voltage measurement sensor in the controller 2 has been failed.

Failure has been emulated with 40 percent difference in the measured signal. It is a common

failure in the system and cause bypassing controller 2 and fail-over to the first controller.
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Figure 6.51: CHB in Normal Operation (DC Bus Voltage and Reactive Current are Shown)
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Figure 6.53: Experimental Result of Communication Failure in Controller 2 and its Effect on
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Failure in communication due failure in adjacent controller

Failure is detected by adjacent controller

Figure 6.54: Experimental Result of Communication Failure in Controller 3 and its Effect on
the System
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Figure 6.55: Experimental Result of Power Supply Failure in Controller 1 and its Effect on the
System
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Figure 6.56: Experimental Result of Power Supply Failure in Controller 2 and its Effect on the
System

216



time
0

0.5

1

P
W

M
1

time
0

0.5

1

P
W

M
2

time
0

0.5

1

P
W

M
3

time
0

0.5

1

O
ut

2

time
0

0.5

1

FD
1

time
0

0.5

1

FD
2

time
0

0.5

1

FD
3

time
0

0.5

1

FD
4

time
0

0.5

1

FD
5

time
0

0.5

1

FD
6

time
0

200

400

V
dc

 B
us

time

-4

-2

0

Id
se

time
-200

0

200

V
ab

time
-200

0

200

V
bc

time
-5

0

5

Ia

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

time

-5

0

5

Ib

Fault detection is stabilized

Controller 3 has been reseted, no fail-over happens since it is not 
common fault in the system

Figure 6.57: Experimental Result of Microprocessor Reset in Controller 3 and its Effect on the
System
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Figure 6.58: Experimental Result of Microprocessor Reset in Controller 2 and its Effect on the
System

218



Error is detected but not fail-over happens (it is not 
common error)

40% change in voltage sensor is injected

Figure 6.59: Experimental Result of Voltage Measurement Sensor Failure in Controller 1 and
its Effect on the System
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40% error is injected in voltage sensor

Error is detected by adjacent controllers

Fail-over from second controller to first controller

Figure 6.60: Experimental Result of Voltage Measurement Sensor Failure in Controller 2 and
its Effect on the System
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Chapter 7

Conclusion and Future Works

7.1 Conclusions

• Although implementing small multi-level converters is possible using a single converter,

as number of modules increase there is no possibility of controlling the whole converter

system with a single controller. In this case, controllers must be distributed among the

converters and all of them must be synchronized to a master controller.

• The other benefit that distributed control can provide is reconfiguration of the control

blocks. In the event of failure, modules can be re-arranged and the failed module can be

bypassed.

• The second generation fault-tolerant controller proposes fault-tolerancy in the network

architecture. By using a grid of controllers, it is possible to bypass failed master controller

and networks link which are not functioning anymore. This architecture is more complex

but it gives ultimate resiliency in modular multi-level converters.

• Simulation results show that the proposed controller is suitable for hardware implementa-

221



tion. The same control algorithms can be implemented in hardware controller to get the

same results.

• Reliability assessment result provides good result for the proposed controller in com-

parison with the single controller method. These assessment may also be improved by

including more details of system operation in computer model.

• Fault-tolerancy must be applied to the software design too. It is common thinking that

software is already broken, therefore fault avoidance techniques may lower the probability

of failure in the firmware.

• Experimental result approves the feasibility of the controller architecture that it can isolate

faults in the system with the best dynamics.

• Experimental result on cascaded H-bridge converter (CHB) and modular multi-level

converter (MMC) approves that the proposed fault-tolerant controller may be used for

vast majority of multi-level converters with slight modification in the control structure for

the master and slave controllers.
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7.2 Proposed Future Works

• The next big step in the fault-tolerant controller for MMC is to complete the research and

implementation of the second generation fault-tolerant controller. The same hardware

test-bed may be used to implement the controller and more simulation result may be

gathered to approve the functionality of the system.

• The proposed controller has been used for CHB and MMC converters. It is a good idea to

use the controller for other types of multi-level converters or converter topologies like

matrix converter that consist of several modules.

• Reliable firmware design is desired in the industry. There is a huge subjects that may be

researched in this field with application in the proposed controller architecture.

• Hardware implementation of the controller in CHB was accomplished by the author. It is

also possible to implement the same results with modular multi-level converter (MMC).

• Reliability assessment of the controller has been accomplished using Markov chain

process and software simulation. It is a good idea to do real non-destructive tests and

record data in long time using hardware in the loop (HIL) simulation.
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Appendix A

Distributed Control Stages for Cascaded

H-bridge Multi-level Converter

There are different architectures for multi-level converters and cascaded H-bridge converter

with high-frequency isolation at output stage is one of the methods to implement a multi-level

converter (figure A.1)[109]. In this converter, each leg consists of several module connected

in series together to increase the maximum breakdown voltage of the leg. A high-frequency

isolated DC/DC converter isolates the DC voltage of the H-bridge capacitor from grid voltage

(figure A.2). It can transfer power bidirectionally with transfer ratio of 1:1. Since the operating

frequency of the transformer is high, the core size can be reduced and the total weight of the

system would be less. Since capacitors are floating, their voltages must be balanced by the

controller. Control procedure for this converter consist of four layers. The first three layers are

implemented in the master controller and the last layer is implemented on the slave controllers.

• DC terminal voltage controller:this controller is responsible for the high voltage DC

side. The input is the DC grid voltage and the output is dq-current that converter must

supply. Since it is the highest level controller, it must have slow response time to make
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Figure A.1: Cascaded H-bridge Multi-level Converter with Isolated Output Stage

Figure A.2: Detailed Schematic of Converter Modules in Cascaded H-bridge Multi-level
Converter

the inertia of the controller high.

• Current controller: Unlike the terminal voltage controller, current controller has higher

controller response speed and therefore, its inertia is much less. The decoupling factor has

been included in the control and third harmonics has been injected to the output voltage

to get the highest rail to rail output voltage in the linear region.
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Figure A.3: DC Grid Voltage Controller for the Converter

Figure A.4: Current Controller for Cascaded H-bridge Converter

• Phase voltage balancing: It is important to have balanced voltages on DC capacitors of

the converters and therefore have balanced voltages on each phase of the converter. Phase

voltage balance controllers achieve this by adding a zero sequence to the modulating

waveform and force more current in one phase. The result is increase in the voltage of the

phase that has unbalanced voltage [95]. To understand the control theory, power equations

must be written as follow:

va =Vmcos(wt)

vb =Vmcos(wt−2π/3)

vc =Vmcos(wt +2π/3) (A.1)
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Figure A.5: Block Diagram of Three Module per Phase Cascaded H-bridge Converter

ia = Imcos(wt)

ib = Imcos(wt−2π/3)

ic = Imcos(wt +2π/3) (A.2)

The power of the source would be:

Pa = vaia = 0.5VmImcos(θi)+0.5VmImcos(2wt +θi)

Pb = vbib = 0.5VmImcos(θi)+0.5VmImcos(2wt +θi +2π/3)

Pc = vcic = 0.5VmImcos(θi)+0.5VmImcos(2wt +θi−2π/3) (A.3)

236



Assuming that the phase voltage balancing voltage is Vpb =Vcmcos(wt +φ), the power

flow by injecting this voltage is:

P′a = Pa +0.5VcmImcos(φ −θi)+0.5VcmImcos(2wt +θi +φ)

P′b = Pb +0.5VcmImcos(φ −θi +2π/3)+0.5VcmImcos(2wt +θi +φ +2π/3)

P′c = Pc +0.5VcmImcos(φ −θi−2π/3)+0.5VcmImcos(2wt +θi +φ −2π/3) (A.4)

Therefore, the average value of the power would become:

P′aavg = 0.5VmImcos(θi)+0.5VcmImcos(θi +φ)

P′bavg = 0.5VmImcos(θi)+0.5VcmImcos(θi +φ +2π/3)

P′cavg = 0.5VmImcos(θi)+0.5VcmImcos(θi +φ −2π/3) (A.5)

Converting it from abc frame to dq frame the power equations are:

 P′davg

P′qavg

= 0.5VcmIm

 cos(φ −θ)

sin(φ −θ)

 (A.6)

Now let's look at the voltage imbalance in phases. By finding the energy imbalance in the

phases and inject the necessary power, the voltages will become balanced too:


∆Eaavg

∆Ebavg

∆Ecavg

=CdcVpavg


∆Vaavg

∆Vbavg

∆Vcavg

⇒ (A.7)
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∆Eaavg

∆Ebavg

∆Ecavg

 (A.8)

 P∗d pavg

P∗qpavg

=
Kp +Kis

s

−∆Edavg

−∆Eqavg

 (A.9)

Therefore, phase balancing voltage is:

Vpb = cos(wt +θ
∗
i )P

∗
d pavg− sin(wt +θ

∗
i )P

∗
q pavg (A.10)

The final control block diagram has been shown in the Figure 2.3. This controller can

balance the total dc voltages in each phase.

Figure A.6: Phase Voltage balancing Controller block diagram

• Voltage Balancing Controller: The last controller balances the voltages on all the DC

capacitors of each module. It acts like a circuit protector and prevents overcharging of
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capacitors. Just like the DC terminal controller, the proportional gain of this controller is

low. Since this controller get direct feedback from the power electronic and measurement

signals, it must be implemented on the slave controllers. The way this controller works is

Figure A.7: Module Voltage Balancing Controller Block Diagram Implemented in Slave
Controllers

by changing the effective active cycle of each controller, therefore the average current
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that each capacitor supplies will change and the circuit will become balanced. When the

grid is supplying current to the converter, the higher active duty cycle the capacitor has,

the more it is going to be charged. When the converter is sourcing current to the grid, the

action would be reversed. The higher active duty cycle the capacitor has, the more it gets

discharged. By using this principle, a controller based on Figure A.7 can be designed.
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Appendix B

Distributed Control Stages for Modular

Multi-level Converter

Modular Multi-level Converter (MMC) is one of the utilized converter topologies in high voltage

DC (HVDC) power transmission and had become practical from 1990s by different corporations.

MMC has better performance in comparison to the conventional tyristor based converters. The

total harmonic distortion (THD) has largly been improved due to the gradual change in the

output voltage (ommision of AC filter in the system). The semiconductor has been changed

to IGBT and it is possible to turn off the device without any problem. This will increase the

controlability of the converter and add capabilities like black start to the converter [85].

There are different topologies for MMC and the connection style of the converter to the electrical

grid (figure B.1)[3][37]. MMC can be single sided in each leg (like the cascaded H-bridge

converter in the previous chapter) or double sided. Single-sided MMC topologies are usually

suitable for STATCOM applications or in systems in which the DC voltage of each phase can

be connected to the load separately (Battery energy storage system). Since the single sided

converters may not be connected to DC grid without any conversion at the capacitor side, only
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double sided converter may be used for direct conversion of AC to DC or vice versa (BTB

system).

Figure B.1: Different Architectures of Modular Multi-level Converters (MMC) a)Single-Star
Bridge-Cells (SSBC) b)Single-Delta Bridge-Cells (SDBC) c)Double-Star Bridge-Cells (DSBC)

Figure B.2: Architectures of MMC Sub-modules a)Half-bridge b)Full-bridge c)Double-
clamped
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There are different possible converter architectures for sub-modules in MMC[63]. Figure

B.2 shows three most common architectures. Half-bridge sub-module has the lowest loss

compared to other architectures, but it can only conduct current in one direction. It is not

possible to form a single-sided MMC with this sub-module. The full-bridge sub-module adds

bi-directional capability at the cost of more switches. At each moment two switch must be

turned on for conduction, therefore the total efficiency of the MMC would be less. The double-

clamped submodule is combination of two half bridge converter and can perform better at DC

faults[66][97]. At dc fault, T5 (which is normally on) will be turned off resulting in voltage

clamping and energy absorption. During voltage clamping, both capacitors are in parallel,

ensuring minimized over-voltage.

In this chapter, the focus is on MMC with double-sided converter arm and half-bridge sub-

modules. The DC grid voltage controller and converter current controller for MMC are the

same as the cascaded H-bridge converter but there is different in the averaging control and the

balancing control of the converter [107, 37, 39, 58, 38].

Figure ?? demonstrate a three phase converter based on MMC. In this converter, each leg

(a) MMC Power Circuit (b) Half-bridge PWM chopper-cell

Figure B.3: Circuit Configuration of a Double-star MMC
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consists of eight sub-modules. Each sub-module consists of half-bridge connected to a floating

capacitor at dc side. All the equations are given for u-phase with 8 sub-modules and it can be

used for other phases and different number of sub-modules per phase. The following equation

exist at the DC voltages:

E =
4

∑
j=1

v ju + l
d
dt
(iPu + iNu) (B.1)

In this equation, E is the supply DC voltage, v ju is output voltage of each chopper cell, l is

buffer inductance, iPu and iNu are positive and negative arm currents. A circulating current (iZu)

through the dc power supply and the converter arm may be defined as follows:

iZu = iPu−
iu
2
= iNu +

iu
2
=

1
2
(iPu + iNu) (B.2)

The voltage balancing for the capacitors is divided in to two control stages. The averaging

control (phase voltage balancing) and balancing control. The first controller tries to equalize the

dc voltages in each phase and the later controller equalize the voltage of each cell.

• Averaging control: Figure B.4 shows the control diagram of the averaging control. This

block equalize the average voltage of capacitors in each phase. This controller forces the

average voltage v̄Cu to follow the reference point v∗C. The equation for v̄Cu is given by:

v̄Cu =
1
4

4

∑
j=1

vC ju (B.3)

The current command for balancing the voltage can be defined as following:

i∗Zu = K1(v∗C− v̄Cu)+K2

∫
(v∗C− v̄Cu)dt (B.4)
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The voltage command for balancing control is as following:

v∗Au = K3(iZu− i∗Zu)+K4

∫
(iZu− i∗Zu)dt (B.5)

Whenever v∗C is higher than v̄Cu, i∗Zu increases to compensate it. The main task of the

current minor loop is forcing the iZu to follow the i∗Zu. Controlling the iZu will enable the

v̄Cu to follow v∗C without getting any effect from the load current iu.

Figure B.4: Averaging Control of the Capacitor Voltages

• Balancing control: Figure B.4 demonstrate the structure of the balancing control. This

controller tries to balance the voltage of capacitors individually. Since the balancing is

based on either iNu or iPu, polarity of v∗B ju should be changed accordingly. When v∗C ≥ vC ju,

positive active power must be taken from the dc power supply and be fed to the chopper-

cell capacitors. When iPu (or iPu) is positive, multiplication of vB ju and iPu forms positive

active power. When iPu is negative, the polarity should be inverse to take positive active
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power from the capacitors. The following equations can be derived for the upper leg:

v∗B ju =


K5(v∗C− vC ju) (iPu ≥ 0)

−K5(v∗C− vC ju) (iPu ≤ 0)
(B.6)

The same equations may be applied for the lower leg:

v∗B ju =


K5(v∗C− vC ju) (iNu ≥ 0)

−K5(v∗C− vC ju) (iNu ≤ 0)
(B.7)

Figure B.5: Balancing Control of the Capacitor Voltages

The final reference voltage each sub-module (v∗ju) of a MMC with eight module per phase has

been shown in figure ?? and is given by:

v∗ju = v∗Au + v∗B ju−
v∗u
2
+

E
4

(upper leg) (B.8)

v∗ju = v∗Au + v∗B ju +
v∗u
2
+

E
4

(lower leg) (B.9)

In this equations, v∗u is the reference voltage for the u-phase load. For the upper leg, this voltage
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must have negative sign and for the lower leg, positive sign is necessary. These equations include

a feed-forward control from the dc supply voltage to the output (E
4 ). This element improves

the dynamic performance of the converter. The final controller stage in figure ?? may be

(a) Positive arm (b) Negative arm

Figure B.6: Voltage Command of each MMC Arm

implemented by distributed controllers. Data representing global variables may be supplied by

the master controller (synchronizer). Each slave controller has access to local variables and can

implement the whole control block.
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Appendix C

Schematics and Design of Fault-tolerant

Controller Testbed

This appendix represents the design of the test-bed for evaluating the fault-tolerant controller.

Figure C.1 through C.8 demonstrate the schematics of the controller board. The main design

sheet is in figure C.1 and other sheets are addressed by this schematic. Figure C.9 represent

the final design of the printed circuit board which has been populated and assembled for

implementation and testing of the controller architecture.
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Figure C.1: Schematic of the Main Sheet
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Figure C.2: Schematic of the FPGA Interconnection Configuration Circuit
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Figure C.3: Schematic of Switching Signal Buffers
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Figure C.4: Schematic of Slave Micro Controller
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Figure C.5: Schematic of Master Micro Controller
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Figure C.6: Schematic of Analog Signal Conditioning (Top Level)
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Figure C.7: Schematic of Analog Signal Conditioning (Low Level)
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Figure C.8: Schematic of Power Supply Unit
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Figure C.9: Printed Circuit Board Design of the Fault-tolerant Test bed
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