
Abstract

ADCOCK, DAVID BROOKS. Rapid Prototyping of a Single-Channel Electroencephalogram-Based Brain-
Computer Interface. (Under the direction of Edward Grant.)

This work describes the design, construction and implementation of a single-channel,

electroencephalogram-based (EEG) brain-computer interface (BCI) for the prediction of a single-degree-

of-freedom kinematic variable. The system employs a custom-built EEG amplifier to increase noise

rejection and decrease the overall cost of the BCI. The EEG amplifier output is read into Matlab syn-

chronously with an analog elbow-angle measurement taken from the test subject’s left arm. Sampling is

done at 300Hz using a 12-bit National Instruments PCI-6025E data acquisition card. Data is software

filtered, processed, and logged in Matlab in real-time on a standard PC. At the end of an initial data ac-

quisition period, a feed-forward backpropagation artificial neural network (ANN) is briefly trained off-line

to predict subject elbow angle based solely on recorded EEG activity. Upon resuming recording, the

system is accurately able to predict the test subject’s elbow angle in real-time. If employed in a robotic

system, this BCI would have applications in rehabilitation robotics, search and rescue, tele-robotics and

exoskeleton research.
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1 Introduction

The defining characteristic of humankind has been its ability to evolve technologically as opposed

to physically. Anthropologists state that as far back as seven million years ago, the ancestors of humans

were creating primitive tools to extend their intrinsic ability [1]. Modern tools have gone so far as to allow

us to rectify many of our own pathologies. Through technology, humans have all but absolved themselves

from the Darwinian rat-race [2].

Despite the tremendous advances humans have made augmenting themselves, certain tech-

nological borders have barely been breached. We adorn ourselves with various devices that allow us

to accomplish remarkable things. However, few technologies have focused introspectively. The true

goldmine of human technological evolution will be in intrinsic human enhancement. Ambulatory medi-

cal devices that enhance or repair a human’s natural ability have barely been explored but offer great

promise [2].

Pathology has driven research in intrinsic human improvement. The increased incidence of

heart disease in the United States has motivated the development of artificial hearts and pacemakers

that restore cardiac function [2]. The deaf and blind have recently experienced relief with implantable

cochlear and retinal stimulators. Brain implants show promise for relieving central nervous system (CNS)

deficits [2].

Pathology aside, these technologies, if proven safe and reliable, will be able to take mankind over

new horizons. Current cochlear implants, for example restore hearing in the natural 20-20kHz range, but

have the potential to adjust human hearing to any frequency range. Likewise, retinal stimulators could

potentially allow people to see selectively in infrared or night-vision. Optical overlays could even be

digitally inserted. This could allow surgeons to see inside the body without having to make any extra

incisions.
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1.1 Motivation

Among the most exciting potential for human-augmenting technologies are enhancements to the

human central nervous system (CNS). These technologies have the ability to enhance the lives of those

with and without pathologies alike.

Traumatic and pathological injuries to the CNS create a sophisticated problem. Affronts to the

CNS such as head trauma, spinal trauma, stroke, Parkinson’s disease, and Huntington’s disease usually

result in irreparable damage [3, 4]. The human CNS, unlike the peripheral nervous system (PNS) does

not readily repair itself. This implies that in order to fully recover from a severe CNS injury such as a

stroke or spinal cord injury, artificial augmentation is needed. In the United States there is a large market

for such augmenting devices [5]. According to the Spinal Cord Injury Information Network there are

approximately 11,000 new spinal cord injuries (SCIs) each year [5]. This network claims that there may

be 300,000 people in the United States alone currently living with some sort of SCI.

Augmentation of an injured CNS involves three steps. First, the CNS area that provides input

to the injured area is identified and is used as input to the augmentation device. The processing for the

injured area must be mimicked by the augmenting device. Finally, the effector that is controlled by the

injured CNS area must be actuated. This actuation may involve replacing the end-effector or actuation

device of the CNS or PNS beyond the site of injury [6].

The risks associated with direct neural interfacing are significant and thus make elective neural

interfacing unattractive. However, a person with a pathology can afford to take greater medical risks,

thus making such an interface a more attractive proposition. A person choosing to augment their CNS

electively, would have to be assured that the procedure would be safe, which is now possible using

several non-invasive interfacing procedures. These are an attractive option for the injured and uninjured

alike [7].

This research explores the creation of a safe, non-invasive brain-computer interface (BCI). This

interface is designed to control a one-degree-of-freedom kinematic variable using only scalp electroen-
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cephalography (EEG). The application of this interface will lend mobility to someone who is completely or

partially paralyzed. The system will be used in the rehabilitation of stroke or sports injury patients. Out-

side of pathological augmentation, the system can be used to control an exoskeleton, allowing a person

to lift multiple times their weight [8]. Although the potential applications are many, the primary goal of

the research was to create a platform on which further research at the NCSU Center for Robotics and

Intelligent Machines (CRIM) could be based.

1.2 Project Goals

The goal of this project was to create an EEG-based BCI platform for further research at the

NCSU CRIM. The system was designed according to the following criteria.

1. The system must be non-invasive and safe for use by an untrained person.

2. The system must be scalp electroencephalogram based.

3. The system must be cost-effective.

4. The software must run on a standard PC.

5. The system must predict a one-degree-of-freedom kinematic variable from EEG activity alone.

1.3 Thesis Outline

This thesis describes the construction of an EEG-based BCI. In Chapter 2, the current BCI

literature is reviewed so that the reader can put this work in context of the current research. Chapter

3 reviews neurobiology as it applies to BCI research, to provide the reader with an understanding of

exactly what being attempted. This information is crucial to understanding the instruments and algorithms

developed to predict arm movement from brain activity. The design of the BCI is then explored in the order

of the signal processing steps. This signal order is followed so that the reader can understand the logical

progression of the individual signal processing steps.
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Chapter 4 describes the design of the EEG used for acquiring brain signals. Motivation is pro-

vided for the EEG design and its features are explored in signal order. Chapter 4 ends with a review of

additional EEG signal processing tools for BCI applications.

Chapter 5 describes the methods used to acquire and store the recorded signals. EEG software

is discussed in Chapter 6. Data gathering is described, followed by input filtering. Methods for computing

neural synchronization are then explained. Finally, the learning algorithms considered for this project are

explored.

The verification procedures and experiments are delineated in Chapter 7. Chapter 8 draws

conclusions about the system and introduces ideas for future work to improve this device.
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2 Review of Brain-Computer Interface Literature

2.1 Introduction

Brain-computer interface (BCI) research is a permutation of functional neuroanatomy research

[9–11]. The two fields are so closely related that they are often indistinguishable. As a general rule,

studies of the applied use of neural activity can be categorized as BCI research. Studies that explore

the temporal and spatial relationships between neural events and external events fall into the category

of functional neuroanatomy [9, 12]. Many laboratories such as the McKeown laboratory and the Geor-

gopoulos span both categories and are renowned by both the BCI and neuroanatomy communities [12].

In this chapter, categories of research are explored in signal pathway order. First, research in

the identification of the spatial-temporal location of signals is discussed [12]. The preferences of various

laboratories for recording these signals is then explored. Practices for extracting relevant data features

from recorded signals are reviewed [13, 14]. Finally, studies using different feature analysis techniques

are presented.

2.2 Anatomical Disambiguation

The first information that a BCI researcher needs to know is what spatial areas of the brain are

responsible for the phenomenon under study. Korbinian Brodmann was one of the first people to make

a scientific attempt to categorize the areas of the brain. He used tissue samples to segregate the brain

into its distinct components. Brodmann’s areas, named for him, are now being confirmed to be of actual

significance by more advanced scientific methods such as fMRI, PET, EEG and MEG. [12] Two of the

biggest names in the field of anatomical disambiguation are Martin J. McKeown, M.D. and Apostolos P.

Georgopoulos, M.D., Ph.D. Both researchers study the cortical activity associated with motor movement

[9–11].

Martin McKeown has made extensive use of independent component analysis (ICA) to extract

relevant spatial-temporal information from various brain recording modalities including fMRI and EEG
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Figure 1: Brodmann’s Areas are groups of similar cells. These areas tend to be unique in function.
(figure from [15])

[10, 11]. McKeown’s work has both proved the merit of ICA and demonstrated the coupling between the

motor areas of the brain and body movements [10, 11].

Apostolos Georgopoulos [12] has gained widespread recognition for his analysis of cortical map-

ping. He is reported to have demonstrated that neurons of the primary motor cortex (M1) encode for the

force and direction of a limb. Further research in noninvasive recording techniques such as MEG has

shown the efficacy of such methods for clinical use [9].

Other researchers have tackled the problem of identifying relevant spatial-temporal locations

as well. Chih Hung has done work on using ICA to decompose multiple-lead EEG records into the

most relevant components [16]. This work demonstrates the importance of the C3 and C4 leads in the

International 10-20 EEG System for identifying motor movement [16]. Gert Pfurtscheller has explored

using autoregressive parameters to segregate left and right motor imagery [17]. This is a somewhat

novel approach to signal decomposition. Justin Sanchez in Miguel Nicolelis’ laboratory at Duke University

demonstrated that statistical culling of data from implanted neuron-recording arrays can actually improve

performance by selectively identifying the specific neurons that encode for a movement [18].
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2.3 Signal Recording

The Nicolelis laboratory at Duke University is an excellent example of how a research center

selects a recording technique and researches around that paradigm. The Nicolelis laboratory is known

for its work in implantable electrodes in primates [13]. The technique around which their research is

based involves implanting electrodes into the primary motor cortex and other supporting cortical areas

[13, 18–20]. The Nicolelis laboratory has done quite a bit of work improving these electrodes [20],

improving acquisition from these electrodes [18], as well as optimizing the algorithms used to make

kinematic predictions of primate arm movement [13].

The Pfurtsheller laborotory from the University of Graz, Austria, has taken an alternative record-

ing approach. Pfurtsheller has focused on improving non-invasive methods [21, 22]. The apparent goal

of the Pfurtsheller laboratory has been to create a BCI that is available to the general public. Significant

research has been put into making systems that do not require excessive biomedical equipment [14, 23].

Such non-invasive systems are extremely valuable.

2.4 Feature Extraction

Second in importance to knowing the spatial-temporal location of relevant brain signals, knowing

the encoding scheme used by that specific area of the brain. For example, the light sensing retinal ganglia

cells of the eye are excited by the absence rather than presence of light [12]. These encoding modalities

dictate how the brain signal is extracted so that coherent information can be given to the feature analyzer.

Two of the most common feature extraction techniques are the Hilbert transform and autore-

gressive (AR) coefficients. Hilbert transformation provides the signal envelope and AR coefficients allow

calculation of the band energy ratio. Papers from the Nicolelis and Pfurtsheller laboratories use both

techniques [14, 19, 23, 24].

Shiliang Sun analyzed: signal RMS power, spectral centroid, bandwidth, zero-crossing rate,

spectral roll-off frequency, band energy ratio, and delta spectrum magnitude as feature extraction tech-
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niques for binary classification [25]. Sun supports spectral centroid as the superior method for binary

classification [25].

2.5 Feature Analysis

BCI systems use learning algorithms and feature analysis techniques. Evaluation of learning

algorithms has been done by Rezaei [26] and Hung [16]. Hung’s report of Bayesian networks as an

efficient method of categorization has resulted in their popularity and use by several groups [16, 24,

27, 28]. For analysis of non-categorical data, a method must be used that allows numerical prediction.

Nicolelis et al. report using dynamic-configuration recurrent neural networks for exactly this purpose

[13].
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Figure 2: Categorized brain signals are filtered then used for feature extraction. Features are fed to
learning algorithms that predict desired variables. Output smoothing removes obvious artifact from the
predictions
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3 Exploited Principles of Neurobiology

3.1 Introduction

Neuroscience studies of functional anatomy provide BCI researchers with the tools needed to in-

terpret brain activity. There is a fine line between functional anatomy studies and BCI studies. Functional

neuroscientists use medical imaging and learning algorithms to identify spatial-temporal brain patterns

correlating to known external events. Alternatively, BCI researchers use medical imaging and learn-

ing algorithms to interpret spatial-temporal brain patterns to drive external events. This chapter briefly

discusses the neural anatomy and physiology that is interpreted by the BCI to drive external events.

3.2 Indicators of Brain Activity

3.2.1 Bioelectricity

The excitable cells of the body use electricity and ionic currents to transmit and store informa-

tion. Excitable cells can be found all over the body including in brain, heart and muscle tissue. In the

brain, neurons and glia are the primary excitable cells. Neurons are highly adaptive cells capable of

learning. Glia are the cells that support neuronal activity. The electrical activity of neurons and glia can

be measured as a means of interpreting brain activity. When neurons are at rest, they typically exhibit

a resting electrical potential of around −70mV [29]. When electrically excited, neurons permit ions to

rapidly cross the cell wall [29]. The voltage level rises to a peak around 40mV.

Electroencephalography Electroencephalogram (EEG) electrodes can measure the electrical activity

of neurons. Electrodes can be invasively implanted or non-invasively adhered to the scalp. A single

electrode measures the activity of a group of neurons. When local neurons fire in phase, their post-

synaptic potentials create a large enough ionic potential field to be measured by electrodes [31]. The

greater the degree of synchronization, the greater the potential.

It is typically the post-synaptic potential rather than the action potential (AP) spike that is read.
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Figure 3: Electrical impulses generated by cells (action potentials) are the basis of nerve function. They
can be recorded by brain interfaces to predict thought.
(figure from [30])
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Figure 4: Invasive and non-invasive sensors can be used for EEG recording.(figure (right) from [32])
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AP spikes are short lived and are thus less likely to overlap. In order to read the actual spike, nerve

sleeve electrodes are needed [33]. Using these electrodes is highly invasive.

EEG is a popular method for BCI [14, 16, 17, 21, 23–28, 34, 35]. EEG has the advantage of

having arbitrarily high temporal resolution. Spatial resolution can be theoretically increased to the single

neuron level. Unfortunately in EEG, invasiveness accompanies spatial resolution. Electrodes placed in

the brain can provide excellent data [13, 18–20]. Non-invasive scalp EEG signals provide only a rough

view of the underlying neural activity. It has been said that interpreting scalp EEGs is like trying to listen

into a single conversation in an sports stadium by sitting on the roof with a stethoscope.

Magnetoencephalography The orthogonal correlate to the electric field is the magnetic field. Move-

ment of electrons or ions results in the creation of magnetic fields. In neuronal dendrites, ionic current

flows are sufficient to create magnetic fields in the femtotesla range [36]. Magnetic fields are not dis-

torted by cranial tissue as are electric fields [9]. MEG is superior to scalp EEG when evaluated on the

basis of signal quality [9].

MEG was the initial, albeit short-lived, choice for brain signal acquisition. Initial research into

scalp EEG quickly unveiled its shortcomings in spatial resolution. MEG offered better spatial resolution

with temporal resolution equal to EEG. Georgopoulos’ paper on MEG interfacing made the choice look

promising [9]. But, it was soon learned that MEG is prohibitively expensive. MEG acquisition requires

the use of superconducting quantum interference devices (SQUIDs) to read the MEG signal. The further

requirement of an electrically sterile aluminum and mu-metal enclosed room was also a deterrent to using

MEG.

3.2.2 Hemodynamic Response

Two standard methods for evaluating functional neuroanatomy use hemodynamic responses to

identify cortical areas of increased function during a given task [12]. Research with these tools has

largely provided us with the knowledge of how the human cortex is organized [12]. Primarily used for
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Figure 5: SQUID’s are sensitive magnetic field sensors used for MEG.(figure from [37])
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Figure 6: fMRI can be used to acquire high spatial resolution, low temporal resolution brain activity maps.
(figure from [40])

clinical medical diagnostics and functional neuroscience research, these tools can also be used for BCIs

but are currently too unwieldy to be practical outside of a clinical environment [12, 38].

Functional Magnetic Resonance Imaging fMRI is a high spatial resolution method for measuring

brain activity. A MRI machine measures brain activity by identifying the increase in blood flow that occurs

as a result of increased neural activity [12]. The fact that blood is diamagnetic when oxygenated and

paramagnetic when deoxygenated makes this possible [39]. Although fMRI has a spacial resolution of

about 3-6mm, its temporal resolution is in the order of seconds [39]. Honda has developed a fMRI based

BCI that functions despite this limitation [38]. For most BCI applications, however, temporal resolution,

size, cost, and magnetic exposure risks make fMRI impractical.
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Positron Emitission Tomography An alternative to fMRI is positron emission tomography (PET). In

PET, radioactive markers are injected into the blood supply. As the marker decays, positrons are emitted.

Differential positron emission indicates the relative amount of blood located in a given area. PET is

comparable to fMRI for BCI applications. PET trades magnetic field exposure for radioactive exposure.

Where fMRI is simply not an option for subjects with ferrous metals in their body, PET can still be used.

EEG, MEG, fMRI and PET were all considered as potential means of brain monitoring for this

project. The use of MEG, fMRI, or PET would have precluded making a portable, cost-effective system

for use by future researchers in the CRIM laboratory. Scalp EEG, although lacking in spatial resolution,

meets all the design criteria this project. Should higher spatial resolution be needed for future work,

MEG, fMRI, PET, or invasive EEG might be used.

3.3 Motor Pathways

Brain-computer interfaces emulate the natural motor pathways of the central nervous system.

A complete understanding of the functional anatomy of the motor pathways is required for creating a

functional BCI. Studies using fMRI, PET and implanted electrodes reveal that certain brain areas can be

used to predict motor movements [9, 12, 13]. The raw data is typically analyzed with statistical methods

such as principle component analysis (PCA), independent component analysis (ICA) or linear discrimi-

nant analysis (LDA) to reveal how strongly each area of the brain correlates to motor activity [16, 34, 41].

It is consistently demonstrated that despite individual variations amongst subjects, specific brain areas

are related to certain functions.

3.3.1 Prefrontal Cortex

The prefrontal cortex is shown to be involved in the highest, most abstract levels of motor plan-

ning. This area is bilaterally connected via the corpus callosum.
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Figure 7: The brain’s motor areas connect to allow coordinated movement.
(figure contains copyrighted material from [42])

3.3.2 Posterior Parietal Cortex

The posterior parietal cortex (PPC) provides the motor areas of the brain with the environmental

information needed to formulate motor movements. The PPC consists of two areas, Brodmann’s area 5

and area 7. Brodmann’s Area 5 of the PPC receives information from the primary sensory cortex (S1)

relating current body position and tactile information. Brodmann’s Area 7 of the PPC receives visual

feedback from the occipital lobe. See Figure 1. [12]

3.3.3 Premotor Area (PMA) and Supplementary Motor Area (SMA )

The PMA and SMA (Brodmann’s Area 6) deal with motor planning. Studies with monkeys show

that intended movements are queued in these areas here until they are executed. Artificial electrical

stimulation of these areas results in complex motor movements. The PMA and SMA take inputs from the

basal ganglia. The PMA feeds to the reticulospinal motor neurons which synapse with proximal motor

units. The SMA feeds directly to distal motor units. [12]

3.3.4 Primary Motor Cortex (M1)

The primary motor cortex (M1) is believed to be the most direct link to motor movements. Artificial

electrical stimulation is shown to instigate simple motor movements at a minimum electrical threshold.
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Figure 8: The Homunculus represents what a human would look like if each body part was proportional
to the size of the brain area responsible for its control.
(figures contain copyrighted material from [42, 43])

Layer V pyramidal neurons (Betz cells) are the primary transmitters of motor commands to lower motor

neurons from M1. Inputs to Betz cells are from other cortical areas such as the PMA and SMA. Inputs

also come from the cerebellum and pons via the ventral lateral nucleus of the thalamus. The most recent

thoughts about Betz cells are that they encode for the force and direction of motor movements. This

implies that decoding to specific motor units is done at the level of the brain stem or spinal cord. [12]

It is also of note that M1 adheres to a consistent cortical mapping among species. The human

M1 is consistently mapped according to the “homunculus” [12]. Artificial stimulation of a given location

area mapped by the homunculus results in a motor movement of that area. This consistency can be

employed to the advantage of the BCI researcher.

3.3.5 Spinal Motor Pathways

Two pathways travel from the cortex of the brain to the effectors of the body. These pathways are

the lateral and ventromedial pathways. The lateral pathways are under direct cortical control, whereas

the ventromedial are filtered by the brain stem. The lateral pathways carry information about conscious

movements and the ventromedial pathways mitigate posture and balance. Both pathways descustate or

cross from left to right. For this reason, the right motor cortex controls the left side of the body and the

left side of the brain controls the right side of the body. Finally at the level of the spinal vertebra, the
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Figure 9: EEG recordings of brain activity during left- and right-sided motor movements.
(figure from [35])

pathways synapse with lower motor neurons.

3.3.6 Application

It is consistently shown that M1 provides the best predictor of motor movement [16]. Other

areas such as the PMA and SMA can enhance predictive abilities of a system when used in conjunction

with M1 [13]. Nicolelis places implantable electrodes in M1, the PMA and other locations to improve

predictive quality [13]. The disadvantages of using locations other than M1 are that the encoding of the

motor movement becomes increasingly abstract. The least abstract reading would be at the level of motor

unit nerves themselves, but this would no longer be a brain interface but more like an electromyogram

interface.

Placement of EEG electrodes over the hand-arm motor region of M1 results in the best readings

of arm activity. Conveniently, this location corresponds to the C3,C4 site on the International 10-20 EEG

system. Reading is taken on the contralateral side of the arm to be predicted. In this BCI, left arm

movement was predicted, thus the right scalp lead, C4, was used for EEG acquisition.
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Figure 10: The International 10-20 EEG System is a method of EEG lead placement.

4 Design of A Custom Electroencephalogram Amplifier

4.1 Introduction

Integral to the BCI system is how brain activity is measured. The human central nervous system

is an orchestra of interconnected neurons, glia, and support tissue that broadcast multiple indicators

of mental activity. A spectrum of tools exists for measuring these indicators ranging from bulky, costly

but accurate fMRI, to the portable, inexpensive, and inaccurate scalp EEG. All of these tools create a

window into the mind of a test subject [12], yet none of the tools serves as a ubiquitous interface for

all BCI applications. PET and fMRI, for example, both provide a moderate-to-high resolution, real-time

view of brain activity, but neither is portable enough to be used outside of a clinical environment. Scalp

EEGs are highly portable but are capable only of detecting gross brain activity. This inadequacy may be

overcome by replacing scalp EEG with scalp MEG.

Scalp MEG is similar to scalp EEG with the exception that the sensors read magnetic as opposed

to electric fields emitted through the skull. The insusceptibility of magnetic fields to convolution by cranial

tissue makes scalp MEG readings far more accurate than scalp EEG [9]. Yet current sensors for MEG are

prohibitively expensive. Groups like the Nicolelis laboratory at Duke University have chosen an alternate

solution using implantable EEG electrodes that are physically embedded in the brain [13]. This solution
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is highly effective but precludes use by the general population. Furthermore, communication from a brain

implant is limited to the area in which it is implanted. More often than not, signals from multiple areas

of the brain are desirable. The Nicolelis laboratory deliberately targets carefully chosen brain areas;

a general BCI user may require a more adaptable solution [13]. The research of Pfurtscheller et al.,

reinforces the merit of an adaptable system. Pfurtscheller et al. cite their work showing that multiple-

lead, subject-customizable, EEG-based BCIs achieve higher accuracy than single-lead EEG-based BCIs

[24].

In order to be practically applicable, a BCI system must not be overly expensive, bulky, invasive,

or specialized. These constraints are in direct opposition to recording quality, which is also critical for

a functional BCI application. Until technologies such as fMRI and MEG become more portable and

affordable, the only brain-interface solution that has any practical application for applied BCI is scalp

EEG. At roughly 2000 US dollars per system, EEGs are the cheapest solution but are hardly a bargain.

EEG experts such as Stephen Luck assert that even with a top-of-the-line system, experiments must

be performed in an electrically sterile environment [44]. Such requirements are impractical for most

non-clinical BCI applications.

The need for a low-cost, highly-portable, noise-impervious EEG system motivates the need to

construct a custom EEG amplifier. The advantages of a custom EEG amplifier are numerous. Organiza-

tions such as OpenEEG have shown that a custom EEG amplifier can be built for around 200 US dollars.

Basic biosignal amplifiers such as EEG amplifiers are not large circuits and can be custom designed to

be highly portable. Furthermore, custom filters can be implemented to attack noise bands. A properly

designed EEG amplifier could be highly effective for multiple BCI applications.

4.2 Electroencephalogram Design Goals

The BCI design for this project required a low-cost, high-accuracy, noise-impervious EEG am-

plifier. Future projects may also require some sort of general-purpose EEG, EMG, or ECG amplifier.
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Hence, the goal of this phase of the project is to create a general-purpose EEG amplifier with the follow-

ing features...

• Maximum safety

• Minimal cost

• Maximum noise rejection

• Driven-right-leg active noise cancellation

• Strict band-pass filtering between 0.1Hz and 40Hz

• Maximum portability

• Battery powered

• Single-channel differential analog input

• Multiple analog outputs with varying net gains

4.3 Power Supply

Power for the EEG amplifier comes from an isolated ±6Vdc supply. 18Vdc is supplied by two

series 9-Volt batteries. Two 6Vdc voltage regulators (78x06) are cascaded to produce +0Vdc, +6Vdc and

+12Vdc voltage outputs relative to battery ground. The +6Vdc terminal is selected to be Groundanalog.

The other two outputs thus become +6Vdc and −6Vdc relative to Groundanalog.

The battery driven ±6Vdc voltage configuration provides superior safety, noise rejection and

amplifier performance compared to wall power. This technique makes the system more immune to 60Hz

noise, and most importantly, eliminating the high voltage power connection greatly reduces the probability

of an electrical malfunction injuring the subject. Plus / minus voltage supplies also allow for superior rail-

to-rail performance in operational amplifiers.
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Figure 11: Schematic of the EEG power supply circuit and circuit layout.

Although battery-driven circuits have less intrinsic noise than outlet voltage sources, they are not

immune to noise. Natural fluctuations in circuit power consumption result in power voltage fluctuations

as voltage regulators adapt to increased power demands. Power voltage fluctuations can be translated

to recorded signals via fluctuating amplifier gains. Placing capacitance between the leads of the power

supply provides temporary power sources that can respond instantly to fluctuating power demands [45].

These capacitors stabilize the power supply, thus preventing power supply noise from being translated to

the signal.

In the PCB layout, power supply traces are routed as far as possible from signal traces in order

to prevent EM crosstalk between power and signal. The Groundanalog node is expanded into a large

plane, filling in gaps between signal traces. This technique grounds external EM interference that would

otherwise be induced between signal traces. These noise reduction techniques further stabilize the

signal [45].

4.4 Stage 1: Pre-Amplifier

Before the signal entering the body can be amplified by a differential operational amplifier, it must

be conditioned. Like any amplifier, a differential op-amp is susceptible to saturation if the input signal is

amplified into regions beyond its rails. Saturation most often results in irreconcilable noise as signals are
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Figure 12: Comparison of AC-Coupled and non-AC-coupled front-ends for biosignal amplifiers

clipped resulting in the addition high-frequency components. Bioelectric signals such as EEG and EKG

are extremely small 10µV to 100mV. They can be amplified at high gains without risking saturation.

Two common noise signals can be expected on the input lines along with the desired bioelectric

signal: high voltage transients and 60Hz noise. High voltage transients are large, slow changes in skin

surface potential caused by the accumulation of various types of charge. 60Hz noise is a byproduct of EM

coupling between wires in a circuit and the power wires that are abundant in buildings. Other EM spectra

are also picked up on wires, however they are far less powerful than 60Hz interference. The general

term for such signals is common-mode noise because the interference is imparted equally on all leads.

Voltage transients and common-mode noise are both often more pronounced than the desired signal to

be read [46]. These noise sources can thus pose a saturation risk [46] for the differential op-amp.

To combat noise-signal sources entering the differential op-amp, front-end circuitry is constructed

before the differential op-amp. This circuitry performs two tasks. First, AC-coupling capacitors are placed

on each input lead. This removes DC coupled signals such as voltage transients. Secondly, a carefully

constructed bias path for the AC-coupling capacitors improves the CMRR, allowing the differential op-

amp to eliminate 60Hz noise and other EM interference. Mario Spinelli et al. describe such a system in

their paper “AC-Coupled Front-End for Biopotential Measurements” [46]. A standard front-end AC-couple

has a bias path to ground.
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An improved front end eliminates the bias path to ground by creating a reverse bias path. This

modification was confirmed experimentally to increase noise rejection greatly.

4.5 Stage 2: Instrumentation Amplifier

The first amplification stage is an INA129U surface-mount, differential, instrumentation amplifier.

Like most differential op-amps, the CMRR of the INA129U increases with gain [47, 48].

Table: from INA129 data sheet showing CMRR as a function of Gain

The highest gain possible is selected for the first amplification stage to maximize CMRR. Blocking

noise in this way, before it cascades to later stages, means that the noise will not have to be removed

later. Gain is set by two equal gain resistors according to the equation G = 1 + 4.94kΩ
Rgain

[47]. 56Ω Gain

resistors are used to set a gain of approximately 100. This results in a CMRR of approximately 125 dB

[47]. This amplification is the highest achievable without risking amplifier saturation.

Although the INA129 is available in both PCB surface-mount (SO8) and through-hole (DIP8)

packages, surface-mount is preferable for low noise applications [45].

4.6 Stage 3: Band-Pass Filter

The signal passed from the initial amplification stage is a composite of EEG, motion artifact, and

electrical interference. The amplitude of the EEG, although significantly amplified, is still only in the single

millivolt range. This small EEG signal lies on the spectrum of about 1Hz to 35Hz [27, 49]. Analysis of

the signal spectrum at this stage reveals a broad spectrum including a large spike at around 60Hz. This

spike is the residual after common-mode noise rejection.

Any signal component outside of the range of 1Hz to 35Hz is undesirable, and is removed. This

can be done in software, however few data acquisition units can sample such small signals. Before the

signal can be amplified to a point where it can be sampled, undesirable contaminants must be filtered

out. Filtering before sampling serves a second purpose. When a signal is filtered, all signal components

above half the sampling frequency will result in aliasing. It is thus necessary for all signals above half
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Figure 13: Chebyshev have better greater attenuation (-68dB) at 100Hz than do Butterworth filters (-
47dB) for the same order and cutoff frequency

the sampling frequency to be culled to make aliasing negligible. The sampling frequency is commonly

referred to as fs. Half the sampling frequency is commonly referred to as the Nyquist frequency, or fN.

Many biosignal amplifiers employ first- or second-order Butterworth filters to prepare the signal

for sampling because Butterworth filters are maximally flat in their pass band. An alternative to a Butter-

worth filter is a Chebyshev filter which is not maximally flat in its pass-band. Unfortunately, Chebyshev

filters exhibit ripple in the areas immediately around the cutoff frequency. To their advantage, Chebyshev

filters exhibit a far steeper cutoff than Butterworth filters of the same order. Butterworth filters exhibit a

gradual roll-off.

The filtering specifications of this device call for strict filtering between 0.1 and 40Hz. It is desired

to have 60Hz frequencies attenuated by a minimum of 20dB to avoid 60Hz saturation of the amplifier.

Signals above fN need to be attenuated so drastically that they can be negated. 20dB attenuation is

equivalent to reducing the signal by a factor of 10. This is sufficient to avoid any aliasing that would occur
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if frequency components above fN were large enough to be sampled.

The overall band-pass filter used here is a combination of a 6th-order, low-pass active Cheby-

shev filter and a passive AC-couple (a capacitor in series). Sixth-order filters are absurdly difficult to

design by hand. If a circuit is designed correctly, and the transfer function is computed correctly (both

of which are unlikely), components must still be selected to achieve the desired filtering characteris-

tics. Furthermore, component values must be commercially available. Fortunately, Texas Instruments

has designed a powerful and free software package called “Filter Pro” that designs filters given desired

parameters passed to the function. This program was used and given the following constraints.

Table 2: Specifications given to Texas Instruments’ Filter PRO software for the design of the EEG filter.
Cutoff Frequency 40Hz

Filter Type Chebyshev
Order 6

Configuration Multiple Feedback (MFB)
Fully Differential NO
Resistor Series E12

Capacitor Series E6
Gain A 10
Gain B 1
Gain C 1

From the constraints issued to Filter Pro the following filter was designed. When prototyped,

the circuit exhibited nearly identical behavior to the Filter Pro prediction. An AC-couple was selected by

experimentation. The filter was attached to a spectrum analyzer and a range of AC-couple capacitors

were tried until one yielded the desired outcome. Initial designs included an active high-pass filter. It was

found on the spectrum analyzer that better performance was obtained by a simple AC-couple.

4.7 Stage 4: Post-Amplification

The final processing stage of the signal pathway is simple amplification. The signal up to this

point has been treated as a generic biosignal. Different biosignals require different amplification. EEG,

for example, requires far more amplification than ECG because of the fact that ECG signals are, prior to

amplification, orders of magnitude larger than EEG. The net gain up to this point is approximately 1000.
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Figure 14: Complete schematic of the EEG circuit.

This is sufficient for ECG, however, EEG requires further amplification by 10 to 100. Such amplification

results in an EEG signal with a peak-to-peak voltage of about 2 volts.

The amplifier designed in this project amplifies the signal in this stage by a factor of 10. Output

is routed to an output pin. The input to this amplification stage is also routed to a second output pin so

that the signal can be analyzed before amplification.

4.8 Additional Noise Reduction

4.8.1 Overview

Even with the construction of a low-noise EEG circuit, many factors can still contribute to noise.

EM detection on wires, skin impedance, motion artifact, and PCB noise all degrade signal quality. This

section describes techniques to overcome these obstacles to signal integrity.

4.8.2 Driven Right Leg (DRL)

One of the most effective ways of canceling EM interference induced in lead lines is to actively

cancel the artifact signal by feeding it back into the lines, out of phase. This is accomplished using a

driven right leg (DRL) circuit [49]. There are several designs available for DRL circuits including Webster’s

classic design [49], an integrating design [46], and a transconductance version [50]. Unfortunately, no
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Figure 15: Examples of DRL circuits. Top: standard DRL, Middle: integrating DRL. Bottom: transcon-
ductance DRL.

sources were found that thoroughly describe their design criteria.

The general principal of the DRL circuit is to read the common-mode noise signal from between

the Rgain resistors of the differential instrumentation amplifier. This signal is buffered and added to noise

signals from other leads. The signal is then fed back into the body via an amplifier. Experiments showed

that Webster’s design has superior noise rejection quality. Signal spectral analysis revealed that the act

of attaching the DRL electrode to the body virtually eliminates 60Hz noise instantaneously.

For its superior performance, Websters DRL design was implemented to improve the CMRR.

4.8.3 Wire Braiding

A common type of antenna is a wire loop which transduces EM flux. A common problem in

instrumentation is that roughly parallel wires that are separated act like antennae for EM interference.

To eliminate this problem, wires may be twisted or braided together to the greatest extent possible.

This places them in contact and eliminates their ability as a transducer of EM flux. This technique was

implemented to reduce noise.
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Figure 16: Attaching a DRL circuit eliminates the 60Hz spike in the biosignal trace.

4.8.4 Printed Circuit Board Layout

Circuit layouts have many problems caused by flat traces in close proximity exhibiting mutual

capacitance. Traces that are separated by some distance may also transduce EM flux. Carter describes

many circuit layout techniques for the minimization of noise artifact [45]. Techniques used in the EEG

PCB layout are listed below.

• Traces are orthogonal wherever possible

• The ground plane is large in order to sink, distribute, and negate interference

• Power supply circuitry is as far as possible from signal circuitry

• Signal circuitry is as close together as possible to eliminate distance losses and EM pickup (short

traces make poor antennae)

• No trace has a sharp corner and all corners are rounded to prevent high-frequency reflections
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• No digital circuitry was placed on the board, reducing high-frequency interference from digital

switching

4.8.5 Faraday Cage

A Faraday cage was built into a plastic carrying case. Fine wire-mesh copper screen was used

to line the entire inside of the box. The box is groundable through a connection tab on the box’s exterior.

Experiments showed that this box is highly effective at reducing external EM interference. An experiment

was performed where all leads were disconnected from a subject, thus receiving maximum EM interfer-

ence. EM noise was analyzed under different shielding conditions. The circuit and leads were placed

in the grounded cage and the lid slowly closed. As the box was closed, EM was rejected. The Faraday

cage is a barrier to outside noise. This cage is not particularly useful because the leads, the primary

receptors of interference, must remain outside the box. For this reason the cage was abandoned for the

final design.

4.8.6 Lead Selection

Much experimentation was done with leads. Initial attempts to make leads were unsuccessful.

Webster’s Medical instrumentation illuminates part of the problem. The electrode at the skin interface

must be made of specialized conductors. Leads must interface with the skin using certain types of metals

that exchange ions for electrons. Silver chloride (AgCl), for example, emits an electron in response to a

cation. Conversely, it emits a chloride ion when stimulated by an electron.

Ag⇋ Ag+ +e− (4.1)

Ag+ +Cl− ⇋ AgCl ↓ (4.2)

Experimentation with various lead constructions revealed that commercial leads yield the best
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performance. Inexpensive, alligator clips yield the second best performance but are prone to noise.

Custom leads are so prone to noise that a usable signal cannot obtained. Shielded leads perform better

than unshielded leads. Unfortunately, commercial shielded leads were too expensive for this design

iteration.

4.8.7 Skin Preparation

Skin surface impedance has a tremendous effect on signal quality [51]. Mismatched impedance

causes differential electrical transduction between the leads, which translates directly to the voltage mea-

sured by the differential amplifier [49]. There are several methods for overcoming this, the simplest of

which is to prepare the skin with a commercial electrode preparation gel. NuPrep TMis a slightly abrasive

sterilizing gel that is applied to a cotton swab and rubbed over the desired electrode area. This action

gently removes the top layer of dead skin and cleans the electrode site. After preparation, the electrodes

have an equal, low impedance connection site on the skin.

4.8.8 Software Filtering

Noise can also be subtracted in software. Simple discrete-time Fourier-transform-based filtering

can be employed to control selected bands. More complex filtering methods are suggested by Clancy,

Hamilton, Erfanian, LevKov and Osdamar [52–56].

These methods of software filtering apply advanced spectral analysis to selectively remove arti-

fact signals such as electroocculogram (EOG) and motion artifact. With the exception of Levkov’s subtrac-

tion procedure, none of these systems were implemented because of limited computational resources.

The methods described by Levkov are advanced subtraction procedures that are highly effec-

tive at increasing the CMRR [56]. A simplified version of Levkov’s procedure was investigated. Three

electrodes were used, signal (S), reference (R) and ground(G). The desired recorded lead was between

signal and reference. Actual recorded leads were signal-to-ground (SG) and reference-to-ground (RG).

All leads contained equal common mode noise (vcm). This noise was almost completely rejected by sub-
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tracting RG from SG. Multiple leads are required to perform a subtraction procedure, therefore Levkov’s

methods were not implemented in the final design. Single-lead noise-rejection methods were implented.

SG= Vsignal to ground+Noisecommon−mode (4.3)

RG= Vre f erence to ground+Noisecommon−mode (4.4)

SR= (Vsignal to ground+Noisecommon−mode)− (Vre f erence to ground+Noisecommon−mode) (4.5)

= Vsignal to ground−Vre f erence to ground (4.6)

= Vsignal to re f erence (4.7)
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Figure 17: Example of Signal Aliasing.

5 Data Acquisition

5.1 Introduction

Analog data must be acquired by a computer in order to do the processing needed for a BCI. The

goal of this BCI was to predict arm-angle based on EEG activity from a single head lead. Both arm-angle

and EEG activity are acquired by a National Instruments PCI-6025E DAQ. EEG activity and arm angle

are converted to analog electrical signals that are sampled by the DAQ at 300Hz.

The sampling frequency, fs, of 300Hz is based on the Nyquist criteria of data sampling. This

criteria states that the lowest frequency at which a signal may be sampled is the Nyquist frequency. The

Nyquist frequency is equal to half the sampling frequency. If the greatest frequency component of a

sampled signal exceeds this frequency, aliasing will occur.

In the case of this BCI, the highest frequency component to be read lies in the EEG signal

and is approximately 40Hz. When the original EEG biosignal is hardware filtered, attenuation begins at

40Hz. Because no realizable filter is perfect, only frequencies above 100Hz can be considered to be of

negligible amplitude. Based on this assumption, the Nyquist frequency is 200Hz. The Nyquist frequency

however dictates the minimum frequency at which a signal can be sampled, not the optimal sampling

frequency. Faster sampling results in more accurate signal reconstruction. It also results in larger, more

unwieldy data sets. Optimal sampling balances sampling accuracy with data storage and processing
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capability. Most BCI applications report sampling frequencies of around 120Hz [27]. This is inadequate

for this application because it is below the Nyquist frequency. Sampling at an arbitrarily chosen rate of

1.5 times the Nyquist frequency, 300Hz, results in better accuracy than sampling at the minimum Nyquist

frequency. Sampling at 300Hz also results in data sets of manageable size.

Calculating the data acquisition rate reveals that data management is quite feasible. Sampling

at 300Hz results in 18000 samples per minute, per channel. At 12-bit sampling resolution, this equates

to 216000 bits (27000 bytes or about 26.4kBytes) per minute, per channel. As two channels (EEG and

arm angle) are being sampled, a total of 52.7kB are being sampled per minute. At this rate it would take

19.4 minutes to accrue 1MB of data. This data size is manageable considering that only ten minutes of

data samples are required to train a BCI [16]. Most personal computers now have up to 2048MB (2GB)

or more RAM. Were RAM to be used strictly for data storage, a personal computer with 2GB of ram could

store 27.6 days worth of data. This indicates that the data requirements of this BCI are well within the

processing power of even a modest home PC.

5.2 Electroencephalogram Data Acquisition

The EEG signal begins as a bioelectric signal produced by groups of neurons in the brain. The

signal causes ions to move locally within tissue. These ions instigate a chemical reaction in the silver

chloride (AgCl) EEG electrodes. This chemical reaction results in the emission or absorption of electrons.

Electrons flow preferentially along copper lead wires to a differential op-amp where they are transduced

into a powered electrical signal. This signal is amplified, filtered in hardware, amplified again, and trans-

mitted as a large analog voltage to a data acquisition device. Low noise data acquisition is made possible

by separating the digital sampling circuitry of the DAQ from the sensitive analog circuitry of the EEG sen-

sor. To further make the EEG signal as noise free as possible, the EEG channel on the DAQ is connected

physically as far apart from the arm DAQ channel as possible to prevent electrical crosstalk.

The analog signal of the EEG is sampled at a rate of 300Hz with 12-bit resolution. With ±6Volt
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rails this equates to a voltage sensitivity of about 3mV. This sensitivity is sufficient for reading the

small EEG waves which are amplified to a peak to peak amplitude of around 20− 30mV. Larger EEG

waves have peak-to-peak amplitudes of 200− 300mV. Voltage transients have amplitudes in the volt

range. These EEG signals are sampled, buffered on the DAQ, and read into Mathworks Matlab7.1 TMfor

processing and permanent storage.

5.3 Arm-Angle Data Acquisition

The position of the human elbow is regulated by local lower motor neurons and upper motor

neuron inhibition of the lower motor neurons. Elbow activity is cortically controlled by the activation of

upper motor neurons inhibiting muscular opposition to the activity. In other words, flexion is controlled

by the inhibition of extension-lower-motor neurons and extension is controlled by the inhibition of flexion-

lower-motor neurons. [12]

Indirectly, elbow angle indicates the relative activity of the upper motor neurons controlling the

elbow. For this BCI, a special elbow brace, originally designed by NCSU graduate student Carey Merritt,

was modified to sense elbow angle [57]. This was achieved by the addition of a potentiometer sensor to

the elbow brace that changes resistance as a function of brace angle.

Power and ground leads of the position sensor are connected to a 9V battery. As arm position

changes, the voltage of the variable-output lead of the sensor changes concomitantly. The variable lead

of the sensor is connected as analog input to a second channel of the DAQ. This channel is physically

connected as far as possible from the EEG channel on the DAQ to prevent crosstalk. The arm-angle

channel is sampled at 300Hz and 12-bit resolution. The arm channel is sampled synchronously with the

EEG channel. Arm position data is sampled, buffered on the DAQ, and read into Mathworks Matlab7.1

TMfor processing and permanent storage.

34



50

100

150

200

250

300

350

Figure 18: Elbow angle sensor.

6 Brain Computer Interface Software

6.1 Introduction

All the processing of the BCI is done in software in real-time. The BCI hardware is responsible for

providing the software with clean, meaningful data. Software then performs all of the signal processing

necessary to predict actual arm movement in real-time based on the EEG signal. Signal filtering, alpha-

and beta-wave extraction, power-band analysis, and neural network arm-angle-prediction are performed

in real-time. Neural network training is performed off-line.

The program has a meaningful graphical user interface that allows the experimenter to acquire,

view, analyze, save, and recall data. When a subject is properly connected to the system, the exper-

imenter begins data acquisition and can view any of the acquired or processed channels in real-time.

Acquisition normally occurs for a fixed period of ten minutes, but may be interrupted at any time by the

experimenter. Acquired data can be saved and used for neural network training at the experimenter’s
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discretion and convenience.

The program was developed in Mathworks Matlab7.1 TM. Of the available environments in which

a signal analysis platform could be built, Matlab provided the most efficient environment for rapid pro-

totyping and development. Matlab Signal Processing, Data Acquisition and Neural Network toolboxes

were used.

The tools built into Matlab allowed rapid iterative development. Signal processing requires

many complex algorithms such as the fast-Fourier-transform frequency-analysis method and Levenberg-

Marquardt neural-network-training method. Matlab has many such methods already built-in and opti-

mized. A significant part of the software design time involved experimenting with different algorithms for

signal analysis. Use of Matlab enabled the rapid development of a functional system. See Figure 2.

6.2 Design Goals

The purpose of the software was to provide an arm-angle prediction based on analog EEG

data. The software was supplied with the analog EEG signal via a data acquisition device. Actual arm

angle was also supplied via the data acquisition device for evaluation of accuracy. The actual arm angle

was used to train the learning algorithm. The actual arm angle was NOT used to help render the arm-

angle prediction. Use of the actual-arm angle to aid in arm-angle prediction would have defeated the

purpose of a brain-actuated system. The software did all of the signal processing necessary to predict

arm angle in real-time. Natural physiological differences between subjects makes a fixed prediction

algorithm impossible. A computer-learning algorithm was employed to make the arm-angle prediction.

This algorithm was trained off-line but yield predictions in real-time. The prediction did not need to be

output to any device. All that was required is that the output be displayed on a screen along with the

actual arm angle.

To facilitate data analysis, the program allowed data to be viewed, saved, and recalled. Viewing

the data, both in real-time and retrospectively, allowed experimenters to assess the quality of recordings
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Figure 19: BCI Graphical User Interface.
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under various conditions. This is critical at the beginning of a trial. Frequently, electrodes needed to be

adjusted or repositioned in order to improve the signal-to-noise ratio. Saving and recalling data allowed

for data analysis and simulation without connection of the BCI to a live subject.

6.3 Data Acquisition Procedure and Input Filtering

6.3.1 Data Buffering and Display Threads

Two channels of analog data are simultaneously read into the software at a rate of 300Hz. This

rate corresponds to approximately three times the highest frequency component to be read. Data is read

into a 12-bit National Instruments PCI-6025E DAQ. In software, there are two concurrent timer-based

threads. A data acquisition thread gets data from the PCI-6025E buffer and immediately processes the

signal. A second display thread puts the acquired and processed data on an on-screen oscilloscope.

Both primary threads are timer-based. Matlab does not support threads, thus, multiple processes were

put on timers. The acquisition and display timers have periods of 0.1 and 0.12 seconds respectively. This

means that collisions will only occur approximately every 1.2 seconds, or every tenth cycle. The display

timer is set to drop its action upon collision, whereas the acquisition timer is set to queue its action upon

collision. With this configuration, should a collision occur, the display timer will yield to the acquisition

timer. The acquisition timer is given priority because it is responsible for maintaining the real-time signal

processing. A lapse in the display is preferable to a lapse in the real-time signal processing.

6.3.2 Overlapped Band-Pass Filtering

The EEG signal read by software contains a lot of information that is irrelevant to the prediction

of arm movement. Fabiani et al. report that alpha waves (8-12Hz) and beta waves (18-28Hz) provide

the best information about motor movement [24]. Relevant wave bands can be extracted using software

band-pass filtering. The relevant wavebands for the extraction of motor activity are the pure overall EEG

(3-35Hz), alpha waves (8-12Hz), and beta waves (18-28Hz).
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The procedure for software band-pass filtering follows.

1. Compute the FFT of a the signal to be filtered.

2. Zero all elements of the FFT corresponding to frequencies outside of the pass-band.

3. Compute the inverse FFT of the modified FFT to obtain the filtered signal.

The FFT results in the complex frequency-domain representation of a discrete time-domain sig-

nal. A discrete signal of M points will have a FFT with M points as well. Each point corresponds to a

frequency component. In the FFT there are two points for each frequency component. An M point FFT

thus represents M
2 frequency components. The highest frequency component represented by a FFT is

always sampling f requency
2 . It follows that there are M

2 frequencies between 0Hz and half the sampling fre-

quency. More FFT samples means greater FFT resolution. We compute how many samples are needed

to obtain a FFT precision of ρHz for a sampling frequency fs

fFFTmax=
fs
2

(6.1)

∆ f =
fFFTmax

M
2

= ρ (6.2)

M =
fs
ρ

(6.3)

fs
ρ

samples=
1
ρ

seconds (6.4)

It was desired to software-filter incoming data with at least 1 Hz precision at a real-time rate of

10 Hz. With a sampling rate of 300 Hz and an acquisition timer frequency of 10 Hz, data is acquired

by the software 30 samples at a time. Filtering this data on demand, 30 samples at a time, results in a

FFT precision of 10 Hz. This means that the filterable bands are 0-10 Hz, 10-20 Hz · · · 140-150 Hz. To

approximate filtering at 3-35 Hz, 8-12 Hz and 18-28 Hz, this precision was unacceptable. To accurately

achieve these filtered bands, a FFT resolution of 1Hz or less was required. This implied filtering at least
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Figure 20: Software bandpass filtering results in errors at the beginning and end of the signal.

one second of data at a time, regardless of sampling rate. Reading buffered samples and processing

data once every second is not real-time processing. Another means of processing was employed to keep

the processing rate within the design parameters.

Fabiani et al. [24] describe in their paper “Conversion of EEG Activity into Cursor Movement by a

Brain-Computer Interface(BCI),” a creative method of computing AR coefficients on incoming data. Every

0.1 seconds the Fabiani BCI computes the AR on the past 0.2 seconds of data such that the iterations

overlap [24]. This method inspired a similar method for band-pass filtering. Using a similar method, data

is acquired 0.1 seconds at a time. However, filtering is immediately done on the past two seconds of data

in order to acheive 1
2Hz filtering precision. Although the filtering is more precise, the first quarter of the

filtered signal is not accurate.

The beginning of the filtered signal overlaps with a signal that was previously filtered. The over-

lapping areas are nearly identical except at the first quarter of the overlap where the most recently filtered

signal deviates. The overlapping portion of the newly filtered signal is safely discarded, resulting in 0.1

seconds of data that has been filtered with 1
2Hz precision.

The filtered signals, now cleaned of undesired components, are ready for further processing

steps as Hilbert transformations or AR coefficient computation.
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6.3.3 Arm Channel / Predicted Channel Acquisition

One of the challenges of data acquisition is that the data channels require two different sampling

rates. The two environmental signals that are read into the computer via the PCI-6025E data acquisition

card are EEG brain activity and actual arm angle. The EEG channel requires a sampling rate of 300Hz.

The arm angle requires a sampling rate of 10Hz. Sampling the EEG at a slower rate results in the

destruction of the signal from aliasing. Sampling the arm angle at a faster rate creates unnecessarily

large data sets.

Fabiani et al. reported using an under-sampled kinematic variable to perform training [24].

Fabiani’s method of sampling is to acquire the EEG at a high rate, thus getting accurate filtering and

power-band data [24]. The kinematic variable is sampled at 10Hz [24]. Algorithm training is done on

the 10Hz sampled signal but makes use of the finer data of the EEG to get more accurate frequency

information [24].

Arm-position sampling and simulation, as well as neural network training, is performed on a the

10Hz signal. Arm position is read synchronously with EEG. Both signals are read at 300 samples/sec.

Arm position is under-sampled to 10 samples/second by discretely averaging 0.1 seconds of acquired

data at a time and storing the value. EEG data is stored at the original 300 samples/second. Arm-position

prediction is done at 10Hz to match arm acquisition. Each prediction uses the past 15 seconds of high

resolution EEG data to predict arm angle.

Under sampling the arm results in an efficient system. Consider the case where arm angle is

predicted every 3ms (at 300Hz) as opposed to every 0.1 sec (10Hz). Simulation time would increase

by a factor of 30. Training time would increase by at least a factor of 30. The arm-angle prediction

would exhibit high frequency components every time the learning algorithm made a poor prediction. The

sampling rate would be decreased further but one risks sampling too slowly. Fabiani et al. assert that

10Hz is an effective rate and that is confirmed in this research [24].
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Figure 21: Alpha and beta waves can be extracted from the EEG signal by bandpass filtering.

6.4 Feature Extraction

6.4.1 Component Wave Extraction

As neurons of the central nervous system fire, coordinated firing results in patterns of electricity

that can be measured at the scalp. Spectral analysis reveals certain frequency bands to be indicators

of cortical activity. Various event-related potential (ERP) studies have shown that alpha and beta waves

emitted from the area of the C3 and C4 electrodes (primary motor cortex) on the standard international

10-20 EEG configuration, exhibit high correlation to motor movement [16, 34]. It is thus desired to extract

the alpha and beta waves from the net EEG signal.

Alpha and beta wave extraction is accomplished via software FFT-based band-pass filtering.

The method of band-pass filtering is described in section 6.3.2. As net EEG data is sampled, it is

independently filtered in real-time on the 8-12Hz and 18-28Hz bands. The results of that filtering are

stored as two additional computed signal traces. These traces are the alpha and beta waves.

6.4.2 Power Density and Autoregressive Coefficients

Event related (de)synchronization of the alpha and beta bands of the primary motor cortex EEG

leads (C3, C4) provide indicators of motor movement [58]. When viewing the electrical activity of the

brain, event-related synchronizations appear as waveforms of increased amplitude. The amount of syn-
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Figure 22: Hilbert transformation of an amplitude modulated signal

chronization is thus related to the signal energy as opposed to simply the signal’s instantaneous ampli-

tude. Two methods for extracting the degree of neural synchronization are considered, the Hilbert trans-

formation and AR coefficients. The Hilbert transform provides the signal envelope for the transformed

wave, thus giving a measure of its instantaneous power. Autoregressive (AR) coefficients describe the fil-

ter coefficients needed to construct a given signal from white noise. As such, the coefficients provide the

spectral power density of a signal. Examining the properties of these methods on the relevant spectral

ranges for alpha and beta waves yields the degree of neural synchronization in those bands.

The Hilbert transform method of computing neural synchronization is to compute the envelope

of the alpha and beta bands. Hung et al. use this in their BCI [16]. To acquire a measure of the

instantaneous synchronization in the alpha and beta bands, the relevant bands are first extracted from

the EEG signal via software band-pass filtering [16]. The Hilbert transformation of the computed alpha

and beta waves are acquired by convolving each signal by 1
πt . In Matlab this is easily executed using

the built-in hilbert(x) function, part of the Matlab Signal Processing Toolbox. This instantaneous signal

envelope provides an indication of the absolute degree of synchronization in the alpha or beta band.

An alternate means of computing neural synchronization is to compute the normalized spectral

power density and analyze what percentage of the overall power lies in the desired power bands. Au-

toregressive (AR) coefficients reveal the filter coefficients required to fabricate a given signal from white
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Figure 23: The relative power of the alpha waves is computed as a function of time using AR coefficients

noise. The 255-point frequency response of the AR transfer function reveals the spectral power density.

The preceding two steps are done quickly in Matlab with the pburg algorithm from the Matlab Signal

Processing Toolbox. This function is used on the EEG signal which is first filtered between 3 and 35Hz

to remove obviously undesired signals. The resulting transfer function yielded by the “pburg” algorithm is

analyzed by summing the frequency response over the alpha and beta spectra. The sums reveal the rel-

ative power of the alpha and beta bands. This method was successfully used by Guger and Pfurtsheller

[14].

Comparison of the two methods for computing neural synchronization reveal that AR coefficients

provide a more reliable measure. Hilbert transformations are excellent for computing the envelope of

amplitude modulated signals. Not all signals provide as nice results. Square waves for example, create

divergent signals when using the Hilbert transform. Switching behavior can thus crash subsequent pro-

cessing stages when the Hilbert transformation yields ±in f inity at switching junctions. Computing AR

coefficients provides the additional benefit that it can diagnose 60Hz noise which will be noticeable upon

examination of the spectral power density.

Figure of spectral density.
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Figure 24: The Hilbert transform diverges under specific signal conditions which can cause errors during
further signal processing steps.
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Figure 25: Spectral power density is a more stable measure of neural synchronization.
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6.5 Learning Paradigms

This section provides an overview of the most popular learning algorithms in BCI. A brief de-

scription of each algorithm is provided along with the motivation for its acceptance or rejection.

6.5.1 Bayesian Networks

A Bayesian network is a state-based, probabilistic graphical structure. A series of states are de-

fined, the connections between which are assigned a bayesian probability. These networks are extremely

useful in BCI research for differentiating cognitive activities such as left- and right-handed motion [26].

These networks do not provide a continuum of possible values, so they are of limited use in predicting

kinematic variables. One could approximate a kinematic variable by predicting the sign of the derivative

of an action (-1 0 +1). This prediction could be integrated over time to acquire an estimate position. Given

the lack of an accurate derivative magnitude, this method was of limited use and was not used in this

design.

6.5.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) seeks to separate data into classes according to computed

or learned linear discriminants. LDA is used for solving problems such as determining which frequency

bands contribute to motor activity [16]. LDA is a common tool in machine learning but, like Bayesian

networks, lacks the ability to express a prediction numerically as opposed to categorically. LDA would

provide the ability to adjust alpha and beta frequency bands to the precise relevant band of the individual

subject. This feature would be useful but was not within the scope of this thesis. LDA was not used in

this project iteration.
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6.5.3 Support Vector Machines

Support vector machines (SVM) are reported to be highly effective in BCI predictions [16].

SVMs are linear or non-linear data classifiers. Data is classified using hyperplane separators called

parallel margin hyperplanes. These planes, parallel and equidistant from the separator plane, maximize

data class separation [59]. No information was found to show how SVMs could be used for numerical

as opposed to categorical predictions. However, SVMs hold much promise as their training is far simpler

than most algorithms. SVM training relies on only the data points (support vectors) adjacent to the margin

hyperplanes [59]. The availability of SVM toolboxes for Matlab makes their use even more appealing.

Although Hung showed SVMs perform equal to or better than neural networks, no support could be found

to implement them as a numerical predictor [16]. SVMs were not incorporated in this iteration of design.

6.5.4 Mutual Information

Mutual information (MI) is a useful tool in BCI. MI provides feedback about how well an input

dataset will predict an output. MI addresses the question of mutual entropy, or how much predictive

uncertainty is left given a set of knowledge. Given the probability distribution functions, p, of two discrete

datasets X and Y, it can be discerned how much information about Y is contained in X by formula (number

formula below)

Mutual In f ormation= ∑
x

∑
y

p(x,y)log2
p(x,y)

p(x)p(y)

This information can be used as feedback on connection quality, electrode placement, and even the

quality of the learning algorithm. Rezaei reports using mutual information in their work [26]. The addi-

tional amenities provided by MI did not outweigh their implementation cost and they were not used in this

project iteration.
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Figure 26: An example of an artificial neural network.(figure from [60])

6.5.5 Neural Networks

Neural networks provide a robust machine-learning tool with a multitude of possible configura-

tions and support in many environments. BCI experts such as Miguel Nicolelis, use neural networks

as their learning algorithms [13]. Hung achieved 60-70% prediction accuracy using neural networks in

their BCI learning algorithm trials [16]. Neural networks can be configured for numerical or categorical

classification as well as linear and non-linear response. Matlab has a standard Neural Network Toolbox

with great support and a variety of built-in functions, including multiple learning algorithms. Furthermore,

there is something truly concinnous about using artificial neurons to disambiguate the activity of biolog-

ical neurons. Artificial neural networks were chosen as the machine-learning algorithm because of their

ease of implementation and demonstrated sucess with effective BCI prediction in other studies [13, 16].

6.6 Neural Network Architecture

A 15-12-1 sized feed-forward, backpropagation neural network with respective tangent-sigmoid

and linear neuron layers was employed as the predictive element of the BCI. Inputs were one input

neuron with 14 consecutive tapped delays. The Levenberg-Marquardt learning algorithm was selected.
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Figure 27: Adaptive filters networks are specific configurations of neural networks. These filters can be
linear or non-linear. The non-linear version shown was used in this project.

6.6.1 Input Size

Design of the input was inspired by adaptive linear (ADALINE) neural network filter [27, 61] .

An N− input ADALINE filter typically has one input that traverses sampled data. Previous samples are

passed backward through N−1 tapped delay inputs.

Hung et al. describe an ANN for the classification of hand movement that has 128 inputs, ten

hidden neurons and one output [16]. The neural network used in this project has one input that traverses

the processed EEG data (EEGp(t)). There are 14 tapped delays that sample past data at an interval of

one second. In other words, the inputs to the neural network at any given time, t, are the processed EEG

samples {EEGp(t) EEGp(t −1) EEGp(t −2) · · ·EEGp(t −14)}.

The input vector of 15 elements, spaced one second apart was converged upon empirically.

Starting with 10 input neurons spaced one second apart, network size was increased. Stopping con-

ditions were negligible performance and / or substantially increased training time. An input size of 15

yielded a good balance of performance and training time.

6.6.2 Hidden Layer Size

Whereas ADALINE filters use linear neural network transfer functions in their hidden layers, BCI

applications require non-linear learning. For this reason the hidden layer of 12 neurons used tangent-
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sigmoid transfer functions. These functions take a weighted sum of inputs from the input layer and

compute an output in the range of ℜ ∈ [−1,1].

Figure: Tangent Sigmoid Function

The hidden layer size of 12 was converged upon empirically by starting with a small number

of hidden neurons and increasing the number until the added training time balance the performance

increase. A hidden layer size of 12 met this criteria.

The outputs of these hidden neurons are weighted and summed and passed to the output linear

transfer function. The output of this transfer function is ℜ ∈ [−∞,∞].

6.6.3 Training Algorithm

Several training algorithms were used. Initial trails with delta-rule gradient decent failed due to

lack of accuracy. The Levenberg-Marquardt (LM) algorithm proved to be more accurate. Trials were

done on small data sets. Hung reports using training times of ten minutes [16]. Ten minutes of data at

300 samples per second yields 180000 samples. Before the network was optimized, the LM algorithm

consumed too much memory and regularly crashed the computer. Because the requirements of the BCI

state that the system be manageable on a PC, the algorithm was changed back to the less accurate

but less memory costly delta-rule. This time an advanced delta-rule algorithm was used that utilized

“momentum” to prevent error minimization from converging at a local minimum. Network size and training

methods were semi-optimized and the algorithm was returned to the LM algorithm for final optimization.

The data showing the neural network trails is shown below.

The final training method is similar to the method of simulation. Instead of training on 180000

sample iterations, arm angle and the degree of neural synchronization is under-sampled by a factor

of 30, to 6000 samples (or 10Hz). High-resolution EEG data is still used to compute the degree of

synchronization. Training inputs are identical to the simulation inputs at a given time, t.

{EEGp(t) EEGp(t −1) EEGp(t −2) · · ·EEGp(t −14)}
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Table 3: The results of the neural network performance trials resulted in convergence upon the current
network architecture. [A] is simulation time duration, [B] is the ANN configuration. [C] is the input spacing
in samples. [D] specifies the neuron transfer function (tansig is non-linear, lin is linear). [E] is the evaua-
tion function used for calculating predictive error. [F] is the training algorithm (traingdx is gradient decent,
trainlm is Levenberg-Marquardt). [G] is the final error (mse or sse). [H] specifies how the simulation was
terminated (Max Epoch is a natural termination).

A B C D E F G H

412.7 5 10 1 1 tansig,lin sse traingdx 3108 Max Epoch
266.7 5 10 1 1 tansig,lin sse traingdx 1238.69 Max Epoch
74 15 12 1 150 tansig,lin mse trainlm 0.014 Max Epoch Poor Results
2.5 10 12 1 1 lin,lin sse trainlm 286 Fail
50 10 12 1 50 tansig,lin sse trainlm 198 Max Epoch
53 10 12 1 50 tansig,tansig sse trainlm 154 Max Epoch
21 10 5 1 50 tansig,lin sse trainlm 131 Max Epoch
41.4 10 10 1 100 tansig,lin sse trainlm 108.63 Max Epoch
61 12 12 1 100 tansig,lin sse trainlm 98 Max Epoch
50 10 12 1 150 tansig,lin sse trainlm 97 Max Epoch
67 10 15 1 150 tansig,lin sse trainlm 95 Max Epoch
51 10 12 1 150 tansig,lin sse trainlm 91 Max Epoch
74 15 12 1 150 tansig,lin sse trainlm 79 Max Epoch
73 15 12 1 150 tansig,lin sse trainlm 79 Max Epoch

The network weights of the 12-15-1 neural network are adjusted by the LM algorithm to minimized the

sum-squared error (SSE) between the predicted arm angle and the actual arm angle. Miguel Nicolelis

and others use mean-squared error (MSE), but MSE is more forgiving as it averages out accumulated

error [19]. MSE was shown in trials to result in a flatline prediction through the mean of the arm data.

This prediction minimized the mean error but was not accurate. SSE is unforgiving of any error as errors

accumulate with time.

6.7 Output Smoothing

The output of the ANN is a rough prediction of arm movement that generally follows the arm

angle. A better system might employ a large, sophisticated ANN or other learning algorithm that could

closely fit the predicted arm movement to the actual arm movement. Such a system would be extremely

costly to develop.

Another method to obtain an accurate solution is to artificially re-impose the constraints of arm

movement after the fact. Arm movement exhibits certain simple characteristics that are hard for a learning
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Figure 28: A neural network prediction of arm movement based on neural synchronization.

algorithm to pick up. Arm angle has hard limits on flexion and extension. Arm velocity is limited and

typically very smooth. These limits can be imposed by simple filtering after the ANN makes its prediction.

A simple ANN is thus allowed a greater degree of freedom. Greater freedom means shorter training

times and greater network simplicity.

Rough arm-angle predictions of the ANN are made more accurate with simple filtering. The

first phase is a simple threshold filter. Because the arm cannot bend backwards it is safe to say that

any predicted angle less than zero can be interpreted as zero degrees. Also, all values below .1 may

also be zeroed. This eliminates noise about zero, yet only minimally distort actual arm movements.

This simplification of the signal allows an averaging filter to perform wonders on high frequency transient

signals around zero. These transients get averaged into small ripples. Larger arm movements also get

purged of their high frequency components in this process. A final round of threshold filtering removes

the residual distortions left behind by the averaging filter.
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Figure 29: The progression of output smoothing as a signal is thresholded, averaged and re-thresholded.

7 Experiments and Results

7.1 Introduction

This chapter describes the human trials used to confirm the BCI design. In addition to the pri-

mary human experiments used to confirm the overall BCI design, many minor unstructured, non-human

experiments were performed to optimize specific components. The results of the minor experiments are

included in previous sections.

The first subject was run according to the procedure below. However, after completing testing

of the first subject, it became apparent that obtaining IRB approval of the procedures might be prudent.

Therefore all testing was ceased until IRB approval of the procedures was acquired. IRB documentation

can be found in Appendix C.

7.2 Experimental Setup and Procedure

Three human subjects were recruited on the basis of availability. Vulnerable populations were

not included. Experimental subjects were first informed of the dangers of the procedure and told not

participate if they had any of a specific list of medical conditions. These conditions were provided to

the subjects verbally so that no medically identifying information would be present on their consent form.

Subjects and experimenter then signed the experimental consent form, with exception of the first subject,
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Table 4: These populations are identified by the NCSU IRB as being “Vulnerable” and must be avoided
in experimentation unless special permission is given to do otherwise.

minors
fetuses
pregnant women
persons with mental, psychiatric or emotional disabilities
persons with physical disabilities
economically or educationally disadvantaged
prisoners
elderly
students from a class taught by principal investigator

Table 5: People with the listed medical conditions would be at elevated risk if used in this study and were
thus prohibited from participation.

Condition Reason for Exclusion from Study
pregnancy risks apply to fetus as well as subject

history of seizures subject has a delicate cerebral state
allergy to ointments non-hypoallergenic ointments are used

history of cranial surgery subject has a delicate cerebral state
history of stroke subject has a delicate cerebral state
requires oxygen oxygen should not be used around unshielded electronics

has a pacemaker or other implant increased risk of device failure
history of arthritis required movements will be painful

history of joint injuries or fractures joint is placed in potentially compromising position
problems sitting or standing sitting and standing is required

strabismus uncontrolled eye movements distort EEG
facial spasms spasms distort EEG signal

who gave verbal consent. Subjects were briefed on the experimental procedure. A bean-bag chair was

provided for the subject to lie in. This chair was deliberately chosen for its ergonomics. Settled into the

bean-bag chair, subjects were less likely to move or fidget, thus minimizing extraneous neuronal activity

in the subject’s primary motor cortex.

As the subject settled into the chair, they were prepared for experimentation. Electrode sites

were prepared by cleaning the skin with NuPrep TMelectrode site prep gel. This gel contains a slightly

abrasive particulate matter to remove dirt and dead skin, thus reducing electrode impedance. After skin

preparation, the signal, reference, and DRL electrodes were prepared. The signal and DRL electrodes

were disposable, silver-silver-chloride electrodes filled with Ten20 TMself-adhering, conductive gel. The

reference electrode was a silver-silver-chloride reusable ear-clip electrode filled with Parker Spectra360
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Figure 30: EEG electrode placement for the BCI interface.

TMgel.

The readied electrodes were then placed on the skin. The signal electrode was placed directly

coincident with the C4 electrode site of the International 10-20 EEG system. This area lies just over the

hand / elbow area of M1. The DRL electrode was placed on the right-lateral-inferior abdomen. This area

is far from most bioelectric signal sources such as the heart. These two electrodes are taped in place to

prevent accidental removal or disturbance. The reference electrode was clipped to the right earlobe.

Once all electrodes are were place, electrode placement was confirmed and adjusted. Brief

analysis of the EEG signal on an oscilloscope confirmed signal quality. A quality signal was identified

by the absence of a 60Hz spike in the FFT of the EEG. This implied that the DRL electrode made good

contact. Signal and reference connections were confirmed by asking the subject to blink. A pronounced

blink in the EEG indicated that signal and reference were properly connected. Poorly placed electrodes

were adjusted until a proper connection was established.

After electrodes were placed, several diagnostics were quickly performed. First the DAQ leads

were visually confirmed. The BCI software was started and a brief recording was taken. During this

recording, all the traces were inspected for anomalies, especially the EEG, arm-angle and alpha power-

band. Display gain factors were quickly rectified in software with a software restart. The arm-angle trace

and alpha-power-band trace were visually inspected for crosstalk before the brace was placed on the
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subject. This was done by moving the arm brace while the subject was at rest. No deflection in the

alpha-power-band trace during this activity ruled out crosstalk. Finally, a folder was created on the PC to

store the trial data.

When the system was configured, data recording began. The subject was told to settle into

place, keep eyes closed, minimize facial movement, and to flex the left arm at random. Subjects were

instructed that flexion should include bending the elbow, bending the wrist, and closing the hand. This

behavior is known to maximize contralateral M1 activity [9, 12].

The initial recording period began when the motion artifacts in the subject’s EEG were no longer

present. Trials lasted ten minutes. During this time EEG and random arm movements were recorded.

After the initial recording period, the recorded data is saved. The learning algorithm was trained using the

saved data. The trained neural network was then saved. Upon resuming recording, a real-time prediction

of arm angle is provided.

7.3 Subject Trials

7.3.1 Subject 1

Narrative Subject 1 was a 54-year-old, left-handed male. Subject 1 described himself as “left-hand de-

pendent”. Initial electrode placement on Subject 1 was suboptimal. Electrode adjustment resulted in an

excellent signal quality, demonstrating a clean eye blink artifact upon request. Subject 1 demonstrated

visually obvious event-related-desynchronization associated with arm-motor movements. On the data

from Subject 1, the learning algorithm was able to achieve a sum-squared error of 86 between the actual

and predicted arm-angle. Subject 1’s data was analyzed with multiple network configurations. Effective-

ness of the training algorithm was confirmed using cross-validation. Subject 1’s trial was sufficient to

demonstrate effectiveness of the system.

Artificial Neural Network Summary After Subject 1’s trial, Subject 1’s data was run 5 times off-line to

analyze ANN accuracy. Data analysis revealed a mean SSE of 80.4 and a standard deviation of 8.9. The
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Table 6: A Neural Network training iteration performed on Subject 1’s data.
Training
TRAINLM, Epoch 0/100, SSE 7461.26/0.002, Gradient 18566.8/1e-010
TRAINLM, Epoch 10/100, SSE 151.491/0.002, Gradient 31.258/1e-010
TRAINLM, Epoch 20/100, SSE 134.073/0.002, Gradient 9.72035/1e-010
TRAINLM, Epoch 30/100, SSE 115.167/0.002, Gradient 4.77234/1e-010
TRAINLM, Epoch 40/100, SSE 109.537/0.002, Gradient 21.9739/1e-010
TRAINLM, Epoch 50/100, SSE 105.921/0.002, Gradient 20.6039/1e-010
TRAINLM, Epoch 60/100, SSE 98.4473/0.002, Gradient 13.4643/1e-010
TRAINLM, Epoch 70/100, SSE 94.0842/0.002, Gradient 230.201/1e-010
TRAINLM, Epoch 80/100, SSE 90.0255/0.002, Gradient 13.6502/1e-010
TRAINLM, Epoch 90/100, SSE 89.2217/0.002, Gradient 1.41461/1e-010
TRAINLM, Epoch 100/100, SSE 89.0879/0.002, Gradient 7.21374/1e-010
TRAINLM, Maximum epoch reached

program output of one of the ANN trials is provided below. The graphical output of network trial reveals

that a SSE in the range of 80.4±8.9 is good.

Plotted Results Graphical output of the ANN trial above reveals that a SSE of 89 signifies excellent

ANN learning. There was a predicted arm movement for every actual arm movement. Amplitude and

duration of the predicted movement deviated slightly from the actual movement but overall curve fit was

remarkable. Interestingly there were false positives. The current hypothesis is that these may represent

imagined but not executed arm movements.

7.3.2 Subject 2

Narrative Subject 2 was a 28-year-old, right-handed male. Initial electrode placement in Subject 2 was

suboptimal. Electrode adjustments resulted in only marginal improvement. Half way through the first trial,

the sensor leads broke and the sensor had to be repaired. A successful trial using Subject 2 resulted

in a sum-squared error of 332. On-line cross-validation yielded poor results due to a new DC-offset in

the sensor that had to be compensated for. The results yielded by off-line analysis still demonstrated

sufficient predictive capacity to consider the system functional.
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Figure 31: Subject 1: Graphical Results.
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Table 7: A Neural Network training iteration performed on Subject 2’s data.
Training
TRAINLM, Epoch 0/100, SSE 12992.1/0.002, Gradient 24286.1/1e-010
TRAINLM, Epoch 10/100, SSE 421.496/0.002, Gradient 685.112/1e-010
TRAINLM, Epoch 20/100, SSE 351.141/0.002, Gradient 81.2969/1e-010
TRAINLM, Epoch 30/100, SSE 318.885/0.002, Gradient 102.419/1e-010
TRAINLM, Epoch 40/100, SSE 310.737/0.002, Gradient 8.41557/1e-010
TRAINLM, Epoch 50/100, SSE 308.739/0.002, Gradient 2.0468/1e-010
TRAINLM, Epoch 60/100, SSE 307.806/0.002, Gradient 16.3905/1e-010
TRAINLM, Epoch 70/100, SSE 306.306/0.002, Gradient 7.94407/1e-010
TRAINLM, Epoch 80/100, SSE 305.607/0.002, Gradient 5.6504/1e-010
TRAINLM, Epoch 90/100, SSE 304.667/0.002, Gradient 11.5181/1e-010
TRAINLM, Epoch 100/100, SSE 304.165/0.002, Gradient 3.90714/1e-010
TRAINLM, Maximum epoch reached

Artificial Neural Network Summary After Subject 2’s trial, Subject 2’s data was run 5 times off-line

to analyze ANN accuracy. Data analysis revealed a mean SSE of 305.6 and a standard deviation of

11.9. The program output of one of the ANN trials is provided below. Examination of the graphical output

reveals that a SSE of 300+ is of substantially reduced quality when compared a SSE less than 100.

Plotted Results The plotted results of ANN training for Subject 2 reveal that predictive quality was

substantially reduced. This is not surprising given the reduced EEG connection quality. Still, most actual

arm movements were accompanied by a prediction. Periods of inactivity seem to be effected most by

EEG connectivity. Many false positives existed in Subject 2’s data.

7.3.3 Subject 3

Narrative Subject 3 was a 28-year-old, left-handed male. Subject 3’s electrode placement was sub-

optimal and was not improved by electrode adjustment. Sum-squared error for Subject 3 was 412. Two

factors inhibited cross-validation. Electrode quality yielded a poor signal to begin with. An improperly

compensated DC-offset from Subject 3 also factored into the neural network’s inability to render a proper

prediction.
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Figure 32: Subject 2: Graphical Results.
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Table 8: A Neural Network training iteration performed on Subject 3’s data.
Training
TRAINLM, Epoch 0/100, SSE 27528.3/0.002, Gradient 36084.9/1e-010
TRAINLM, Epoch 10/100, SSE 489.168/0.002, Gradient 171.401/1e-010
TRAINLM, Epoch 20/100, SSE 464.678/0.002, Gradient 141.937/1e-010
TRAINLM, Epoch 30/100, SSE 441.108/0.002, Gradient 174.926/1e-010
TRAINLM, Epoch 40/100, SSE 423.76/0.002, Gradient 72.7482/1e-010
TRAINLM, Epoch 50/100, SSE 418.828/0.002, Gradient 27.9806/1e-010
TRAINLM, Epoch 60/100, SSE 415.146/0.002, Gradient 14.5451/1e-010
TRAINLM, Epoch 70/100, SSE 413.872/0.002, Gradient 2.75456/1e-010
TRAINLM, Epoch 80/100, SSE 413.031/0.002, Gradient 2.30224/1e-010
TRAINLM, Epoch 90/100, SSE 412.515/0.002, Gradient 1.46729/1e-010
TRAINLM, Epoch 100/100, SSE 412.262/0.002, Gradient 2.22809/1e-010
TRAINLM, Maximum epoch reached

Artificial Neural Network Summary After Subject 3’s trial, Subject 3’s data was run 5 times off-line

to analyze ANN accuracy. Data analysis revealed a mean SSE of 429 and a standard deviation of 21.9.

The program output of one of the ANN trials is provided below. The results are expected to be worse than

those of Subject 1 and Subject 2 based on connection quality. As expected, graphical output revealed a

significantly diminished predictive capacity for Subject 3.

Plotted Results Subject 3’s graphical results revealed a poor quality predictive capacity. Actual arm

movements were accompanied by weak predictions at best. This finding is in accordance with the ex-

pected results based on the EEG connection.
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Figure 33: Subject 3: Graphical Results.
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8 Conclusions

8.1 Introduction

The original design criteria of the project state that the project must be safe, EEG-based, inex-

pensive, PC-based, and able to predict a one-degree-of-freedom kinematic variable from EEG activity

alone. From the specific design procedures and experiments described above, the system is analyzed

against the original design criteria.

8.1.1 System Safety

The BCI System has been officially deemed safe by the North Carolina State University Internal

Review Board. The IRB stated in their feedback on the original application,

The risks posed are minimal and less than those associated with everyday electronic device

use. The researchers are taking adequate steps to minimize risk and are prepared to ad-

dress any adverse reactions in subjects. I would also say that I think the potential risks are

over stated in the informed consent.

This confirms that the multitude of steps taken to protect research subjects were fruitful. The implications

for this are that the BCI system can be used as a safe research and demonstration tool by untrained

laboratory personnel.

8.1.2 Electroencephalogram Predictive Base

The final BCI product was scalp EEG based. A custom EEG amplifier was constructed and

demonstrated to be effective for the prediction of motor activity.

8.1.3 System Cost

The complete system cost for the BCI system was around 200 US dollars. The entire project

was completed without funding. The minimal cost of the system bodes well for its widespread use as it
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Table 9: Expenses
Electronic Components $104.97

Circuit Manufacturing $98.30
EEG Supplies $114.63

Total $317.90

Table 10: Computer Configuration used for this project
Processor 2.80GHz Pentium(R)

RAM 1.00 GB
Hard Disk 30GB Western Digital

DAQ National Instruments PCI-6025E
Software Mathworks Matlab v7.1

+Data Acquisition Toolbox
+Signal Processing Toolbox
+Neural Network Toolbox

may be employed by students or researchers of even the most modest means. There are however two

items that may not be available to all researches that were integral to this project. Mathworks Matlab

TMmathematical analysis software, and a National Instruments PCI-6025E data acquisition card were the

backbone of this project. These items were freely available through NCSU. Some research institutions

may not have access to them. For this reason the future work done on this project might focus on

migrating to an alternate software platform such as C++. It is suggested that this future platform employ

the Dataq DI-158U USB DAQ. This DAQ is available for less that 100 US dollars. Other, less capable

versions are available for as little as 25 US dollars.

8.1.4 Computer Platform

The system runs on a standard desktop PC. The only features that distinguished this PC from a

PC that might be found in anyone’s home is Mathworks Matlab TMmathematical analysis software, and a

National Instruments PCI-6025E data acquisition card. As mentioned previously, future iterations should

transfer to a C++ base with a Dataq USB DAQ device. This migration would not only render the project

cost effective, but would guarantee that the system would be fully integrable into a standard home PC.
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8.1.5 Predictive Capacity

Human subject trials demonstrated the predictive capacity of the system. The best sum-squared

error demonstrated on IRB approved trails was 79, on ten minutes of training data. Other IRB approved

subjects were not as successful due to a component failure and electrode lead connectivity. The com-

ponent stability and electrode lead issues need to be addressed. Specific suggestions are mentioned in

the future work section of this chapter.

The purpose of this experiment was not to analyze the precise effectiveness of the system using

multiple subjects. The purpose was to simply demonstrate that it could work. This was done with a great

deal of success. One suggested area of future work is to analyze statistically predictive effectiveness of

the system using people who exhibit physiological differences. An interesting study might be to examine

statistical predictive quality of left- versus right-handed people.

8.1.6 Final Remarks

It is the desire of the researcher that this BCI system be a useful tool for future research in the

NCSU Center for Robotic and Intelligent Machines. Having been demonstrated as a functional tool, the

BCI will allow research in intelligent human-computer interaction. Hopefully, this field will be explored

further at NCSU.

8.2 Future Work

The first rule of engineering states that truly optimal design of any system requires infinite time

and money. Certain design options for the BCI were triaged to meet time and budgetary constraints of

the project. The design options marked for future work are listed below.
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8.2.1 Immediate Improvements

Some immediate improvements need to be made to the EEG leads and DAQ. Improper lead

placement repeatedly appeared as a major obstacle. This can be rectified by replacing the current signal

and DRL leads with disposable adhesive “sticker” leads. These stickers form a reliable connection.

However the connection can be of no use if the DAQ signal is corrupted. The NI PCI-6025E card takes

excessive adjustment to negate noise. Switching to a USB-based unit where digital to analog conversion

is performed locally as opposed to in the computer, would significantly improve data acquisition. The

Dataq DI-158U is such a unit is currently unstable in Matlab.

8.2.2 Hardware Improvements

Future iterations of this project could focus on creating a more capable EEG. The first improve-

ment to the EEG could be the addition of multiple channels. Channel readings from above Brodmann’s

areas 5,6,7 could be added to the current lead over Brodmann’s area 4. This could improve predic-

tive quality according to [24]. Multiple leads might also allow studies of other mental tasks, which are

cortically multifocal.

Minor improvements to the EEG should include implementing an on-board DSP chip to perform

as much signal processing as possible. This could both reduce overall circuitry needed as well as improve

the signal-to-noise ratio (SNR).

Improvements to the EEG leads could also help improve the SNR. The use of active, shielded

leads with a better connection to the EEG board would significantly reduce noise. As mentioned, leads

that clip to adhesive pads rather than stick directly to the skin should be evaluated.

8.2.3 Software Improvements

Software improvements should include improvements to the graphical user interface (GUI). The

user should have more control over the filtering, learning algorithm, etc. Currently these items can only
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be modified when the program is not executing.

Migrating to a language such as C++ could improve software performance. The trade-off of

migrating away from Matlab is that it would be difficult to experiment with novel algorithms. Matlab is

malleable at the expense of execution speed. A C++ program would be fast and could run on any PC but

would not be malleable.

8.2.4 Software Output

The software currently provides limited ability to report data. Data can be saved, but two specific

features are desirable. The software should provide the predicted arm angle as an analog output to

be connected to a robotic arm for demonstration purposes. The software should also provide more

information about connection and prediction quality.

8.2.5 Suggested Experiments

Several experiments would be productive in categorizing the behavior of the BCI. Human physio-

logical differences affect factors like skin impedance and optimal electrode placement. A study should be

done categorizing these differences and statistically demonstrating the BCI’s performance in response to

each physiological factor.
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Appendix A: EEG Circuit Schematic and Layout
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Appendix B: BCI Software Code (Matlab)
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% BCI GUI
% Author: Brooks Adcock
% Center for Robotic and Intelligent Machines
% Version: 3
% Updates: This version abandons multiple recording channe ls and
% substitutes them with information extracted from a single channel EEG
% signal

function main(varargin)
clc
clear
close all hidden

global gvars;

t = timerfind;
if(length(t)>0)

deleteTimer(t);
end

setupGVars();
setupGUI( 100 , 50 , 900 , 660 );
setupDAQ();
setupMonitorTimer();

%************************************************** ************************
% Setup Global Variables
%************************************************** ************************
function setupGVars()

global gvars;
%Initialize scope data
gvars.secondsToShow = 10; %sec
gvars.tshift = 0;

%initialize recordable data
gvars.minutesToRecord = 10;
gvars.fs = 300;
gvars.rawEEG = zeros(gvars.fs*60*gvars.minutesToRecor d,1);
gvars.recordedData = zeros(gvars.fs*60*gvars.minutesT oRecord,2);
gvars.computedData = zeros(gvars.fs*60*gvars.minutesT oRecord,4);
gvars.simulatedData = zeros(gvars.fs*60*gvars.minutes ToRecord,1);
gvars.recordedTime = zeros(gvars.fs*60*gvars.minutesT oRecord,1);
gvars.recordedIndex = 0;
gvars.dataMutex = 0;

% Neural Network
gvars.nInputs = 15; %samples
gvars.simWindow = 15; %How many seconds of data the ANN uses f or input
iLim = 2*ones(gvars.nInputs,2);
iLim(:,1) = iLim(:,1)*-1;
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iLim(:,2) = iLim(:,2)*1;

gvars.NN = newff(iLim,[12 , 1],{’tansig’,’purelin’},’tr ainlm2’);
gvars.NN = init(gvars.NN);

gvars.NN.performFcn = ’sse’;
gvars.NN.trainParam.show = 1;
gvars.NN.trainParam.lr = 0.02;
gvars.NN.trainParam.epochs = 100;
gvars.NN.trainParam.goal = 2e0;
gvars.NN.trainParam.max_fail = 10e10;
%gvars.NN.trainParam.mem_reduc = 2;

%************************************************** ************************
% Setup Graphical User Interface (GUI)
%************************************************** ************************
function setupGUI(x,y,w,h)

global gvars;
mywindow = figure(...

’Name’,’Brain Machine Interface’,...
’NumberTitle’,’off’,...
’MenuBar’,’none’,...
’Interruptible’,’on’,...
’DeleteFcn’,@callbackWindowClose,...
’Units’,’pixels’,...
’Position’,[x y w h],...
’Visible’,’on’);

myplot = axes(...
’Parent’,mywindow,...
’Units’,’normalized’,...
’Position’,[.05 .15 .5 .825],...
’Color’,[1 1 1],...
’XGrid’,’on’,...
’XLim’,[0 1],...
’XTick’,...

round(linspace(0,gvars.fs*60*10,gvars.fs*60*10)),.. .
’YGrid’,’on’,...
’YLim’,[0 1],...
’YTick’,linspace(-0,1,6),...
’YTickLabel’,{’’;’ARM’;’Beta’;’Alpha’;’EEG’;’’},...
’Visible’,’on’);

fftplot = axes(...
’Parent’,mywindow,...
’Units’,’normalized’,...
’Position’,[.58 .15 .4 .4],...
’Color’,[1 1 1],...
’XGrid’,’on’,...
’XLim’,[0 100],...
’XTick’,[1 4 7 12 18 30 60],...
’YGrid’,’on’,...
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’YLim’,[0 1],...
’YTick’,(linspace(-0,1,3)),...
’Visible’,’on’);

gvars.myplot = myplot;

%**********************************
% Menu
%**********************************
mymenu = uimenu(...
’Parent’ ,mywindow ,...
’Label’ ,’Data’,...
’Interruptible’ ,’on’,...
’Visible’ ,’on’...
);

uimenu(...
’Parent’ ,mymenu ,...
’Label’ ,’Open Data’,...
’Interruptible’ ,’on’,...
’Visible’ ,’on’,...
’Callback’ ,@callbackFileOpenData...
);

uimenu(...
’Parent’ ,mymenu ,...
’Label’ ,’Save Data’,...
’Interruptible’ ,’on’,...
’Visible’ ,’on’,...
’Callback’ ,@callbackFileSaveData...
);
uimenu(...
’Parent’ ,mymenu ,...
’Label’ ,’Show Current Data’,...
’Interruptible’ ,’on’,...
’Visible’ ,’on’,...
’Callback’ ,@localDisplayAll...
);
% ANN menu
mymenu = uimenu(...
’Parent’ ,mywindow ,...
’Label’ ,’ANN Control’,...
’Interruptible’ ,’on’,...
’Visible’ ,’on’...
);
uimenu(...
’Parent’ ,mymenu ,...
’Label’ ,’Open NN’,...
’Interruptible’ ,’on’,...
’Visible’ ,’on’,...
’Callback’ ,@callbackFileOpenNN...
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);
uimenu(...
’Parent’ ,mymenu ,...
’Label’ ,’Save NN’,...
’Interruptible’ ,’on’,...
’Visible’ ,’on’,...
’Callback’ ,@callbackFileSaveNN...
);
uimenu(...
’Parent’ ,mymenu ,...
’Label’ ,’Train on current data’,...
’Interruptible’ ,’on’,...
’Visible’ ,’on’,...
’Callback’ ,@localTrainNN...
);
%**********************************
% Lines
%**********************************
gvars.lines = [];
colorMap = [ .5 0 0 ;... EEG

0 .5 0;... Alpha
0 1 0 ;... Alpha Power
0 0 .5 ;... Beta
0 0 1 ;... Beta Power
0 0 0 ;... ARM
1 0 0]; %Predicted

for i= 1:size(colorMap,1),
gvars.lines(i) = line(...

’Parent’,myplot,...
’Color’,colorMap(i,:),...
’Visible’,’off’);

end
gvars.spectrumLine = line(...

’Parent’,fftplot,...
’Color’,[ 0 0 1],...
’Visible’,’off’);

%**********************************
% Legend
%**********************************
gvars.legend = [];
nameMap = {’EEG (C3)’ ;...

’Alpha’ ;...
’P(Alpha)’ ;...
’Beta’ ;...
’P(Beta)’ ;...
’ARM’ ;...
’Actuator’};

valueMap = [0;...
0;...
1;...
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0;...
0;...
1;...
1];...

for i= 1:size(colorMap,1),

gvars.legend(i) = uicontrol(...
’Parent’ ,mywindow,...
’Style’ ,’checkbox’,...
’Units’ ,’normalized’,...
’Position’ ,[ .56 .95-(i-1)*.025 .1 .021],...
’String’ ,nameMap{i},...
’Value’ ,valueMap(i),...
’ForegroundColor’ ,get(gvars.lines(i),’Color’),...
’Visible’ ,’on’);

end

%**********************************
% Buttons
%**********************************
gvars.buttonAcquire = uicontrol(...

’Parent’ ,mywindow,...
’Style’ ,’pushbutton’,...
’Units’ ,’normalized’,...
’Position’ ,[ .7 .89 .25 .08],...
’String’ ,’Start Acquisition’,...
’Value’ ,0,...
’Callback’ ,@callbackAcquireButton,...
’Visible’ ,’on’);

gvars.buttonTrain = uicontrol(...
’Parent’ ,mywindow,...
’Style’ ,’pushbutton’,...
’Units’ ,’normalized’,...
’Position’ ,[ .7 .8 .25 .08],...
’String’ ,’Halt and Train’,...
’Value’ ,0,...
’Callback’ ,@callbackHaltAndTrain,...
’Visible’ ,’off’);

uicontrol(... Zoom Out
’Parent’ ,mywindow,...
’Style’ ,’pushbutton’,...
’Units’ ,’normalized’,...
’Position’ ,[ .25 .015 .1 .05],...
’String’ ,’Zoom Out’,...
’Value’ ,0,...
’Callback’ ,@callbackZoomOut,...
’Visible’ ,’on’);

uicontrol(... Zoom IN
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’Parent’ ,mywindow,...
’Style’ ,’pushbutton’,...
’Units’ ,’normalized’,...
’Position’ ,[ .25 .07 .1 .05],...
’String’ ,’Zoom In’,...
’Value’ ,0,...
’Callback’ ,@callbackZoomIn,...
’Visible’ ,’on’);

uicontrol(... Shift Left
’Parent’ ,mywindow,...
’Style’ ,’pushbutton’,...
’Units’ ,’normalized’,...
’Position’ ,[ .14 .045 .1 .05],...
’String’ ,’Shift Left’,...
’Value’ ,0,...
’Callback’ ,@callbackShiftLeft,...
’Visible’ ,’on’);

uicontrol(... Shift Right
’Parent’ ,mywindow,...
’Style’ ,’pushbutton’,...
’Units’ ,’normalized’,...
’Position’ ,[ .36 .045 .1 .05],...
’String’ ,’Shift Right’,...
’Value’ ,0,...
’Callback’ ,@callbackShiftRight,...
’Visible’ ,’on’);

%**********************************
% Buttons
%**********************************
uicontrol(...

’Parent’ ,mywindow,...
’Style’ ,’text’,...
’BackgroundColor’ ,[.8 .8 .8],...
’Units’ ,’normalized’,...
’Position’ ,[ .64 .56 .3 .02],...
’String’ ,...

’Normalized Power Spectral Density v.s. Frequency (Hz)’,. ..
’Visible’ ,’on’);

uicontrol(...
’Parent’ ,mywindow,...
’Style’ ,’text’,...
’BackgroundColor’ ,[.8 .8 .8],...
’Units’ ,’normalized’,...
’Position’ ,[ .87 .125 .1 .02],...
’String’ ,’Frequency (Hz)’,...
’Visible’ ,’on’);

%************************************************** ***********************
% Setup DAQ
%************************************************** ***********************
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function setupDAQ()
global gvars;

% Find and Kill any open DAQs
openDAQ = daqfind;
for i = 1:length(openDAQ),

stop(openDAQ(i));
delete(openDAQ(i));

end

% Setup current daq
%NIDAQ PCI-6025E

% gvars.ai = analoginput(’nidaq’,’1’);
%
% addchannel(gvars.ai,0); % EEG
% addchannel(gvars.ai,7); % Arm
% set(gvars.ai,...
% ’TriggerRepeat’, 0,...
% ’TriggerType’, ’Manual’,...
% ’InputType’, ’Differential’,...
% ’SampleRate’,gvars.fs,...
% ’SamplesPerTrigger’, gvars.fs*60*gvars.minutesToRec ord,...
% ’TimerPeriod’, .1,...
% ’Timerfcn’, @callbackDAQAction,...
% ’Stopfcn’, @callbackDAQStopFunction);

% %DATAQ 158U
daqregister(’C:\WINDAQ\MATLAB\dataq.dll’)
gvars.ai = analoginput(’dataq’);
ch1 = addchannel(gvars.ai,3); % EEG

%set(ch1,’SensorRange’, [ -1 1])
%set(ch1,’InputRange’,[-6 6])

ch2 = addchannel(gvars.ai,0); % Arm
%set(ch1,’SensorRange’, [ -1 1])
%set(ch1,’InputRange’,[-10 10])

set(gvars.ai, ’TriggerRepeat’, 0);
set(gvars.ai, ’SampleRate’,gvars.fs);
set(gvars.ai, ’SamplesPerTrigger’,...

gvars.fs*60*gvars.minutesToRecord);
set(gvars.ai, ’TimerPeriod’, .1);
set(gvars.ai, ’Timerfcn’, @callbackDAQAction);
set(gvars.ai, ’Stopfcn’, @callbackDAQStopFunction);

% AI triggered on button press
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%************************************************** ***********************
% Setup Monitor Timer
%************************************************** ***********************
function setupMonitorTimer()

global gvars;
gvars.monitorTimer = timer(’TimerFcn’,@callbackMonito rTimer,...

’Period’,.12,... frames per second
’ExecutionMode’,’fixedRate’,...
’BusyMode’,’drop’);

%Timer Started by button press

%************************************************** ***********************
% Callback: Monitor Timer - displays lines
%************************************************** ***********************
%TODO Rewrite this to take any number of points
function callbackMonitorTimer(varargin)

global gvars;

% Dont Bother Displaying until ya got somethin’
if(gvars.recordedIndex < 10)

return;
end

%OBEY THE MUTEX!
if( gvars.dataMutex == 1)

return;
end
gvars.dataMutex = 1;

try
% Compute Time range
tdata = localGetTimeAxis();

tmax = tdata(1);
tmin = tdata(2);

% Set the Data
displayData = localCreateDisplayData([tmin tmax]);

xdata = displayData(8,:);
ydata = displayData(1:7,:);

% Draw the lines
set(gvars.myplot,’XLim’,[tmin tmax]);
for i=1:length(gvars.legend),

if(get(gvars.legend(i),’Value’)==1)
set(gvars.lines(i),’XData’,xdata);
set(gvars.lines(i),’YData’,ydata(i,:));
set(gvars.lines(i),’Visible’,’on’);

else
set(gvars.lines(i),’Visible’,’off’);
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end
end

% Compute the Power Spectrum
tmax = (gvars.recordedIndex-1)/gvars.fs;
if(tmax > 1)

spectrum = localComputeSpectrum([tmax-.1 tmax]);
scale = max(max(spectrum(1,:)),.000001);
spectrum(1,:) = spectrum(1,:)/scale;
set(gvars.spectrumLine,’XData’,spectrum(2,:));
set(gvars.spectrumLine,’YData’,spectrum(1,:));
set(gvars.spectrumLine,’Visible’,’on’);

end
catch

disp(’Error in callbackMonitorTimer’)
catchErrorFn();
gvars.dataMutex = 0;

end
% Release Mutex back into the wild
gvars.dataMutex = 0;

%************************************************** ***********************
% Callback: Window Closing
%************************************************** ***********************
function callbackWindowClose(varargin)

global gvars;
callbackStopAndClear();
deleteTimer(gvars.monitorTimer);
callbackDAQStopFunction();
daqregister(’C:\WINDAQ\MATLAB\dataq.dll’,’unload’)
delete(gvars.ai);

%************************************************** ***********************
% Callback: DAQ Action
%************************************************** ***********************
function callbackDAQAction(varargin)

global gvars;

if(gvars.ai.SamplesAvailable <= 0 )
% No samples yet taken
return;

end

% Obey the MUTEX!
if( gvars.dataMutex == 1)

return;
end
gvars.dataMutex = 1;

try
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% Record Bounds of Signal
sa = gvars.ai.SamplesAcquired;
sr = gvars.recordedIndex;
clipSize = sa-sr; % should equal SamplesAvailable property

% Get Samples
[data,tdata] = getdata(gvars.ai,clipSize);

%Record RAW data
gvars.rawEEG(sr+1:sa,1) = data(:,1); %Raw unfiltered EEG
gvars.recordedData(sr+1:sa,2) = data(:,2)-.58; %ARM
gvars.recordedTime(sr+1:sa) = tdata; %Time

%Compute and Record Filtered data
%(EEG, alpha , beta, power bands)
%process on 2 seconds giving 1/2Hz resolution

% Compute the indices needed to do the signal processing
past_2_sec = (sa - 2*gvars.fs)+1:sa; %600 samples
past_1_sec = (sa - 1*gvars.fs)+1:sa; %300 samples
last_1_sec = (1:gvars.fs)+gvars.fs; %300 samples
past_10th_sec = sr+1:sa; %30 samples (usually)

%Don’t try to filter past values
if( past_2_sec(1) > 1 )

%the past 2 seconds of EEG data
dataToFilter = gvars.rawEEG(past_2_sec,1)’;

% SIGNAL FILTERING
% EEG, Alpha and Beta Wave Extraction
tempEEG = myBandpassFilter(dataToFilter,gvars.fs,3,35 );
tempAlpha = myBandpassFilter(dataToFilter,gvars.fs,8, 12);
tempBeta = myBandpassFilter(dataToFilter,gvars.fs,18, 28);

%Record data, truncating ends of each signal
gvars.recordedData(past_1_sec,1) =...

tempEEG(last_1_sec)’;%EEG
gvars.computedData(past_1_sec,1) =...

tempAlpha(last_1_sec)’;%Alpha Wave
gvars.computedData(past_1_sec,3) =...

tempBeta(last_1_sec)’;%Beta Wave

% FEATURE EXTRACTION
%Compute Alpha and Beta Band Power
%Compute Power in the 8-12 and 18-30 bands
power = localBandPower(tempEEG,[8 12 ; 18 30]);
gvars.computedData(past_10th_sec,2) = ...

ones(size(past_10th_sec))*mean(power(1,:)); % Alpha Po wer
gvars.computedData(past_10th_sec,4) = ...

ones(size(past_10th_sec))*mean(power(2,:)); % Beta Pow er
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% PREDICTION
%Simulation has a one second delay (1*fs)
simpoint = sa-1*gvars.fs;

%Data from time (t-1 = simpoint) is used to render the
%prediction for time t
gvars.simulatedData(past_10th_sec) = ...

ones(size(past_10th_sec))*mean(localSimNN(simpoint, simpoint));

% OUTPUT SMOOTHING
gvars.simulatedData(past_10th_sec) = ...

myThresholdFilter(gvars.simulatedData(past_10th_sec ),[-inf .1],0);
%gvars.simulatedData(sr+1:sa) = ...

ones(size(sr+1:sa))*mean(gvars.simulatedData(max(1, sa-2*gvars.fs):sa));
%gvars.simulatedData(sr+1:sa) = ...

myThresholdFilter(gvars.simulatedData(sr+1:sa),[-in f .1],0);

end

%Update current recording index
gvars.recordedIndex=sa; %Varable used to keep track of pro gress

catch
disp(’Error in DAQ Action’)
catchErrorFn();
gvars.dataMutex = 0;

end
gvars.dataMutex = 0;

%************************************************** ***********************
% Callback: Daq Stop Function
%************************************************** ***********************
function callbackDAQStopFunction(varargin)

global gvars;
%TODO: make this handle the data acquisiton stop
if isvalid(gvars.ai)

if ˜isempty(gvars.ai)

stop(gvars.ai)

%tone([100],.5);
end

end
%************************************************** ***********************
% Callback: Acquire Button
%************************************************** ***********************
function callbackAcquireButton(varargin)

global gvars;
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gvars.minutesToRecord = 10;
gvars.recordedData = zeros(size(gvars.recordedData));
gvars.computedData = zeros(size(gvars.computedData));
gvars.simulatedData = zeros(size(gvars.simulatedData) );
gvars.recordedTime = zeros(size(gvars.recordedTime));
gvars.recordedIndex = 0;
gvars.dataMutex = 0;

% Start Monitoring
assertTimer(gvars.monitorTimer,’on’);

% Start DAQ
rn = get(gvars.ai,’Running’);
if(isequal(rn,’Off’))

start(gvars.ai);
%trigger(gvars.ai);

end

set(gvars.buttonAcquire,’String’,’Halt and Clear Data’ );
set(gvars.buttonAcquire,’Callback’,@callbackStopAnd Clear);

set(gvars.buttonTrain,’Visible’,’on’);

%************************************************** ***********************
% Callback: Stop Timers / Display and Clear Data
%************************************************** ***********************
function callbackStopAndClear(varargin)

global gvars;

% Start Monitoring
assertTimer(gvars.monitorTimer,’off’);

% Start DAQ
rn = get(gvars.ai,’Running’);
if(isequal(rn,’On’))

stop(gvars.ai);
end

% Erase Data
l = length(gvars.recordedTime);
gvars.recordedData = zeros(size(gvars.recordedData));
gvars.computedData = zeros(size(gvars.computedData));
gvars.simulatedData = zeros(size(gvars.simulatedData) );
gvars.recordedTime = zeros(size(gvars.recordedTime));
gvars.recordedIndex = 1;

% Clear Traces
for i=1:length(gvars.lines),

set(gvars.lines(i),’Visible’,’off’);
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end
set(gvars.spectrumLine,’Visible’,’off’);
% Reset Button
set(gvars.buttonAcquire,’String’,’Start Acquisition’ );
set(gvars.buttonAcquire,’Callback’,@callbackAcquire Button);

% Reset Train Button
set(gvars.buttonTrain,’Visible’,’off’);

%************************************************** ***********************
% Callback: Halt and Train
%************************************************** ***********************
function callbackHaltAndTrain(varargin)

global gvars

% Start Monitoring
assertTimer(gvars.monitorTimer,’off’);

% Start DAQ
rn = get(gvars.ai,’Running’);
if(isequal(rn,’On’))

stop(gvars.ai);
end

% Update this button
set(gvars.buttonTrain,’String’,’Halt Training’);

set(gvars.buttonTrain,’Visible’,’off’);

% Update Acquisition Button
set(gvars.buttonAcquire,’String’,’Start Acquisition’ );
set(gvars.buttonAcquire,’Callback’,@callbackAcquire Button);
set(gvars.buttonAcquire,’Visible’,’off’);

pause(.1);

% Start Training
localTrainNN();

% Restore button
set(gvars.buttonAcquire,’Visible’,’on’);
callbackStopAndClear();

%************************************************** ***********************
% Open File Callback
%************************************************** ***********************
function callbackFileOpenNN(varargin)

global gvars;
[fname,fpath] = uigetfile(’*.mat’,’Open Log File’);
if˜(fname == 0)

filename = fullfile(fpath,fname);
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% Recover data
fdata = load(filename,’myNN’);
gvars.NN = fdata.myNN;

end
function callbackFileOpenData(varargin)

global gvars;
[fname,fpath] = uigetfile(’*.mat’,’Open Log File’);
if˜(fname == 0)

filename = fullfile(fpath,fname);
% Recover data
fdata = load(filename,’myRawData’,’myRecData’,’myComD ata’,...
’myIndex’,’myTime’);
gvars.rawEEG = fdata.myRawData;
gvars.recordedData = fdata.myRecData;
gvars.computedData = fdata.myComData;
gvars.recordedIndex = fdata.myIndex;
gvars.recordedTime = fdata.myTime;

end
localDisplayAll();

%************************************************** ***********************
% Save File Callback
%************************************************** ***********************
function callbackFileSaveNN(varargin)

global gvars;
try

fname = [’NNfile_’ getDateString()];
[fname,fpath] = uiputfile(fname,’Save Log File’);
if˜(fname == 0)

filename = fullfile(fpath,fname);
myNN = gvars.NN;
save(filename,’myNN’);

end
catch

catchErrorFn();
end

function callbackFileSaveData(varargin)
global gvars;
try

fname = [’DataFile_’ getDateString()];
[fname,fpath] = uiputfile(fname,’Save Log File’);
if˜(fname == 0)

filename = fullfile(fpath,fname);
myRawData = gvars.rawEEG;
myRecData = gvars.recordedData;
myComData = gvars.computedData;
myIndex = gvars.recordedIndex;
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myTime = gvars.recordedTime;
save(filename,’myRawData’,’myRecData’,’myComData’,. ..

’myIndex’,’myTime’);
end

catch
catchErrorFn();

end

%************************************************** ***********************
% Callback: Zoom In
%************************************************** ***********************
function callbackZoomIn(varargin)

global gvars;
gvars.secondsToShow = gvars.secondsToShow *.7;

%************************************************** ***********************
% Callback: Zoom Out
%************************************************** ***********************
function callbackZoomOut(varargin)

global gvars;
gvars.secondsToShow = gvars.secondsToShow /.7;

%************************************************** ***********************
% Callback: Shift Right
%************************************************** ***********************
function callbackShiftRight(varargin)

global gvars;
gvars.tshift = gvars.tshift + gvars.secondsToShow *.3;

%************************************************** ***********************
% Callback: Shift Left
%************************************************** ***********************
function callbackShiftLeft(varargin)

global gvars;
gvars.tshift = gvars.tshift - gvars.secondsToShow *.3;

%************************************************** ***********************
% Callback: Error Reporting
%************************************************** ***********************
function catchErrorFn()

e = lasterror;
msg = e.message;
line = [e.stack.line];
myerror = [’Internal Error on line ’ num2str(line) ’: ’ msg];
disp(myerror);

%************************************************** ***********************
% Local Function: Get Time Axis
%************************************************** ***********************
function rv = localGetTimeAxis(varargin)
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global gvars;
tspan = gvars.secondsToShow;
tshift = gvars.tshift;
tcurrent = gvars.recordedTime(gvars.recordedIndex);
tmax = max(tcurrent+tshift,tspan);
tmin = max(0,tmax-tspan);

rv = [tmax tmin];

%************************************************** ***********************
% Local Function: Get Time Axis
%************************************************** ***********************
function y = localCreateDisplayData(trange)

global gvars;

tmin = trange(1);
tmax = trange(2);

% Compute corresponding index range
itop = gvars.recordedIndex-gvars.fs*1;
imax = max(1,min(round(tmax*gvars.fs),itop));
imin = max(1,min(round(tmin*gvars.fs),itop));

% Undersample for display (speed reasons)
indices = round(linspace(imin,imax,gvars.secondsToSho w*gvars.fs));

%Grab Desired Data
y = zeros(8,length(indices));
yscales = [ 10ˆ0 10ˆ1 10ˆ3 10ˆ1 10ˆ3 .5 .5]*.2;
yshifts = [ 4 3 3 2 2 1 1]*.2;
y(1,:) = yscales(1)*gvars.rawEEG(indices,1)’+yshifts( 1); %EEG
%Alpha
y(2,:) = yscales(2)*gvars.computedData(indices,1)’+ys hifts(2);
%P(Alpha)
y(3,:) = yscales(3)*gvars.computedData(indices,2)’+ys hifts(3);
%Beta
y(4,:) = yscales(4)*gvars.computedData(indices,3)’+ys hifts(4);
%P(Beta)
y(5,:) = yscales(5)*gvars.computedData(indices,4)’+ys hifts(5);
%ARM
y(6,:) = yscales(6)*gvars.recordedData(indices,2)’+ys hifts(6);
%Prediction
y(7,:) = yscales(7)*gvars.simulatedData(indices,1)’+y shifts(7);
y(8,:) = gvars.recordedTime(indices,1);

%Return

%************************************************** ***********************
% Local Function: Computes the spectrum
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%************************************************** ***********************
function y = localComputeSpectrum(trange)

global gvars;

% Compute Time bounds
tmin = trange(1);
tmax = trange(2);

% Compute corresponding index range
imax = max(1,min(round(tmax*gvars.fs),gvars.recordedI ndex-1));
imin = max(1,min(round(tmin*gvars.fs),gvars.recordedI ndex-1));

% Undersample for display (speed reasons)
indices = round(linspace(imin,imax,imax-imin));

y = zeros(2,129);
x = gvars.recordedData(indices,1)’;
mM = minmax(x);
if(mM(1)˜=mM(2))

% Compute Spectrum

[s f] = pburg(x,10,[],300);

y(1,:) = s;
y(2,:) = f;

end

function varout = localBandPower(data,freqs)
global gvars;

kspan = length(data);
pwr = ones(size(freqs,1),kspan);

if(std(data)<.000001)
% This is a safety check
varout = pwr*0;
return

end

[spectrum f] = pburg(data,10,[],gvars.fs);

df = f(2)-f(1);

for j=1:size(freqs,1),
istart = min(max(round(freqs(j,1)/df+1),1),kspan);
iend = min(max(round(freqs(j,2)/df+1),1),kspan);
pwr(j,:) = pwr(j,:)*sum(spectrum(istart:iend));

end

varout = pwr;
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%************************************************** ***********************
% Local Function: Display All the data
%************************************************** ***********************
function localDisplayAll(varargin)

global gvars;

if gvars.recordedIndex < 5
return

end

% Compute Time range
tmax = gvars.minutesToRecord;
tmin = 0;

% Set the Data
displayData = localCreateDisplayData([tmin tmax]);

xdata = displayData(8,:);
ydata = displayData(1:7,:);

% Draw the lines
set(gvars.myplot,’XLim’,[tmin tmax]);
for i=1:length(gvars.legend),

if(get(gvars.legend(i),’Value’)==1)
set(gvars.lines(i),’XData’,xdata);
set(gvars.lines(i),’YData’,ydata(i,:));
set(gvars.lines(i),’Visible’,’on’);

else
set(gvars.lines(i),’Visible’,’off’);

end
end

% Compute the Power Spectrum
tmax = (gvars.recordedIndex-1)/gvars.fs;
if(tmax > 1)

spectrum = localComputeSpectrum([tmax-.1 tmax]);
scale = max(max(spectrum(1,:)),.000001);
spectrum(1,:) = spectrum(1,:)/scale;
set(gvars.spectrumLine,’XData’,spectrum(2,:));
set(gvars.spectrumLine,’YData’,spectrum(1,:));
set(gvars.spectrumLine,’Visible’,’on’);

end

assertTimer(gvars.monitorTimer,’on’)

%************************************************** ***********************
% Local Function: Train the neural network
%************************************************** ***********************
function localTrainNN(varargin)

global gvars;
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% Format the data for learning
indices = 1:gvars.recordedIndex;
INPUT = gvars.computedData(indices,2)’; %P(Alpha)
TARGET = gvars.recordedData(indices,2)’; %ARM Position

% Cull the ugly parts of the data
good_indices = 5*gvars.fs:1:length(INPUT)-5*gvars.fs;
INPUT = INPUT(good_indices)/max(INPUT(good_indices));
TARGET = TARGET(good_indices)/max(TARGET(good_indices ));

n_inputs = gvars.nInputs;
input_spacing = round((gvars.simWindow*gvars.fs)/n_in puts);
trial_spacing = get(gvars.ai,’TimerPeriod’)*gvars.fs;
target_indices = round((input_spacing*(n_inputs-1))+1 :length(TARGET));

INPUT = createInputVector(INPUT,input_spacing,n_input s,trial_spacing);
TARGET = createInputVector(TARGET(target_indices),1,1 ,trial_spacing);
size(INPUT)
size(TARGET)
% Train NN
disp(’training begun’)
tic
[gvars.NN, tr] = train(gvars.NN,INPUT,TARGET);
toc
disp(’training complete’)

load gong;
wavplay(y,Fs)

% Backfill predicted data to show results
disp(’back-filling simulating data’)
rv = localSimNN(1,gvars.recordedIndex);
gvars.simulatedData = zeros(size(gvars.simulatedData) );
for k = 0:trial_spacing-1,

indices = gvars.recordedIndex-trial_spacing*length(rv )+...
1-k:trial_spacing:gvars.recordedIndex-k;

gvars.simulatedData(indices,1) = rv;
end
localFilterSim(1,gvars.recordedIndex);
disp(’back-filling complete’)
disp(’done’)

%************************************************** ***********************
% Local Function: Simulate the NN
%************************************************** ***********************
function rv = localSimNN(istart,iend)

global gvars;

%Compute how many samples to use as inputs for 1 iteration
% (this will be undersampled later)
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ispan = gvars.simWindow*gvars.fs;

%If the desired simulation window is too small resize it to pe rform 1
% iteration
%If the window is larger than 1 iteration, perform multiple i terations
if(ispan > (iend-istart))

istart = iend-ispan;
if(istart<1)

rv = 0;
return;

end
end

% Acquire Input Values
indices = istart:iend;
INPUT = gvars.computedData(indices,2)’; %P(Alpha)

% Normalize Inputs
INPUT = INPUT / max(gvars.computedData(:,2));

% Create Input Matrix
n_inputs = gvars.nInputs;
input_spacing = round((gvars.simWindow*gvars.fs)/n_in puts);
trial_spacing = get(gvars.ai,’TimerPeriod’)*gvars.fs;

INPUT = createInputVector(INPUT,input_spacing,n_input s,...
trial_spacing);

% Execute Simulation
rv = sim(gvars.NN,INPUT);

% De-Normalize Output
rv = rv*max(gvars.recordedData(:,2));

% Output Smoothing done in DAQ Action

%************************************************** ***********************
% Local Function: Filter the signal on a given region
%************************************************** ***********************
function localFilterSim(istart,iend)

global gvars

indices = istart:iend;
trial_spacing = get(gvars.ai,’TimerPeriod’)*gvars.fs;
gvars.simulatedData(indices) = ...

myThresholdFilter(gvars.simulatedData(indices),[-in f .1],0);
gvars.simulatedData(indices) = ...

myAverageFilter(gvars.simulatedData(indices),2*gvar s.fs);
gvars.simulatedData(indices) = ...

myThresholdFilter(gvars.simulatedData(indices),[-in f .1],0);
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NC State Institutional Review Board New Protocol Submission 

North Carolina State University  
Institutional Review Board for the Use of Human Subjects in Research

SUBMISSION  FOR NEW STUDIES 

Title of Project:   

Principal Investigator D. Brooks Adcock Jr. Department Biomedical Engineering 

Source of Funding (required information): This is a low budget project that is funded personally by the investigator.
(if externally funded include sponsor name and university account number) 

Campus Address 890 Oval Dr (EB2) room 2034. Raleigh NC 27607-7911

Email: dbadcock@ncsu.edu Phone: (919)-606-7003 Fax:  

RANK:    Faculty  
  Student: Undergraduate;  Masters; or   PhD 
  Other (specify):  

      
As the principal investigator, my signature testifies that I have read and understood the University Policy and 
Procedures for the Use of Human Subjects in Research. I assure the Committee that all procedures performed under 
this project will be conducted exactly as outlined in the Proposal Narrative and that any modification to this 
protocol will be submitted to the Committee in the form of an amendment for its approval prior to implementation.

Principal Investigator: 

D. Brooks Adcock Jr  10/2/2006
(typed/printed name) (signature) (date) 

As the faculty sponsor, my signature testifies that I have reviewed this application thoroughly and will oversee the 
research in its entirety.  I hereby acknowledge my role as the principal investigator of record.

Faculty Sponsor: 

Dr. Edward Grant (PhD)  10/2/2006
(typed/printed name) (signature) (date) 

PLEASE COMPLETE IN DUPLICATE AND DELIVER, ALONG WITH A PROPOSAL NARRATIVE, TO: 
Institutional Review Board, Box 7514, or email as an attachment to debra_paxton@ncsu.edu

*************************************************************************************************
For SPARCS  office use only 
Reviewer Decision (Expedited or Exempt Review)

 Exempt      Approved     Approved pending modifications      Table 

Expedited Review Category:    1   2  3     4  5  6  7  8a  8b  8c  9

________   ____ ___________________ _    ____________________ __
Reviewer Name     Signature     Date 
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North Carolina State University  
Institutional Review Board for the Use of Human Subjects in Research

GUIDELINES FOR A PROPOSAL NARRATIVE

In your narrative, address each of the topics outlined below.  Every application for IRB review must contain 
a proposal narrative, and failure to follow these directions will result in delays in reviewing/processing the 
protocol.

A. INTRODUCTION
1. Briefly describe in lay language the purpose of the proposed research and why it is important. 

This project aims to test a Biosignal Computer Interface (an electrical signal emitted by the 
body that can be read non-invasively on the skin) that has been developed by the researcher 
for predicting body movement.  This interface has been previously created at other 
universities, and this is a duplication of other research.  The final result of this project will 
hopefully be used by other researchers at NCSU to further biosignal interface research to 
ultimately produce a mechanism that could permit a paralyzed person to control a wheel 
chair without making any physical movements. 

Electrical activity will be read via EEG (electroencephalogram) located on the scalp. Arm 
position will be measured via an arm brace located on the subject’s left arm.  Subjects will be 
asked to move their arm for a period of ten minutes during which time data will be recorded. 
Data from arm and EEG sensors will be analyzed in software to unveil predictive patterns.  
Predictive patterns will be tested for accuracy. 

2. If student research, indicate whether for a course, thesis, dissertation, or independent research. 
a. Masters Thesis 

B. SUBJECT POPULATION
1.  How many subjects will be involved in the research?  

The initial sample size for this study will be 20 subjects. If more data is needed, the researcher 
will file for a continuation. 

2. Describe how subjects will be recruited. Please provide the IRB with any recruitment materials that 
will be used. 

Subjects will be fellow students or lab partners of the researcher.  They will be asked 
verbally if they desire to participate.  Some “talking points” of verbal information provided 
to potential subjects are attached. 

3. List specific eligibility requirements for subjects (or describe screening procedures), including those 
criteria that would exclude otherwise acceptable subjects. 

a. Inclusion criteria 
i. Availability 

b. Exclusion criteria 
i) A potential subject will be excluded if the subject…  

Is pregnant 
Has a history of seizures, allergic reactions to topical ointments, stroke,  or  
cranial surgery 
Requires oxygen 
Has a pacemaker or other implanted electrical device 
Has a history of medical problems with the limbs including arthritis, surgery, 
fractures, etc 
Has problems sitting or standing 
Has strabismus 
Has spastic activity of the face, eyes or mouth 
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ii ) A potential subject will be excluded if the subject has excessive hair. Excessive 
hair makes electrode placement and removal uncomfortable for the subject and 
difficult for the researcher.

4.  Explain any sampling procedure that might exclude specific populations. 
As there are no strenuous inclusion criteria, subjects will be selected based on convenience. 
Thus subjects will primarily be students of the CRIM lab and others working regularly in 
EB2. 

5.  Disclose any relationship between researcher and subjects - such as, teacher/student; 
employer/employee. 
Anticipated relationships may be lab mates or acquaintances.

6.  Check any vulnerable populations included in study: 
minors (under age 18) - if so, have you included a line on the consent form for the 

parent/guardian signature 
fetuses 

pregnant women 

persons with mental, psychiatric or emotional disabilities 

persons with physical disabilities 

economically or educationally disadvantaged 

prisoners 

elderly 

students from a class taught by principal investigator 

other vulnerable population. 

If any of the above are used, state the necessity for doing so.  Please indicate the approximate age range 
of the minors to be involved. 

Vulnerable populations will not be recruited for this study. Recruited subjects will be 
between the ages of 18 and 60 years of age. 

C. PROCEDURES TO BE FOLLOWED
1. In lay language, describe completely all procedures to be followed during the course of the 

experimentation.  Provide sufficient detail so that the Committee is able to assess potential risks to 
human subjects. 

1) Subjects will be provided with consent form and any questions will be answered 
2) Subject is asked to make themselves comfortable in a bean bag chair. 
3) Subject is assisted in putting on an arm brace on the left arm 
4) Skin electrode site areas are prepped with a slightly abrasive cleaning gel. 
5) Skin electrodes are filled with gel, placed on sites and taped down 
6) Skin electrode contact is tested by looking at signal noise and adjusted if necessary. 
7) Subject is asked to close their eyes and relax 
8) Subject is instructed to relax with eyes closed and to flex their left arm at whim for the 

next 10min. 
9) Data is recorded for 10min 
10) Subject is allowed open eyes and relax while Data is analyzed (80 seconds) 

a. Computer analysis performed on simulated data has thus far taken no more 
than 74 seconds. If a fault occurs or the computer freezes, steps 11, 12 will be 
immediately skipped. 

b. Disconnecting the subject during analysis would destroy the data as electrode 
placements are not precisely reproducible. 
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11) Subject is again asked to relax, close eyes and move arm at whim. 
12) Data is recorded for another 10 minutes. 
13) Skin electrodes are disconnected. Arm brace is removed. 
14) Excess Gel is cleaned off 
15) Subject is thanked for participation 

2. How much time will be required of each subject?   

Task Duration Variability 
Setup 5min +/- 1min (estimated) 
Data Recording I 10min precisely computer controlled 
Data Analysis 74seconds +/- 2seconds 
Data Recording II 10min precisely computer controlled 
Take Down 2min +/- 30 sec (estimated) 
Total 28 min 14seconds +/- 1min 32seconds 
Factor of safety  +5minutes 
Grand Total 33 min 14seconds  

Beginning to End trial times will be no more than 33 minutes and 14 seconds. If any trial 
reaches 30 minutes it will be prematurely terminated so as not to exceed 33 minutes. 

D. POTENTIAL RISKS
1. State the potential risks (physical, psychological, financial, social, legal or other) connected with the 

proposed procedures and explain the steps taken to minimize these risks.
 The only significant risks from this experiment are shock hazard from handling 
electronic equipment and possible allergic reaction from the electrode gel. 
 Shock Hazard is reduced via redundant safety components within the sensor 
circuitry. The circuit will fail before dangerous voltages are reached, acting as a fail 
safe. Overall circuit is less dangerous than listening to headphones. Literature 
regarding the safety of this device in comparison with other, tested devices is 
attached. A new technique, completely isolating the subject from electrical ground is 
implemented so there’s no direct connection between the subject and any power 
source. This feature reduces the likelihood of shock.  Literature about this technique is 
also attached. 
 Risk of anaphylactic or other allergic reaction is low considering the gels are 
made for skin use. Any subject who states a history of reaction to topical substances 
will be rejected from the study.  

Should any reaction or any other accident occur, the PI will attend to the subject 
and activate the 911 system as necessary.  

2. Will there be a request for information which subjects might consider to be personal or sensitive (e.g. 
private behavior, economic status, sexual issues, religious beliefs, or other matters that if made public 
might impair their self-esteem or reputation or could reasonably place the subjects at risk of criminal or 
civil liability)?   

YES 
a.  If yes, please describe and explain the steps taken to minimize these risks.

 Participants won’t be allowed to participate if they have any of the medical 
conditions described in B.3. These conditions will be read verbally, in private and no 
written record of the subject’s conditions will be kept. Nor will the subjects need to 
specify which condition, of many, applies.  While this may cause some 
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embarrassment for subjects, specific conditions will not be identified, and all 
responses will be kept confidential. 

3. Could any of the study procedures produce stress or anxiety, or be considered offensive, threatening, or 
degrading?  If yes, please describe why they are important and what arrangements have been made for 
handling an emotional reaction from the subject.
NO

4. How will data be recorded and stored?  
Biosignal data will be stored in Matlab .mat files. Patient name is not relevant, 
thus data will be numerically indexed by participant with no personally identifying 
information attached. 
a. How will identifiers be used in study notes and other materials?  
Only numeric identifiers will be used. 
b. How will reports will be written, in aggregate terms, or will individual responses be 

described? 
Only numeric identifier will be used. 

5. If audio or videotaping is done how will the tapes be stored and how/when will the tapes be destroyed 
at the conclusion of the study.
N/A

6. Is there any deception of the human subjects involved in this study?  If yes, please describe why it is 
necessary and describe the debriefing procedures that have been arranged.
NO

E. POTENTIAL BENEFITS 
This does not include any form of compensation for participation. 

1. What, if any, direct benefit is to be gained by the subject? If no direct benefit is expected, but 
indirect benefit may be expected (knowledge may be gained that could help others), please explain.

 There will be no benefit for the subject. This knowledge will be used in future 
research designed to help those with neurological problems regain mobility. 

F. COMPENSATION 
1. Explain compensation provisions if the subject withdraws prior to completion of the study.  

No compensation is given for this study 
2. If class credit will be given, list the amount and alternative ways to earn the same amount of credit. 

N/A

G COLLABORATORS 
1.  If you anticipate that additional investigators (other than those named on Cover Page) may be   

involved in this research, list them here indicating their institution, department and phone number.
N/A

2. Will anyone besides the PI or the research team have access to the data (including completed surveys) 
from the moment they are collected until they are destroyed 
NO

H. ADDITIONAL INFORMATION
1.  If a questionnaire, survey or interview instrument is to be used, attach a copy to this proposal. 

2. Attach a copy of the informed consent form to this proposal. 
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3.   Please provide any additional materials that may aid the IRB in making its decision. 
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North Carolina State University is a land- Office of Research
grant university and a constituent institution and Graduate Studies
of The University of North Carolina

Sponsored Programs and 
                     Regulatory Compliance 
                     Campus Box 7514 
                     1 Leazar Hall 
                     Raleigh, NC 27695-7514 

                     919.515.7200 
                     919.515.7721 (fax)

From:   Debra A. Paxton, IRB Administrator 
North Carolina State University 
Institutional Review Board 

Date:    October 26, 2006 

Project Title: Intelligent Control Interfaces for Biosensors 

IRB#:   382-06-10 

Dear Mr. Adcock; 

The project listed above has been reviewed in accordance with expedited review procedures under 
Addendum 46 FR8392 of 45 CFR 46 and is approved for one year from its date of review.  This
protocol expires on October 25, 2007, and will need continuing review before that date. 

NOTE:
1. This board complies with requirements found in Title 45 part 46 of The Code of Federal 

Regulations.  For NCSU the Assurance Number is: M1263; the IRB Number is: 01XM. 

2. The IRB must be notified of any changes that are made to this study. 

3.  Your approval for this study lasts for one year from the review date.  If your study extends 
beyond that time, including data analysis, you must obtain continuing review from the IRB. 

Please provide a copy of this letter to your faculty sponsor.  Thank you. 

Sincerely, 

Debra Paxton 
NCSU IRB  

NC STATE UNIVERSITY 
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North Carolina State University  
INFORMED CONSENT FORM for RESEARCH

Intelligent Control Interfaces for Biosensors 

D. Brook Adcock Jr.     Dr. Edward Grant (PhD)

We are asking you to participate in a research study.  The purpose of this study is to test a Biosignal Computer Interface 
that will use your body’s electrical signals to predict body movements. If this test is successful, future research may  
allow paralyzed people to move, allow amputees to control bionic limbs, or even allow anyone to control robots 
with their mind. 

INFORMATION
If you agree to participate in this study, you will be asked to be attached to a Noninvasive Biosignal Computer Interface. If 
you consent, sensors will be temporarily placed on your skin with gel and tape; you will wear an arm brace with a sensor. 
During the experiment you will be asked to relax and move your braced arm at random for a period of 10 minutes while a 
computer records information from the sensors.  At the end of the experiment, the sensors and brace will be removed.

RISKS
The risks of this experiment are very low. The risks of this experiment are slightly less than that those of listening to music
on a computer with earphones. Foreseen risks are listed below. 

1. As when handling any electronic equipment there is chance of being shocked. Multiple redundant safety measures 
have been taken to electrically isolate you from any potential hazards. 

2. As when placing any material in contact with the skin, there is a chance of allergic reaction. Should you have a 
reaction, you will be attended to immediately. 

3. Some subjects describe the gel used to attach the electrodes as being “slimy and cold”. Sometimes the gel leaves 
behind a residue that can be easily washed off. Some people find this unpleasant. It is unknown what effect this gel 
has on cloths, hair dye, etc.  

The risks of this study are increased if you have any of the following medical conditions read to you by the investigator.   

If none of the medical conditions apply to you, please initial here:_______ 

I the researcher have read the document “Prohibited Medical Conditions” to the potential subject.  Initial here:_________

BENEFITS
There are no direct benefits to the subjects.  This knowledge will be used in future research designed to help those with 
neurological problems regain mobility. 

CONFIDENTIALITY
The information in the study will be kept confidential.  Data will be stored in Matlab .mat files referenced to you only by a 
number that is not linked to your identity. No reference will be made in oral or written reports which could link you to the 
study. 

COMPENSATION
No compensation will be given to you for your participation.

EMERGENCY MEDICAL TREATMENT
Should you be injured during this study the experimenter will attend to you immediately.  Should you need any type of 
medical treatment, the 911 system will be activated and you will be transported to the most appropriate Emergency Room 
Receiving Facility. 

CONTACT
If you have questions at any time about the study or the procedures, you may contact the researcher, D. Brooks Adcock Jr., 
at 2404 Still Forest Pl, Apt E, Raleigh NC, 27607, or (919)-606-7003.  If you feel you have not been treated according to the 
descriptions in this form, or your rights as a participant in research have been violated during the course of this project, 
you may contact Mr. Matthew Ronning, Assistant Vice Chancellor, Research Administration, Box 7514, NCSU Campus 
(919/513-2148) 
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PARTICIPATION
Your participation in this study is voluntary; you may decline to participate without penalty.  If you decide to participate, 
you may withdraw from the study at any time without penalty and without loss of benefits to which you are otherwise 
entitled.  If you withdraw from the study before data collection is completed your data will be returned to you or destroyed 
at your request. 

CONSENT
“I have read and understand the above information.  I have received a copy of this form.  I agree to participate in this 
study with the understanding that I may withdraw at any time.” 

Subject's signature_______________________________________ Date _________________ 

Investigator's signature__________________________________ Date _________________ 
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