
Abstract

BRALY, JOHN CHRISTOPHER. The Development of a Low-Cost and Robust
Autonomous Robot Colony Using LEGO Mindstorms. (Under the direction of Dr.
Edward Grant)

 The late twentieth century marked the birth of urban search and rescue robots. The

act of rescuing victims from collapsed or damaged buildings is extremely dangerous for the

humans involved. After the attacks on the World Trade Center, researchers recognized the

need for small robots with limited capabilities to be used in conjunction with more advanced

robots for urban search and rescue. This research has developed a low-cost, autonomous

robot colony with limited sensor capabilities using the LEGO Mindstorms development

platform. The study of this colony will provide insight into the group behavior of a

marsupial robot colony used for urban search and rescue.

 A microphone sensor was developed to facilitate communication among the robot

agents that comprise the colony. The incoming analog signal was amplified using a standard

non-inverting operational amplifier configuration. This amplified signal was input into a

tone detection circuit. This circuit was designed to provide a digital output to the LEGO

robot if a single tone of a specific frequency was detected. Other frequency tones have no

effect on the circuit. Using this sensor, the robots could be controlled with different

frequency tones.

 The task undertaken by the robots was a shepherding mission. The goal of the

sheepdog robot was to herd the sheep robot into a pen located at a fixed location. A helper

dog robot was added to assist the sheepdog when needed. The interaction, as well as

communication, between the sheepdog and helper dog was studied.

The Development of a Low-Cost and Robust Autonomous
Robot Colony Using LEGO® Mindstorms™

by
JOHN CHRISTOPHER BRALY

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

ELECTRICAL AND COMPUTER ENGINEERING

Raleigh

2003

APPROVED BY:

 ii

Biography

 J. CHRIS BRALY was born July 16, 1978 in Falls Church, VA. He received his

Bachelor of Science in Electrical Engineering with a minor in Biomedical Engineering from

The University of Virginia on May 21, 2000. After spending a year as an Associate Engineer

in the Submarine Engineering Department at Newport News Shipbuilding Company, he

enrolled at North Carolina State University. He is currently pursuing his Master of Science

in Electrical Engineering, conducting research in autonomous robotics and smart-sensor

development at the North Carolina State University Center for Robotics and Intelligent

Machines (CRIM).

 iii

Acknowledgements

 I would first like to thank my advisor, Dr. Eddie Grant, for allowing me to pursue this

crazy idea of building something useful out of LEGOs®. Without his guidance and patience,

this project could have never been completed. He allowed me to join the CRIM and pursue

my interest in robotics without ever having worked with me. For that, I thank him dearly. I

would also like to acknowledge my advisory committee, Dr. John F. Muth, Dr. Mark White,

and Dr. H. Troy Nagle for their support throughout this process.

 I also thank all of the members of the Center for Robotics and Intelligent Machines

for their friendship and assistance. I consider myself lucky for being able to have worked

with so many intelligent people. I would especially like to thank Kyle Luthy, Tim Slusser,

and Leonardo Mattos for their unwavering support and the aid they have provided to me.

 Finally, I would like to thank Holly for her loving support and endless patience. She

has supported me selflessly throughout this entire process. Without her, I’m not sure I would

have ever finished.

 iv

Table of Contents

List of Figures .. vi
List of Tables ... viii
Chapter 1 – Introduction ... 1

Section 1.1 – Project Motivation .. 1
Section 1.2 – Project Goals... 2
Section 1.3 – Thesis Outline ... 3

Chapter 2 - Literature Review... 4
Chapter 3 – The LEGO® Mindstorms™ Platform... 14

Section 3.1 – RCX and Programming... 14
Section 3.2 – Motors and Gearing .. 17
Section 3.3 – LEGO® Sensors ... 19

Section 3.3.1 – Light Sensor ... 20
Section 3.3.2 – Rotation Sensor.. 22
Section 3.3.3 – Touch Sensor ... 23
Section 3.3.4 – Other LEGO® Sensors .. 23

Chapter 4 – Robot Communication .. 25
Section 4.1 – Infrared Light .. 25

Section 4.1.1 – RCX Infrared Transmitter/Receiver .. 25
Section 4.1.2 – Pulsing Infrared Light .. 27

Section 4.2 – Audible Sound .. 28
Chapter 5 – LEGO® Robot Colony.. 30

Section 5.1 – Robot Colony Agents.. 30
Section 5.1.1 – Robot Design and Sensors ... 31

Section 5.1.1.1 – Basic Robot Design... 31
Section 5.1.1.2 – Sheep... 33
Section 5.1.1.3 – Sheepdog... 35
Section 5.1.1.4 – Helper Dog.. 37
Section 5.1.1.5 – Human Agent .. 38

Section 5.1.2 – Control Software.. 39
Section 5.1.2.1 – Sheep NQC Control Software... 39
Section 5.1.2.2 – Sheepdog NQC Control Software... 40
Section 5.1.2.3 – Helper Dog NQC Control Software.. 43

Section 5.2 – Microphone Sensor ... 44
Section 5.2.1 – Circuit Design .. 44
Section 5.2.2 – Sensor Construction ... 48
Section 5.2.3 – Interfacing the Sensor with the RCX... 49

Chapter 6 – Experiments and Results ... 51
Section 6.1 – Robot Calibration.. 51
Section 6.2 – Original Experiment.. 55
Section 6.3 – Microphone Sensor Test ... 59
Section 6.4 – Assisting the Sheepdog... 60

Chapter 7 – Conclusions and Future Research ... 62
Section 7.1 – Concluding Remarks... 62
Section 7.2 – Future Research .. 63

 v

Table of Contents (continued)

Chapter 8 – References ... 65
Chapter 9 – Appendix ... 71

Section 9.1 – LEGO® Robot Colony ... 71
Section 9.1.1 – Sheepdog.. 71
Section 9.1.2 – Sheep.. 73
Section 9.1.3 – Helper Dog... 75
Section 9.1.4 – Field ... 77

Section 9.2 – NQC Source Code... 78
Section 9.2.1 – Sheepdog NQC Source Code... 78
Section 9.2.2 – Sheep NQC Source Code... 83
Section 9.2.3 – Helper Dog NQC Source Code.. 87

Section 9.3 – Experiment Image Acquisition ... 89
Section 9.3.1 – Image Acquisition.. 89
Section 9.3.2 – MATLAB Source Code ... 90

Section 9.3.2.1 defish_image_set.m ... 91
Section 9.3.2.2 – defish_image2.m... 92
Section 9.3.2.3 – make_real_robot_paths.m... 95
Section 9.3.2.4 – robot_movie_maker_ver4.m... 96

Section 9.4 – Parts List ... 98
Section 9.4.1 – Microphone Sensor Parts ... 98

Section 9.4.1.1 – Component List... 99
Section 9.4.1.2 – Component Datasheets.. 100

Section 9.4.1.2.1 – Panasonic Microphone [39] ... 100
Section 9.4.1.2.2 – Texas Instruments Op-Amp [48] ... 101
Section 9.4.1.2.3 – New Japan Radio Tone Decoder [38].................................... 105

Section 9.4.2 – LEGO® Multiplexer .. 112

 vi

List of Figures

Figure 3.1 LEGO® Mindstorms™ RCX ..14
Figure 3.2 Disassembled RCX [44] ..15
Figure 3.3 LEGO® Mindstorms™ motor...18
Figure 3.4 LEGO® remote and lamp from Ultimate Accessory Set19
Figure 3.5 LEGO® Mindstorms™ sensors from left to right: rotation sensor,

lamp, light sensor, and touch sensor ...20
Figure 3.6 Improving light sensor sensitivity. Use a small piece of black plastic

to block the red LED emitter from the light detector (far left picture).
Insert the plastic in between the red LED on the left and the light
detector on the right (center picture). Put a 2x1 LEGO® Technic
brick in front of the light sensor to secure the “filter” and allow the
light detector to sense light through the hole (far right picture) [24]..................21

Figure 4.1 Block diagram of infrared detector [8] ..27
Figure 4.2 Block diagram of infrared emitter [8]..28
Figure 5.1 Left and right rear drive motors...31
Figure 5.2 Light sensor scanning device...32
Figure 5.3 Front bumper ...32
Figure 5.4 Side bumper...32
Figure 5.5 Back corner wheels to aid when turning near a wall ...33
Figure 5.6 Light bulb used to identify the dog..34
Figure 5.7 Infrared LED array on the sheep ...35
Figure 5.8 Three-channel active multiplexer ..36
Figure 5.9 Behavioral model of the sheep ..39
Figure 5.10 Behavioral model of the sheepdog ..41
Figure 5.11 Block diagram of corral task ...41
Figure 5.12 Behavioral model of the helper dog ..43
Figure 5.13 Circuit diagram of the microphone amplifier ..45
Figure 5.14 Internal components of tone detection chip [38] ...46
Figure 5.15 Tone detection circuit ..46
Figure 5.16 Circuit board layout for tone detection circuit (left), amplifier circuit

(middle), and microphone circuit (right) ..48
Figure 5.17 Top and bottom view of fabricated tone detection circuit board (left)

and amplifier and microphone circuit boards (right) ..49
Figure 5.18 Completed tone detection sensor...49
Figure 6.1 Distance the sheepdog traveled for a given amount of time..................................54
Figure 6.2 Sheepdog light sensor values at different distances from the sheep......................54
Figure 6.3 Amount of time to travel for a specific light sensor value54
Figure 6.4 Field with starting position grid...56
Figure 6.5 Paths taken by sheep and sheepdog...57
Figure 6.6 Results of microphone sensor test ...59
Figure 9.1 Front side of sheepdog...71
Figure 9.2 Left side of sheepdog...72
Figure 9.3 Backside of sheepdog ..72

 vii

List of Figures (continued)

Figure 9.4 Right side of sheepdog ..73
Figure 9.5 Front side of sheep...73
Figure 9.6 Left side of sheep...74
Figure 9.7 Backside of sheep ..74
Figure 9.8 Right side of sheep ..75
Figure 9.9 Front side of helper dog...75
Figure 9.10 Left side of helper dog...76
Figure 9.11 Backside of helper dog ..76
Figure 9.12 Right side of helper dog...77
Figure 9.13 The 8’ x 8’ field used to conduct experiments ..77
Figure 9.14 The pen used for experiments..78
Figure 9.15 Image acquired while conducting experiments ...89
Figure 9.16 Defished and cropped image ...89
Figure 9.17 One frame of the MATLAB movie showing two robots and the paths

they have taken ...90
Figure 9.18 Circuit diagram of the 3-channel active multiplexer [1]112

 viii

List of Tables

Table 6.1 Sheep and sheepdog experiment results..56
Table 9.1 Components used for the microphone circuit board ...99
Table 9.2 Components used for the amplifier circuit board..99
Table 9.3 Components used for the tone detector circuit board..99
Table 9.4 Technical specifications of the three-channel multiplexer [1]..............................113

 1

Chapter 1 – Introduction

The study of cooperative animal societies helps to provide insight into group

dynamics and behavior. By studying the foraging behaviors of fish, the mob behavior of

whip-tail wallabies, or the organization of primate colonies, researchers gain an in-depth

knowledge of animal behavior. Ants are one of the most studied biological systems. Their

social organization, methods of communication, and decision-making are some of the most

sophisticated of any biological society [3]. Studying different biological societies serves as a

model for mobile robot societies. In fact, cooperative multi-agent robot society research was

motivated by biological systems [31]. Many researchers have attempted to create robot

societies that mimic animal societies.

Section 1.1 – Project Motivation

Mobile robotics research changed directions in the mid-1990s after two disasters

stunned the world. The Kobe earthquake in January of 1995 and the Oklahoma City

bombing in April of 1995 resulted in massive devastation and a tremendous loss of life.

Robotics researchers recognized that rescuers needed help when searching for victims

trapped in the rubble of collapsed buildings. The act of searching for victims is not only

difficult, but also extremely dangerous. Rescue workers face the possibility of gas leaks,

explosions, and further collapse. The use of mobile robots for urban search and rescue

missions help reduce the risks faced by workers at the outset of the operation.

One of the major problems faced by the robots at a search and rescue site is the

overall size of the search robot. Most robots that have the ability to perform complex tasks

are rather large due to the extensive onboard sensor suite, the complex communication

system, and numerous batteries. Unfortunately, their size prevents them from searching

 2

much of the search area. For this reason, many are investigating the possibility of using

small “micro-rovers” in tandem with the larger robots for search and rescue missions. The

larger robots will remain relatively unchanged except for having the smaller robots gather the

sensory information. The larger robot also transports the micro-rovers to the rescue site.

This cooperative group of mobile robots has been termed “marsupial robots” because it is

similar to the way a kangaroo mother carries her young.

This research focuses on developing a marsupial-like robot colony using a low-cost,

robust robot platform. Instead of concentrating on creating the larger robot, several micro-

rovers are built to investigate ways of communicating with the team of robots. This thesis

presents background information regarding the LEGO® Mindstorms™ platform used to

develop the mobile robots. A description of the experiments performed on the colony and

the results are then presented. Finally, potential future research areas are suggested.

Section 1.2 – Project Goals

 The objectives of this thesis are to

1. Provide a complete description of the LEGO® Mindstorms™ platform used

to develop the robot colony.

2. Investigate various communication schemes that can be used to provide

instruction to the robot colony.

3. Describe the design and construction of the robot colony, including additional

hardware and software used.

4. Establish a communication link between colony members and examine the

interaction among team members during experimentation.

 3

Section 1.3 – Thesis Outline

 In Chapter 2, an extensive literature review is presented. Cooperative, multi-agent

robot societies are discussed, as well as biologically inspired research, LEGO®

Mindstorms™ research, and robots used for urban search and rescue. A complete overview

of the LEGO® Mindstorms™ robot development platform is presented in Chapter 3. In

Chapter 4, different methods of communicating with the members of the robot colony are

discussed. Chapter 5 contains a description of the robot colony developed. In Chapter 6, the

experiments performed with the robot colony and the results of these experiments are then

presented. Chapter 7 contains concluding remarks and suggestions for future research.

Finally, an extensive list of references is included in Chapter 8, and detailed descriptions of

the hardware and software used are provided in the Appendix.

 4

Chapter 2 - Literature Review

In 1948 and 1949, while investigating his theories about the nervous system, W. Grey

Walter built two autonomous robots to help him understand the operation of animal brains.

Each Machina speculatrix robot had a vacuum tube that simulated two interconnected

neurons. These amplifier circuits connected two sensors, a photocell and a touch sensor, to

the two motors [29] [50]. When the touch sensor was closed, one of the amplifier circuits

oscillated, and the robot changed direction [29] [50] [51]. The two “tortoises” exhibited

some intriguing behaviors, including the tendency “to explore the environment rather than to

wait passively for something to happen” [50, pg. 126]. Other behaviors included the

attraction to moderate light, the repulsion when exposed to bright light, mutual recognition

(the robots would “flock” together when there was no outside stimulus present), prioritizing

tasks (i.e. avoiding an obstacle instead of moving toward a light), and the inclination to seek

environments with favorable conditions (i.e. moderate light) [3] [50].

Walter then began to study whether or not his robots could learn. He attached a

circuit, the Conditioned Reflex Analogue (CORA), to his original robots creating Machina

docilis. CORA provided a link between either of the robot’s sensors (light or contact) with a

sound stimulus. Using this circuit, Walter trained his robots to come by first blowing a

whistle and then showing the robot a light. He then trained it move away from a loud sound

by blowing the whistle and then triggering the contact reflex [29] [50] [51]. These

experiments with Machina speculatrix and Machina docilis provided the foundation for the

study of robot-robot and human-robot interaction.

Prior to the 1980s, robotics researchers focused their efforts primarily on issues

dealing with single-robot systems. However, researchers began to shift their interests to

 5

multiple mobile robot systems in the late 1980s [31]. In 1988, Fukuda and Nakagawa [17]

proposed a robotic system that would be able to autonomously reconfigure its shape and

software given a specific task. This system is comprised of individual autonomous “cells”

that have a single function and a small amount of intelligence, much like the individual cells

of the body. In the body, each cell works alone but can cooperate with other cells in the

group to perform a specific task. Gerardo Beni [9] discusses the idea of creating an

autonomous robotic system in which the individual robots work together to accomplish an

explicit task. These simplistic robots do not have a central controller nor do they share

memory, but when working together, they can accomplish complex tasks.

Throughout the 1990s, several research themes emerged for multi-agent systems.

Some of the most common themes include foraging for items, performing tasks (assembly or

disassembly), maintaining formations while moving throughout an area, surveillance,

transporting objects, path-planning, collision avoidance, and robot-soccer [3] [31]. Rybski

and others [46] have developed a multi-agent system that can be used for reconnaissance and

surveillance. The system is comprised of a few large robots and several small “scouts” that

serve as the eyes and ears of the operation. The large robots function as supervisors, collect

data from the scouts, and coordinate the behaviors of the scouts. Researchers in Brazil [42]

have developed two robots that perform a box-carrying task without having to explicitly

communicate (no data flow between robots) with each other. The determination of the

robot’s role in the task is made by relying solely on local sensor data. The research has

shown that this method of communication is just as effective as explicit communication.

Other researchers have investigated dynamic role assignment of multi-agent teams for

various tasks. Emery et al. [15] present several techniques for collaboration and coordination

 6

of a team of robots that play soccer. This approach allows for the reduction of interference

among team members, as well as determining their role (i.e. offense or defense) based on

their location on the field. This eliminates the need for specialized players and allows all

teammates to help each other if needed. Chaimowicz and others [12] also use dynamic role

assignment for a group of robots that cooperatively search and retrieve objects scattered

throughout the environment. This allows for adaptations to be made if an unexpected change

in the environment occurs and results in improved overall efficiency. Lynne Parker [41] has

investigated how cooperative team performance is affected by robot team member awareness

when performing a puck-moving mission. Her research indicates that the awareness on team

performance is a function of several factors, including team size, how well the effects of

actions are sensed, the amount of work available for each team member, and the cost of

executing redundant tasks. She has also developed ALLIANCE [40], a software architecture

that “facilitates fault tolerant, reliable, and adaptive cooperation among small- to medium-

sized teams of heterogeneous mobile robots, performing (in dynamic environments) missions

composed of independent tasks that can have ordering dependencies” [40, pg 221]. The

feasibility of this control architecture was demonstrated by performing a simulated hazardous

waste cleanup with a team of mobile robots in the laboratory. The research indicates that

ALLIANCE improves the team robustness by continually monitoring the sensors of a single

robot and then adapting the robot’s response based on environmental changes that have

occurred and the actions of its teammates.

Many researchers [3] [4] [13] [21] [31] [34] [41] acknowledge the benefits of using

multiple-robot systems instead of single-robot systems. Such systems are more cost effective

since many smaller robots can be built for the same cost as one large robot. Multi-agent

 7

systems are also more redundant, and therefore more fault-tolerant, than a single-robot

system. If one robot fails, the others can still complete the task without any major problems.

Also, with a team of robots, the sensor information of one robot can be shared with the

others, allowing for more informed decisions to be made by individual team members.

Finally, there is an improved system performance when several robots are used, allowing for

divide and conquer techniques to be employed. With multi-agent systems, several “tasks can

be completed considerably more efficiently overall for a wide range of tasks and

environments using groups of robots working together” [3, pg 359].

There are, however, several problems that can arise when using multiple robots [3]

[34]. Interference can occur with too many robots and not enough work. Problems can also

occur when numerous robots are being used in confined areas. Team members can

unintentionally interfere with each other in this situation. It is also difficult for a robot to

know when it or another team member is being unproductive. Communication between team

members is also a problem area with multi-agent systems. Specialty hardware, extra

processing, and more power are required for successful communication. Also, noisy

channels and signal strength can affect system performance. Noisy channels can degrade the

signal to the point where the message is misunderstood or not even received at all. Signal

strength is especially important when sending distress signals. Too weak of a signal might

result in it not being heard, while too large of a signal might cause the entire colony to

provide assistance. For successful operation, a robot must know what its team members are

doing. Without communication between robot team members, as well as an appropriate

sensor suite, robots may compete against each other and reduce overall system performance.

Nevertheless, these problems can be overcome with careful planning by the system designer.

 8

The multi-agent robot systems research that emerged at the end of the 1980s and

continued through the mid-1990s was inspired by biological systems and “the collective

intelligence demonstrated by social insects” [31, pg 7]. An ant colony provides a good

example. The colony is comprised of hundreds of ants, each with a specific duty. Yet a

group of these ants can work together to move a dead earthworm from one place to another

[31]. Russell et al. [45] created a robotic system that replicates the way ants mark the trail

between their nest and a food source (both ingoing and outgoing). Like ants, the robots in

this system perform navigation tasks by leaving and detecting trails of volatile chemicals.

The researchers suggest that this type of system could be used by a group of cleaning robots

to mark an area of the floor that has already been cleaned. At the University of Strathclyde

in Glasgow, Scotland, Lambert [28] and Russell designed and built autonomous robots to

imitate the behavior of a sheepdog and a sheep. The primary goal of their project was to

have the sheepdog herd the sheep into a pen located at an arbitrary location while

maintaining the natural behaviors of both the sheep and sheepdog.

The dog was designed to round up any sheep in the “field” and corral them into a pen

without any external assistance from a “shepherd” or another dog. It was also designed to

identify the pen and sheep and to calculate the distance and direction to each object. The

sheep was designed to identify the dog and other sheep (if any) and also establish the

distance and direction to each object. In order to accomplish the goal of rounding up the

sheep while maintaining natural behavior, the dog was allowed to travel at a faster speed than

the sheep. Both robots were designed to detect and avoid collisions with objects in the field.

In addition, both the sheep and sheepdog were to be identical, with the exception of the

 9

software used to control the two robots. Finally, they were to operate over as large of an area

as possible.

The behavioral model of the sheep consisted of three parts: graze, flock, and flee.

First, the sheep would move within the field in a random way, thus appearing to graze. If the

sheep detected the dog at a distance, it flocks towards other sheep if they are not close to the

dog. If the dog moved too close to the sheep, it would panic and move away at full speed.

The behavioral model of the dog is made up of four parts: finding the pen, locating the

sheep, herding the sheep towards the pen, and funneling it into the pen. First, the dog would

search for the pen. Once the pen was located, the dog would search for the sheep. When it

was located, the dog moves towards the sheep. It would move around the sheep to a position

where the sheep is between itself and the pen. This caused the sheep to move away from the

dog and towards the pen. Once the dog had moved the sheep near the pen, it would the force

the sheep into the pen.

Combining the biologically inspired multi-robot systems research of the mid-1990s

and the need to help rescuers during urban search and rescue missions resulted in the

development of marsupial robots. “Urban search and rescue (USAR) focuses on locating and

extracting people trapped in collapsed or damaged structures. Rescuers are under extreme

time pressure; after 48 hours, victim mortality drastically increases owing to exposure and

lack of food, water, and medical treatment” [35, pg 14]. Marsupial robots are simply a group

of robots in which there is a large “mother” robot that carries at least one smaller “daughter”

robot, similar to the way a kangaroo mother carries her young. The mother robot provides

for the daughter robot in many ways. It protects the daughter robot by transporting it from

one location to another. It also provides battery power to the daughter robot, by either a

 10

tether or a recharging station. It can also help the smaller microrover during its mission by

acting as a leader or manager. The mother can collect the sensor data from the daughter

robot and use it to make decisions that pertain to the task at hand. It can also serve as a

communication relay station between the microrover and the human operator. Finally, the

mother robot can rescue the daughter robot if it gets into trouble [34] [35] [37].

Traditionally, only highly trained individuals and dogs were used in USAR missions.

However, the idea of using robots to help rescue survivors came about in 1995. On January

17, 1995, an earthquake centered near the area of Kobe and Osaka, Japan registered 7.2 on

the Richter scale. This earthquake killed 5,100 people, injured 26,800 others, and caused

approximately US$100 billion damage. Soon after the earthquake, the Tokyo Fire

Department’s Fire Science Laboratories began to develop a line of robots that could be used

in urban search and rescue applications. On April 19, 1995, 168 people were killed and

more than 500 people were injured in the bombing of the Alfred P. Murrah Federal Building

in Oklahoma City, OK. John Blitch, a Masters of Science student of Robin Murphy at the

Colorado School of Mines, served as a rescue worker. When he returned, he and Murphy, an

expert researcher in the field of USAR, decided to focus their research efforts on developing

robots that could be used to help urban search and rescue missions [14]. Others [26] also

began researching the use of robots for urban search and rescue in the late 1990s. A

distributed team of mobile robots without a central supervisor was developed to search for an

object and then move the object to a determined area. Using the implemented algorithm,

each robot searches for the object concurrently, signals to other team members once the

object has been found, and then cooperatively moves the object once it has been found.

 11

One of the major problems with USAR research is the lack of realistic field studies.

Researchers at the University of South Florida have teamed together with the local fire

department [10] [11] [14] [36] to test their robots in a staged search and rescue environment.

However, these staged environments can only identify potential problems and validate

hypothesized situations that may be encountered during an urban search and rescue mission.

Unstaged USAR environments are needed in order to determine if the current research is

moving in the right direction. After the attacks on the World Trade Center in New York

City on September 11, 2001, robots were used in an actual search and rescue mission for the

first time. Soon after the attacks, Blitch organized a group of robot researchers and

manufacturers to help with the search and rescue mission. The group was at the site for

about four weeks, and found ten victims (more than 2% of all victims discovered). This

experience helped to validate that the USAR research is moving in the right direction [10]

[14].

There are several benefits of using robots, especially marsupial robot teams, for urban

search and rescue efforts. Most importantly, rescue situations are extremely dangerous for

those involved. There is a high potential for gas leaks, explosions, and further collapse.

Robots can send environmental conditions of the search area, such as the presence of harmful

gasses and seismic data, to rescue workers. Using robots can reduce the risks faced by

humans at the outset of the rescue mission. Also, rescue workers must be very deliberate

while searching for victims in order to remain safe. In some situations, workers might be

required to leave an unstable site until it becomes safe to return. Robots can perform

searches at a faster pace without feeling the fatigue and stress a human would feel [35] [36].

 12

Marsupial robots are particularly useful in search and rescue situations. A marsupial

robot team is specifically designed for very small robots to be carried to a site by a larger

robot. The size of the daughter robot allows it to move through small voids that larger robots

and humans cannot fit into. Also, the daughter robot does not have to worry about sending

sensory information back to the rescue workers. This is performed by the mother, resulting

in the battery power of the daughter being used primarily for the search. Murphy’s

experiments show that a marsupial team can perform better than individual robots can when

it comes to reaching destinations and arriving at these destinations quicker over longer

distances. Murphy is also investigating using robots as part of the marsupial team that can

change their shape depending on the environment, as well as the human-marsupial team roles

during a USAR mission [35] [37].

Lambert and Russell’s experiment was replicated in 2002 by graduate students at

North Carolina State University using LEGO® Mindstorms™ [8]. Using primarily LEGO®

Mindstorms™ parts, a sheep and sheepdog were built. The sheepdog was able to herd the

sheep into the pen without the aid of any additional processing power or human intervention.

This project showed that the LEGO® Mindstorms™ were a feasible platform to develop

autonomous mobile robots. Many others have used LEGO® Mindstorms™ effectively in

their research. Michael Gasperi has recreated Grey Walter’s tortoises using LEGO®

Mindstorms™ [19]. Kumar [27] uses LEGO® Mindstorms™ as an integral part of his

undergraduate artificial intelligence (AI) course. The robot development kit gives students

the opportunity to focus their attention on solving AI problems, and spending time building

their robot. The kit is also relatively inexpensive, averaging about $200, and can be found at

local toy stores or online. This allows for most of the students to purchase their own set.

 13

Researchers in Japan [52] have performed experiments that evolve the morphology and

controller of a LEGO® robot. Iversen et al. [25] present findings on the automatic

verification of real-time control programs running on LEGO® Mindstorms™ system. They

demonstrate their verification techniques by building a robot that can sort LEGO® bricks by

color. These researchers show that LEGO® Mindstorms™ can be used as an effective

platform to develop fairly complex, but inexpensive, robots.

 14

Chapter 3 – The LEGO® Mindstorms™ Platform

Previous research was conducted to determine the feasibility of using the LEGO®

Mindstorms™ Robotics Invention System 2.0 as a platform for autonomous mobile robot

development [8]. During this project, two mobile robots were created to mimic the behavior

of a sheep and a sheepdog. The results of this research indicated that the LEGO®

Mindstorms™ could serve as a capable platform to use for the design and construction of

mobile robots without having to make any modifications to the original system. The

capabilities and limitations of the LEGO® Mindstorms™ platform will be discussed in the

following section.

Section 3.1 – RCX and Programming

At the heart of the LEGO® Mindstorms™ Robotics Invention System is the robotic

command explorer, or RCX (Figure 3.1). Each RCX is powered by a total of six AA

batteries. The major components of the RCX are the Hitachi H8 microcontroller with 32 KB

of RAM, three output ports used to power the motors,

three input sensor ports, and a liquid-crystal-display

(LCD) screen. It also contains an infrared transmitter

and receiver, which can be used to communicate with

the base station plugged into a computer or another

RCX block [44] [49]. A Stanford University

graduate student, Kekoa Proudfoot, was the first

person to disassemble the RCX and fully document the internal components [49]. A picture

of Kekoa’s disassembled RCX is shown in Figure 3.2.

Figure 3.1 LEGO® Mindstorms™ RCX

 15

The lack of sensor input and motor output ports are the most serious limitations of the

RCX. Only three sensors can be used with the RCX at one time. In order to build a

functional autonomous robot, more than three sensors are often needed. However, the lack

of motor ports does not hinder development as much. For most applications, the three motor

output ports will suffice. For most applications, more than three motors will result in too

much weight, and the robot will not be able to move very well. To allow for more than three

sensors to be connected to the RCX, several sensors can be connected to the same port by

multiplexing them together. By changing the sensor type from light to touch and then back

to light, the RCX can cycle through the sensors. This action is similar to cycling though

outputs of a standard multiplexer using a clock. As the RCX changes from one sensor to

another sensor, it does not only just switch the signal to the sensor, but it also switches the

power to the sensor off. This results in a conservation of battery power, since only one of the

Figure 3.2 Disassembled RCX [44]

 16

multiplexed sensors will be on at a time [1]. Other similar expansion techniques for more

input and output ports have been found in online literature [20].

Another drawback is the limited amount of onboard memory (32 KB), of which about

half is taken up by the firmware. The firmware is used to interpret the downloaded programs

and execute the processor machine code [49]. A total of five programs can be loaded onto

the RCX at one time. However, these programs can be no larger than 6 KB and must be

limited to the use of up to 32 variables [27]. This limited amount of memory for a program is

not a severe drawback since typical RCX programs tend to be only hundreds of bytes long

[5]. This shortcoming does not prevent the development of autonomous mobile robots.

The visual programming environment for the LEGO® Mindstorms™ Robotics

Invention System 2.0 poses a slight problem when developing robots using this platform. In

order to write a program, blocks are arranged using the supplied PC software [49]. This

method of programming may be perfect for the audience the product was designed for

(children ages 12 and up). It is, however, difficult to implement advanced algorithms using

this technique. The supplied programming environment does not support recursion and

nested control constructs [27]. Fortunately, alternative languages and cross compliers have

been developed for more advanced programming. These options include Not Quite C (NQC)

[5] [6], pbForth (a variant of Forth) [23], leJOS (JAVA based) [47], Visual Basic [22], Visual

C++ [7], and Ada [16].

For this project, all code was written in the NQC programming language (Beta

Release – 2.5 a5) due to the familiarity of the C language by the researcher. NQC, developed

by Dave Baum, allows the user to write programs using an ordinary text editor in a known

dialect. The compiler then converts the NQC code into a language that can be downloaded

 17

and understood by the RCX firmware. Using this technique to write programs, rather than

the LEGO® visual programming technique, gives the user more control over the RCX

hardware [49].

NQC supports traditional C function definitions and commands (such as for and while

loops) with additional commands designed specifically for the LEGO® Mindstorms™ kit.

These functions include commands to define sensor ports, to define motor directions and

power levels, to play various sounds, and to send and receive simple messages and serial data

using infrared [6]. The major drawback to using infrared communication between two

different RCX blocks is that the message cannot be received from all directions. In order for

an RCX block to receive a message, its receiver must be pointing directly at the transmitter

of the other RCX block that is sending the message. There is also extremely large power

consumption when sending a message, resulting in a battery lifespan much shorter than

normal.

One aspect of NQC that is different from traditional C is the task code block. Since

the RCX supports multi-tasking, “an NQC task directly corresponds to an RCX task” [6, pg.

50]. The RCX can support up to 10 tasks running simultaneously, including main, which is a

task in NQC rather than a function as it is in the C programming language [6]. Tasks have a

distinct advantage over traditional functions because, once started, they run continuously

until a stop command is issued. Functions only execute once when called, making tasks

more convenient for procedures that must run constantly.

Section 3.2 – Motors and Gearing

Next to the RCX, the motors, gears, and the specialty LEGO® bricks are the most

important components of the LEGO® Mindstorms™ kit. Without them, a robot could not be

 18

built. The Robotics Invention System contains numerous gears of varying sizes that allow

for many different ways to “gear up” (increase rotational speed) or “gear down” (decrease

rotational speed) the motor. It also contains several unique LEGO® blocks that can be used

with the motors and gears to create an assortment of moving parts.

The two motors (one is shown in Figure 3.3) included effectively provide the

necessary power needed to develop a functional LEGO® robot. Unfortunately, the LEGO®

Mindstorms™ kit only comes with two motors,

which makes it difficult to create more complex

robots. Individual motors, however, can be

purchased if they are required [43]. The motors

can be driven forward or backward in the on

mode, not move at all in the off mode, or be

allowed to “coast” in the floating mode. The

floating mode is synonymous to neutral for an automobile. Each motor can operate at one of

eight power levels. The RCX uses pulse-width modulation to create the intermediate power

levels using a digital signal. Varying the widths of the pulses creates the intermediate power

levels. The RCX sends pulses every 8ms with the width of the lowest power level being 1ms

and the width of the highest power level being 8ms. The motor is constructed such that an

internal flywheel is used to keep the motor spinning until the next pulse is supplied [5].

In 2002, LEGO® upgraded the motors supplied with the Robotics Invention System.

Due to the fact that some of the kits were purchased prior to the change, the new (LEGO®

part number 43362) and old (LEGO® part number 71427) motors will be discussed. The

two motors are almost identical, but there are slight differences. Most noticeable is the

Figure 3.3 LEGO® Mindstorms™ motor

 19

weight of the two motors. The pre-2002 motor weighs about 42 grams as compared to about

28 grams of the new motor. This decrease in weight will help when larger, more complex

robots are being developed. Another less noticeable change is the addition of a PTC resistor

that protects the motor from over-current by increasing the resistance if the temperature rises,

thus limiting current. Based on Phillipe Hurbain’s experiments, the old motor performs

slightly better, but the weight of the new motor can justify its use [24].

Section 3.3 – LEGO® Sensors

The following section describes the sensors included in the LEGO® Mindstorms™

Robotics Inventions System and the Ultimate Accessory Set. The usefulness of the sensors

will be discussed along with ways to improve the

effectiveness of the sensors. In addition to the

extra sensors, the Ultimate Accessory Set also

contains a remote control, a LEGO® lamp (Figure

3.4), and extra LEGO® building materials. The

LEGO® lamp does not produce much light and is

not very useful in a lit room. It might, however,

be useful if the robot is operating in a dark environment. The remote control can be used to

manually drive the motors, send a message to the RCX, or select which of the five programs

to run. It is particularly useful since the robot can be started from a distance and prevents the

user from getting in the way. The infrared receiver on the RCX must be pointed at the

remote control in order for the remote to work.

Figure 3.4 LEGO® remote and lamp from
Ultimate Accessory Set

 20

Section 3.3.1 – Light Sensor

The two major components of the LEGO® light sensor (Figure 3.5) are a red light

emitting diode (LED) and a phototransistor. The phototransistor responds to the amount of

incoming light, whether it is the amount of light being produced by a source or the amount of

reflected light produced by the red LED [5]. Because of these two components, it is one of

the most versatile LEGO® sensors. For example, it can be used on a robot to measure the

amount of ambient light in a room

and perform various tasks

accordingly. It can also be used to

determine the distance from a

particular light source (by measuring

the amount of incoming light) or the

distance to an object (by measuring

the amount of reflected red light).

However, measuring the distance to

an object using the light sensor is not

very effective unless the object is very close to the sensor. Finally, it can be used as a sensor

that detects different colors by measuring the amount of reflected red light produced by the

LED, since different colors reflect a different amount of red light.

If the red LED is not needed for the desired application, it can be “eliminated” to

increase the sensitivity and performance of the light sensor. The light sensor can be

disassembled and the red LED can be physically removed, resulting in improved

performance [2] [20]. This method is not recommended since permanent damage to the

Figure 3.5 LEGO® Mindstorms™ sensors from left to
right: rotation sensor, lamp, light sensor,
and touch sensor

 21

structure of the sensor will occur, and possible damage to the sensor circuitry could result,

rendering it useless. Another method that does not require any disassembly of the sensor has

been performed [24]. Inserting a tiny piece of black plastic between the red LED and the

phototransistor effectively blocks the red light and prevents it from being detected by the

phototransistor. A 2x1 LEGO® Technic block can then be placed in front of the light sensor

to secure the plastic. A small piece of electrical tape might be required to attach the plastic.

Pictures illustrating this procedure are shown below in Figure 3.6.

With this configuration, the light sensor is not as susceptible to the effects of ambient

light. It also makes the sensor extremely directional by restraining the detection of incoming

light to the light that enters through the hole in the Technic brick. Tests have shown that

when using this design, infrared light can be detected at distances up to twelve feet with the

room lights on. This is quite impressive when compared to the results achieved when using

standard cadmium sulfide (CdS) photoresistors.

One important factor to remember when using the light sensor is that the robot will

need to be calibrated each time it is used. Each environment has a different amount of

ambient light. Even if a Technic brick is placed in front of the sensor as shown above,

Figure 3.6 Improving light sensor sensitivity. Use a small piece of black plastic
to block the red LED emitter from the light detector (far left picture).
Insert the plastic in between the red LED on the left and the light
detector on the right (center picture). Put a 2x1 LEGO® Technic
brick in front of the light sensor to secure the “filter” and allow the
light detector to sense light through the hole (far right picture) [24].

 22

calibration might be required in order to work properly. Also, the light sensor requires power

to operate. This means that as the batteries become weaker, the power supplied to the sensor

decreases. The decrease in power will also result in the need for recalibration [5].

Section 3.3.2 – Rotation Sensor

The LEGO® rotation sensor (Figure 3.5) is not included in the Robotics Invention

System. It comes in the Ultimate Accessory kit, or it can be purchased separately from

LEGO®. This sensor measures the amount of rotation relative to a base position. The base

position is defined, by default, as the position of the sensor when the program is started.

However, a special command can be issued during operation to change the base position

from the default position to the current position of the sensor [5].

The base position of the sensor is given the value of zero. After one complete

revolution, the value of the sensor is 16, which corresponds to 22.5° per count. To increase

the accuracy of the measurement, gear reduction can be used [5]. The sensor also counts

down. For example, if the sensor completes one complete revolution by rotating in one

direction (i.e. clockwise), the value will be 16. If it then completes one revolution in the

opposite direction (anti-clockwise), then the value of the sensor will be zero. If it then makes

another revolution in the anti-clockwise direction, the value of the sensor will be -16. The

rotation sensor ranges from -32767 to +32767 [19].

The major drawback of the rotation sensor is that it performs very poor when the

speed of rotation is slow. Experiments have shown that the sensor skips values when it is

rotating slowly, resulting in an error of 22.5° per skipped value. In some applications, this

might not be a problem. Yet for most applications, this large error would result in failure.

Philippe Hurbain has disassembled his rotation sensor, and after performing an in depth

 23

analysis to determine exactly how it works, has determined that if a capacitor is added to the

circuit, the sensor no longer skips values at low speeds [24]. An easier way to remedy this

problem is to put the sensor on the shaft of the motor before any gear reduction is added. By

doing this, the motor speed can be set high enough so the sensor does not skip any values.

Gear reduction then can be added to increase the accuracy of the sensor. This method does

not risk damage to the sensor by attempting to take it apart.

Section 3.3.3 – Touch Sensor

The LEGO® touch sensor (Figure 3.5) is the simplest of all the LEGO® sensors.

When the button on the front of the sensor is not pressed, the circuit is open and the output

value is LOW. The output value changes to HIGH when the button is pressed and the circuit

is closed. These sensors can be connected to the same input port in a variety of ways to

create either an AND configuration or an OR configuration. If connected in the AND

configuration, two LEGO® lamps can be used to determine which touch sensor has been

pressed [20]. When the sensors are connected in the OR configuration, the RCX cannot

distinguish which sensor is being pressed [5]. The touch sensors can be used to construct

“bumpers” that will result in the robot performing a certain task, such as reversing its

direction, if it runs into an obstacle.

Section 3.3.4 – Other LEGO® Sensors

Besides the sensors that are included with the Robotics Invention System and the

Ultimate Accessory kit, there are numerous sensors available that interface with the RCX.

Several companies sell sensors that can be used with the RCX. PITSCO (the LEGO®

educational division) sells all the sensors previously discussed, as well as a temperature

sensor [43]. DCP Microdevelopments also makes a variety of sensors that will interface with

 24

the RCX, including a humidity sensor, a pH sensor, a pressure sensor, and a sound level

sensor [30].

There are also many LEGO® enthusiasts that have built “homebrew” sensors using

LEGO® blocks, standard electronics, and a bit of ingenuity. Michael Gasperi has an

extensive list of sensors built by hobbyists, including an angle sensor, a rotation sensor, a

motor speed/torque sensor, a differential light sensor, a pyroelectric motion sensor, and an

ultrasonic range sensor [20]. Philippe Hurbain has developed several sensors including a

color sensor and a wire guidance sensor that allows a robot to follow a wire using an AC

current flow to generate a magnetic field [24].

 25

Chapter 4 – Robot Communication

 One if the most challenging aspects when developing a cooperative robot team is

establishing a communication link between team members. The major problem is that a

communication system is not reliable at all times. For example, noisy channels can cause a

robot to miss a message or interpret it incorrectly. Also, in some environments, electronic

countermeasures may be used to block communications between team members.

Malfunctioning receivers can also cause a robot to miss a message. Other important factors

regarding a communication system are range, signal strength, and type of communication

(direct communication or communicating through observation) [3]. In this chapter, the two

primary techniques of establishing a communication link between the LEGO® robots that

were investigated are discussed.

Section 4.1 – Infrared Light

 Two methods of infrared communication between robots were explored. The first

method consisted of using the infrared transmitter and receiver on the RCX. The second

method was to pulse infrared light at different frequencies, each corresponding to different

messages.

Section 4.1.1 – RCX Infrared Transmitter/Receiver

 The first communication scheme that was investigated was using the RCX infrared

transmitter and receiver to send messages to the robots. The RCX has the ability to receive

simple 8-bit messages ranging from 0 to 255. It continually monitors for incoming messages,

remembering the most recently received message. If no message has been received, the

default value stored in memory is zero [5] [6].

 26

The basic idea behind this method of communication is each numbered message

corresponds to a different instruction. With 255 possible messages (since the default value

for no received message is zero), many different instructions can be given to the robots.

Another benefit to using this communication scheme is that no additional hardware or

software is required. The RCX has the ability to send and receive infrared messages by using

predefined NQC functions.

Unfortunately, there are major drawbacks to using this communication scheme. First

of all, in order to receive a message, the robot must point the receiver directly at the

transmitter. The receiver is not omnidirectional. If the transmitter is at a fixed orientation,

this is not that big of a problem. The robot could easily orient itself so it could receive a

message. It would either have to know when it is being given an instruction, or check at

regular intervals to see if a message is being sent. If the transmitter were allowed to move, it

would be extremely difficult to align both it and receiver in order to detect a message.

Another problem is the amount of power required to send an infrared message. If an RCX is

used to transmit the message, the batteries are drained very rapidly, even when using the low-

power transmission setting. On the other hand, if the infrared tower used to download

programs onto the RCX is employed to send messages, the power consumption is not an

issue. Using the infrared tower, however, does not allow for communication among team

members, which is desired. Due to this, as well as the high power expenditure that occurs

and the fact that messages cannot be received at any orientation, the built-in RCX infrared

transmitter was not used to communicate between robots.

 27

Section 4.1.2 – Pulsing Infrared Light

 By transmitting infrared light at different frequencies, different messages can be sent

by changing the frequency of the transmitted signal. When the robot detects a signal of a

specific frequency, the instruction associated with that frequency could then be executed.

Detection of the infrared signal can be accomplished by building an array with several

detectors designed to sense infrared light of a specific wavelength. Each array element

would detect a different wavelength, and thus correspond to a different instruction. A block

diagram of this detection scheme is shown in Figure 4.1. In order to tell which array element

was sensing the signal, the output of

each element would be sent to a

multiplexer before being interfaced

with the RCX. If a multiplexer is

used, a clock is required to cycle

through each input. Either a 555-

timer circuit or RCX sensor input

will provide an adequate clock for the

multiplexer. In order to use the RCX

sensor input as a clock, the sensor

type must be changed from touch to light and back to touch over a pre-determined duration.

The only problem with using this configuration is that two sensor inputs would be used,

leaving only one for the remaining sensors. For this reason, the more desirable configuration

to use is the 555-timer circuit.

Infrared Detection
Array

with N elements

Infrared signal
with frequency fo

N

N:1 Analog
Multiplexer

RCX Sensor
Input 2

RCX
Sensor
Input 1

Hz

555-timer
Circuit

Use either the 555-
timer circuit or RCX
to generate a clock

Figure 4.1 Block diagram of infrared detector [8]

 28

 The easiest way to transmit an infrared signal at a specific frequency is by using the

555-timer, as shown below in Figure 4.2. The frequency of the output signal can be adjusted

by changing R1, R2, or C1. The frequency is

related to these circuit elements by

121)2(
44.1

CRR
f

+
= [8]. The obvious

problem is that in order to change the

emitted frequency, the circuit elements have

to be changed. To make it simple to change

the frequency, R2 and C1 should remain

constant while R1 should be adjustable.

This circuit configuration still requires an

operator to change the emitted frequency. Therefore, it cannot be used for robot-to-robot

communication. As with the RCX infrared transmitter, this infrared transmitter must be

aligned with the detector in order to receive the signal. For this reason, as well as the

inability to send signals at different frequencies automatically, this method is not used.

Section 4.2 – Audible Sound

 The second technique for establishing a communication link between robots is by

using audible sound. The major advantage to using sound over infrared light is that the

sound can be detected from any direction, especially when using an omnidirectional

microphone. In addition, if there is an object blocking the infrared signal, the receiver will

not detect the signal. However, this is not the case with an audible sound signal. The

microphone can be orientated away from the sound source and still detect the sound.

Another benefit of using audible sound for communication between the robots is the fact that

Figure 4.2 Block diagram of infrared emitter [8]

 29

the RCX has sound generating capabilities. The RCX can play tones of a specific frequency

and duration using NQC commands [6]. This prevents the need for additional hardware

required to generate tones. It also allows for the robots to communicate with each other

instead of just having a human operator issuing instructions.

There are a few drawbacks to using sound. Weak signal strength or noise could cause

problems when receiving the sound signal. However, with proper amplification and filtering,

these problems can be reduced significantly. Also, in hostile environments, audible sound

used to communicate between robots will not prevent the robots from being detected by the

opposition. Therefore, it is not a viable option for robot-to-robot communication.

The idea of using sound as of method of communicating between robots stemmed

from the research conducted in the Center for Robotics and Intelligent Machines (CRIM)

during the summer of 2002 regarding the development of a flexible acoustic array [32]. This

large-scale acoustic array was designed to use triangulation and beam-forming methods in

order to determine the location of and track a sound source. From this research, the concept

of creating a scaled-down version of this acoustic array that could be used on an autonomous

mobile robot was developed. The smaller version of the large-scale acoustic array could also

be used for locating the position of a sound source and for tracking sounds, as well as for

communicating with other robots. For the purpose of this research, a “one-element array”

was developed in order to investigate the communication among robots.

 30

Chapter 5 – LEGO® Robot Colony

 The robot colony developed for this project stems from previous research that

resulted in the creation of LEGO® robots that mimic the behavior a sheep and sheepdog. For

that project, the goal of the sheepdog was to locate the sheep and herd it into a pen. Every

movement made by the dog depended on its orientation relative to the sheep and the pen.

The overall “thought process” of the dog was to move around the sheep such that the sheep

was between itself and the pen. Once this occurred, the dog would then attempt to force the

sheep into the pen. The pen is located in the corner of an 8’ x 8’ “field” enclosed by black

walls. The new robot colony consists of two additional agents, as well as the sheep and

sheepdog. While the overall task of the robots that comprise the new colony remains the

same (for the sheepdog to force the sheep into the pen), the major objectives of this project

are quite different.

Section 5.1 – Robot Colony Agents

 This robot colony consists of four agents, each with a different task. Two agents, the

sheep and sheepdog, have already been introduced. The last robot that comprises this multi-

agent robot colony is essentially a “helper dog” robot. As indicated by its name, the purpose

of this robot is to help the sheepdog when needed. The final agent of the colony is a human

operator, or “shepherd.” The human oversees the mission and provides guidance and

instruction when needed. The role of these agents, as well as their design, will now be

discussed in detail. Pictures of each robot are included in the Appendix.

 31

Section 5.1.1 – Robot Design and Sensors

 This section provides an in-depth description of several design issues that were

present during the development of this robot colony. For the most part, the basic design of

all three robots is the same. There are, however, some differences among the three. The

basic design of the robots will be presented first, followed by specific details of each robot.

Section 5.1.1.1 – Basic Robot Design

 For each robot, two motors located at the rear are used to drive and steer the robot.

The drive motors are shown in Figure 5.1. For this application, the gear ratio is 1:1. No

special gearing configuration was required for this design. By rotating the motors the same

direction, the sheep will move either forward

or backward. If the motors are rotated in

opposite directions, the robot will effectively

turn left or right. This method of “turning”

the robot actually causes it to spin. In fact, it

is based on the way a tank turns. The original

design included tank treads, but the weight of

the robot increased with the addition of extra components and resulted in difficulties with

turning. For this reason, the tank treads were removed. Since there is no caster on the robot,

the two front wheels have no tires. By not putting tires on the wheels, they will slide along

the floor when the robot spins, resulting in an effective method of turning the robot.

A third motor is used to rotate a LEGO® light sensor on the sheep and sheepdog.

The light sensor is attached to a shaft that is “connected” to the motor shaft using a worm

gear. This allows the motor to rotate at high speeds, while rotating the light sensor at a much

Figure 5.1 Left and right rear drive motors

 32

slower speed. A picture of the scanner is shown

in Figure 5.2. The LEGO® rotation sensor is

mounted on the shaft of the motor. It monitors

the position of the light sensor. Approximately

4.25 rotations by the motor correspond to

rotating the light sensor by 180º. By having the

rotation sensor mounted on the motor shaft

before any gear reduction, better resolution and

less error are achieved.

One of the problems that occurred

frequently while running experiments were the

robots kept getting stuck along the walls and

with each other. The walls are comprised of

several 29.5” x 1.5” x 9” (L x W x H) boards

attached together. In some places, the wall

sections do not come together flush. A front

bumper with wheels was added to ensure that

the robots would not get stuck at these places if

they ended up along the wall. A picture of the

front bumper is shown in Figure 5.3. Left-side

and right-side bumpers (Figure 5.4) were added

to prevent the robots from getting caught on

each other. These bumpers run along the entire

Figure 5.3 Front bumper

Figure 5.4 Side bumper

Figure 5.2 Light sensor scanning device

Motor

Light
Sensor

Rotation
Sensor

Worm
Gear

 33

length of the robot and protect the wheels of the

robots. The addition of bumpers around the

robots significantly reduced the number of

times the robots became stuck. These bumpers

serve as a barrier around the robot and are not

part of any sensor. Occasionally, the back of

the robots would become stuck on the wall if

they attempted to turn while in contact with them. In order to remedy this problem, wheels

were added to the back corners of the robots. The addition of these wheels allows the robots

to slide along the walls if they run into them while turning. Figure 5.5 shows these wheels on

the robot.

Section 5.1.1.2 – Sheep

 There are three sensors used on the sheep. The LEGO® light sensor is used to detect

both the wall and the sheepdog. It is set to output the raw (0 to 1023) values when measuring

light. The sensor value approaches zero as the amount of light detected increases. Since the

walls are black, the light sensor will read a high number (greater than 900) when it is close to

a wall. When the dog is near, the light sensor will detect the light mounted on the dog and

read a lower number (less than 720).

 The location of the light sensor is critical for detecting the sheepdog. To reduce the

effects of ambient light on the sensor, a 2x1 LEGO® Technic block was placed in front of

the sensor. This makes the light sensor extremely directional by only allowing light to enter

through the hole in the Technic brick. Since this is the case, the light on the sheepdog must

be at the same height as the light sensor on the sheep. Otherwise, the sheep would not be

Figure 5.5 Back corner wheels to aid when
turning near a wall

 34

able to “see” the dog. It is not vital that the

sheep recognize the dog from across the field.

The sheep is only concerned when the dog is in

close proximity. For this reason, a Maglite

flashlight bulb is used to identify the sheepdog.

Figure 5.6 shows the Maglite flashlight bulb

used to identify the dog.

 The second sensor used is the LEGO® rotation sensor. This sensor is used to

determine the direction the light sensor is pointing relative to the front of the sheep. The

information provided by the sensor is used to determine which direction to move away from

either the wall or dog. It is also used to determine when the sensor has rotated approximately

180º. Initially, the light sensor is pointing toward the front of the sheep, and the rotation

sensor reads zero. While the light sensor is scanning, if the rotation sensor reads a value that

corresponds to ±180°, it will cause the light sensor to stop and rotate in the opposite

direction. This prevents the wire connecting the sensor to the RCX from becoming wrapped

around the rotating shaft. The rotation sensor also helps determine on which side of the

sheep the dog or wall has been detected. For example, if the sensor reads a negative value

(other than the value corresponding to -180°), the light sensor is pointing toward the left side

of the sheep. Conversely, if the sensor reads a positive value (other than the value equivalent

to +180°), the light sensor is pointing toward the right side of the sheep. By using the value

of the rotation sensor, the sheep know which way to turn so it can move away from any

trouble.

Figure 5.6 Light bulb used to identify the dog

 35

Section 5.1.1.3 – Sheepdog

 The sheepdog uses four sensors to complete the task of herding the sheep into the

pen. Like the sheep, it has a scanning device with a light sensor mounted on a rotating shaft.

A rotation sensor is used to monitor the position of the light sensor. However, this light

sensor is used to find the pen, and not used for detecting walls or the sheep. The location of

the light sensor is critical in order for the dog to locate the pen. The light sensor must be at

the same height of the infrared array mounted on the pen or the dog will not be able to herd

the sheep into the pen. An array of infrared LEDs is used to identify the pen because the dog

needs to be able to find the pen from any position in the field. The dog is also equipped with

same bumpers that the sheep has. The front bumper has three wheels that prevent the robot

from becoming stuck along the wall, and the side bumpers run along the length of the robot.

There are also back corner wheels that facilitate turning if it is along the wall.

 The second light sensor on the dog is used to detect the sheep and walls. Unlike the

light sensor used to detect the pen, this sensor does not rotate. Since all three motor outputs

are being used, this sensor must remain fixed. In order to search for the sheep using this

sensor, the dog spins in a circle until the light sensor detects the infrared LED array (shown

in Figure 5.7) mounted on the sheep. This

array of ten infrared LEDs is positioned on

the sheep such that they are at the same height

as a light sensor on the sheepdog. Infrared

LEDs, rather than light bulbs, are used

because the dog needs to be able to identify

the sheep from across the field. This
Figure 5.7 Infrared LED array on the sheep

 36

technique of detecting the sheep has proven to be effective since tracking the sheep is not

required. Once the sheep has been found, the dog immediately moves to a location based on

its distance from the sheep and orientation relative to the pen. For this reason, the pen, rather

than the sheep, must be tracked at all times. The final sensor used by the dog is a tone

detection sensor. This sensor is used to listen for a specific frequency tone. When the dog

hears this tone, it will stop its current task and perform different, predefined task. A detailed

discussion regarding the design of this sensor is presented later in this chapter.

 With only three sensor input ports and four sensors being used, there is a slight

problem. Several hobbyists [20] have devised numerous ways of overcoming the problem of

a lack of sensor inputs. One solution is to use a multiplexer so multiple sensors can be

connected to the same port. A three-channel active multiplexer from Mindsensors Robotics

[1] was used to allow the dog to have four sensors. The term “active” implies that power is

required to operate each sensor (i.e. rotation, light, etc.). A picture of the Mindsensors

Robotics multiplexer is shown in Figure 5.8.

This simple multiplexer consists of one output

port and three input ports. The output port

connects the multiplexer to an RCX sensor input

port. The three input ports are used to connect

the sensors. A circuit diagram of the multiplexer

is shown in the Appendix. For this application,

only two sensors (both light sensors) are connected to the multiplexer. In order to cycle

through each output of a multiplexer, a clock is required. Switching the sensor type of the

input port from light to touch and back to light will create a clock. Because the light sensor

Figure 5.8 Three-channel active multiplexer

 37

requires power to operate and the touch sensor does not, changing sensor types effectively

creates a clock that can be used to cycle from one input to another. An interesting feature of

this multiplexer is that it is not necessary to sequentially cycle through inputs. For example,

Channel 3 can be selected after Channel 1 has been selected without having to read Channel

2. One benefit of using this multiplexer is that only one channel receives power at a time.

For instance, if it is desired to switch from Channel 2 to Channel 3, power will only be

applied to Channel 3 once the switch has occurred. This results in the power requirement of

only one sensor when using the multiplexer regardless of the amount of sensors connected to

the multiplexer. The one drawback is that only one of the possible three sensors can be used

at a time. If a sensor must remain on for the entire mission, it cannot be connected to the

RCX via the multiplexer. The multiplexer allows for a larger sensing suite onboard the

robot, however, only a total of three sensors can be used at once.

Section 5.1.1.4 – Helper Dog

 The purpose of this robot is to help the sheepdog corral the sheep into the pen when

called upon. The helper dog uses three sensors (two light sensors and one microphone

sensor) when providing help to the sheepdog. Like the sheepdog, this robot has two light

sensors that are used to detect the sheep, wall, and pen. One sensor is at the same height as

the infrared LED array on the sheep. This sensor is also used to detect a wall. The second

light sensor is at the same height as the infrared LED array on the pen. The only difference

with these sensors when compared to those on the sheepdog is that they are both fixed and

oriented pointing forward. Since all of the sensor inputs are being used, there is not a port

available to use an angle sensor for monitoring the rotation of a light sensor. Instead of being

able to scan and look for the pen or sheep, the helper dog must turn to look for both. This

 38

causes a few problems in regards to decision making, but they can be overcome because of

the role the helper dog plays during this mission. The microphone sensor is used to listen for

a signal instructing the dog to help the sheepdog with corralling the sheep. This sensor will

be discussed in detail later in this chapter.

 Like the sheep and sheepdog, there are also bumpers present on the helper dog. The

front bumpers with wheels help keep the dog from getting stuck on the wall. The side

bumpers prevent the wheels of the robots from becoming caught on each other. There are

also wheels mounted on the back corners of the robot to facilitate turning when near a wall.

 The helper dog uses a Maglite flashlight bulb in the same manner as the sheepdog.

The light bulb is placed at the same height as the light sensor on the sheep. When the sheep

comes close to the helper dog, it will run away. The sheep has the identical reaction to the

helper dog as it does with the sheepdog. Again, it is not important that the sheep see the

helper dog from anywhere in the field.

Section 5.1.1.5 – Human Agent

 The final agent that comprises this robot colony is the human operator. For this

application, the human serves as the shepherd of the flock. He allows the dog to herd the

sheep into the pen independently, but also provides assistance when necessary. In other

words, the human operator is the manager of this mission. If he deems it necessary that the

dog requires help, he will instruct the helper dog to help herd the sheep into the pen by

playing a tone. The human operator plays the role of the mother robot in a marsupial robot

colony by overseeing the mission and providing guidance or help when needed.

 39

Section 5.1.2 – Control Software

 In this section, the software used to control the robots will be discussed. Each robot

was programmed using the Not Quite C (NQC) programming language developed by Dave

Baum. This language was chosen because of the researcher’s familiarity with the C

programming language. The NQC code for each robot is provided in the Appendix.

Section 5.1.2.1 – Sheep NQC Control Software

 The behavioral model of the sheep consists of four major components: look for the

dog or wall, randomly move around in the field, run away from the dog, and move away

from the wall. A diagram of the

behavioral model of the sheep is

shown in Figure 5.9. Initially, the

sheep is wandering, or “grazing,”

in the field. The sheep moves

around the area randomly, thus

simulating the grazing pattern of

sheep. While grazing, the sheep is

also scanning and looking for the

dog or wall. The scanner is rotated

180° clockwise, and then it is

rotated 360° in the counterclockwise direction. Once the light sensor has finished this

rotation, it reverses its direction of rotation and completes another 360° rotation. This

process is repeated unless the dog or a wall is detected. Both actions (scanning and

Figure 5.9 Behavioral model of sheep

WANDER and
SCAN

PANIC

START

AVOID WALL

If a wall is
detected

If the dog is
detected

Repeat if
dog is

present

Repeat if
wall is

present

Resume if
away from

dog

Resume if
away from

wall

 40

wandering) are defined as tasks and they occur simultaneously. Once started, they will

continue unless the stop command is issued.

When the sheep detects either a wall or the dog, it will stop grazing and perform the

appropriate action depending on what has been noticed. If the sheep encounters a wall, it

will calmly move away from it and then resume with wandering and scanning. However, if

the sheep detects the dog, it will panic and run away. Both of these actions are accomplished

in similar manners. First, the wander task is stopped, and then the corresponding function

that will move the sheep away from the wall or dog is called. The direction the sheep will

move depends on where the wall or dog is detected. For example, when the wall or dog is

detected on the left side of the sheep, it will spin clockwise (to the right) and then move away

from the wall or dog. The major difference with these two actions is the speed at which the

sheep moves away. It treats the wall as a fence and calmly moves away from it. The sheep,

however, fears the dog and runs away when it is detected. Both maneuvers are repeated until

the sheep is at a safe distance from either one. The sheep then returns to grazing and

scanning.

Section 5.1.2.2 – Sheepdog NQC Control Software

 The behavioral model of the sheep dog is comprised of two parts: avoid walls and

corral the sheep into the pen. A diagram of its behavior model is provided in Figure 5.10.

Initially, both tasks occur simultaneously. If a wall is detected, the sheepdog will stop the

corral task, move away from the wall, and then resume corralling the sheep. If the dog

remains near a wall, it will continue to move away from the wall before restarting the process

of herding the sheep into the pen. If a wall is not detected, the sheepdog will continually

repeat the corral task until the sheep has been funneled into the pen. If, at any time, the

 41

sheepdog becomes stuck, a

procedure is attempted to free

the sheepdog. If the angle

sensor does not move over a

specified amount of time, the

sheepdog will assume it has

become stuck. It will then

move backward and attempt to

free itself.

 The corral task is made

up of five functions. A block

diagram of the corral task is

shown in Figure 5.11. The first

action undertaken by the

sheepdog is finding the sheep.

The dog uses the fixed light

sensor to “look” for the sheep.

It spins around until the infrared

light emitted from the array

mounted on the sheep is

detected. Once the sheep has

been detected, the sheepdog

stops spinning. The dog then

START

CORRAL and
AVOID WALL

Repeat if wall
is detected

Resume if away
from wall

Repeat until the
sheep is in the pen

If a wall is
detected

Move away
from wall

If a tone is
detected

Repeat until in
front of pen

Move towards pen

STOP

When in front
of the pen

Figure 5.10 Behavioral model of sheepdog

CORRAL

Locate the sheep

Move towards the
sheep

Locate the pen

Determine distance
away from sheep

Turn

Repeat until sheep
is in the pen

Figure 5.11 Block diagram of corral task

 42

determines its distance from the sheep based on the strength of the light signal detected. This

distance will determine how far the sheepdog should travel before repeating the corral task.

Using the light sensor mounted on the rotating shaft, the dog then searches for the pen. Once

the pen has been found, the position of the light sensor is recorded and used to help

determine how the sheepdog should approach the sheep. Based on the orientation of the light

sensor, the dog will spin either clockwise or counterclockwise. This is performed with the

intention of having the dog move to one side of the sheep rather than directly at it.

Eventually the dog will move into a position such that the sheep is between itself and the pen.

When this is the case, the dog will not need to turn before traveling toward the sheep, and it

can move directly towards the sheep. The final action that is performed in the corral task is

moving toward the sheep. Based on the distance to the sheep that was determined earlier, the

dog will move forward for a corresponding amount of time. The task is then repeated until

the sheep has been corralled into the pen.

If the microphone sensor detects a tone, all actions are stopped in order to execute a

“higher” priority action. This action is analogous to one member of a marsupial robot colony

sending a distress signal to other team members. When another team member receives a call

for help, the robot will go to the aid of the teammate regardless of what was being performed

prior to getting the call. However, this signal does not necessarily have to represent a call for

help. If a member of a search and rescue team finds a survivor, a signal can be sent to the

other team members and system operators to alert them of the discovery. Other team

members can then respond to the call and give additional aid to the victim. For this

application, the sheepdog is instructed to return to the pen when the microphone sensor

detects a tone.

 43

Section 5.1.2.3 – Helper Dog NQC Control Software

 The behavioral model of the helper dog is not complex. It has three parts: to wander

around the field, to avoid walls, and to help the sheepdog corral the sheep. A block diagram

of the behavioral model of the helper dog is shown in Figure 5.12. Initially, the helper dog

wanders around the field. While it is moving in the field, if a wall is detected, it will stop,

move away from the wall, and

then resume its movements.

During the time the helper dog

is moving in the field, it is not

attempting to detect the sheep,

sheepdog, or pen. Since its

light bulb will be on, the helper

dog should not have a problem

with getting stuck on the sheep.

If it gets too close to the sheep,

the sheep will detect the light

and move away from the

helper dog. There could be

some problems with the sheepdog, since the helper dog cannot see it. However, since the

sheepdog is tracking the sheep and the sheep will avoid the helper dog, the sheepdog should

also avoid the helper dog.

 If the microphone sensor on the helper dog detects a tone, it will stop “wandering”

and begin to help corral the sheep. The helper dog will position itself such that the sheep is

WANDER

MOVE where both
SHEEP and PEN

are detected

START

AVOID WALL

If a wall is
detected

If a tone is
detected

Repeat if wall
is present

Resume if away
from wall

WAIT

Repeat if a
tone is

detected

Figure 5.12 Behavioral model of the helper dog

 44

between itself and the pen. If both light sensors detect the sheep and the pen, the helper dog

will know the sheep is between the pen and itself. Once the helper dog has reached this

position, it will stop and wait for another tone. When it detects another tone, it will again

find the sheep and move into a position where the sheep and pen are in front of itself. The

purpose of moving to this position is to reduce the area the sheep will be able to move.

Section 5.2 – Microphone Sensor

 In order to make communication between robots possible, a sensor was designed to

recognize a certain frequency tone. The microphone sensor developed for robot-to-robot

communication will be discussed in this section. The circuit design, sensor construction, and

sensor interfacing will be presented in detail. The datasheets of the major components of the

circuit are included in the Appendix.

Section 5.2.1 – Circuit Design

 The circuit for the microphone sensor can be divided into two distinct parts: input

sound amplification and frequency detection. The microphone circuit used to detect and

amplify the sound was designed during the CRIM development of a large-scale acoustic

array. This circuit consists of a microphone and an operational amplifier configured in a

non-inverting manner. A circuit diagram is provided in Figure 5.13. Notice that the

microphone is a two-pin microphone. One pin is connected to ground, and the other is for

power/output. In order to block the DC voltage used to power the microphone, a capacitor

was added to the input of the op-amp. In addition, since there is not a negative supply

voltage available when using four AA batteries, the input has to be biased in order for the

entire input signal to be amplified. The microphone used for sound detection is the

Panasonic omnidirectional electret condenser microphone cartridge [39]. This microphone

 45

was chosen primarily because it can

detect sound from any direction, but

also for the wide frequency

response (20 Hz to 16 kHz) and the

wide range of operating voltages

(maximum of 10 volts). The op-

amp used to amplify the detected

sound is the Texas Instruments

µA741 general-purpose operational

amplifier [48]. Note that the gain of

the amplifier circuit is 100. In order

to boost the signal strength for the

tone detection circuit, the gain needs

to be as large as possible without saturating the signal.

 The tone detection circuit used in this sensor was developed as a simple way to

convert an analog input to a digital output in order to interface the sensor with the RCX. The

basic idea behind the tone detection circuit is to send a digital output to the RCX when a

specific frequency sound is detected. The integrated circuit used to perform the frequency

detection is the New Japan Radio FSK Demodulator/Tone Decoder chip [38]. The internal

components of this chip are shown in Figure 5.14. Using this component, the output is either

a logic high or logic low. Using Figures 5.14 and the tone detection circuit diagram

100 Ω
1 kΩ

10 kΩ

1 kΩ

Microphone

3.3 µF
10 µF

680 Ω

+5 V

+5 V

To Tone
Decoder

+-

Figure 5.13 Circuit diagram of the microphone amplifier

 46

(Figure 5.15) as reference, the roles of

several circuit components can be

explained. The components that are used

to set the center frequency are resistors R,

Rx (used to fine tune the center

frequency), and capacitor C0. Resistor R1

sets the detection bandwidth, capacitor C1

sets the lowpass-loop filter time constant

and the loop damping factor, RQ is a pull-

up resistor for the logic high output, and resistor RD and capacitor CD are used to prevent

chatter at the logic output. The following steps are taken to determine the values of certain

components of the tone detection circuit [38].

Figure 5.14 Internal components of tone detection
chip [38]

C0

NJM211

1

2

3

4

5

6

7 8

9

10

11

12

13

14

0.1 µF

C1

CD

0.1 µF

RD

R

RQ

R1

RX

Microphone
Input

+5V

+5V

+5V

Figure 5.15 Tone detection circuit

To RCX

 47

Step 1: Pick the center frequency, fo, in Hz and the bandwidth, ± ∆f, in Hz. Set R +
Rx to be any value between the range of 15kΩ to 100kΩ. Calculate Co to set
fo using

Step 2: Calculate R1 to set ± ∆f using

Step 3: Calculate C1 for a given loop damping factor ζ using

 For most tone-detection applications, ζ = ½ is optimal. By increasing C1, the
out-of-band signal rejection is improved, but the phase-lock loop capture time
is increased.

Step 4: Setting RD = 470 kΩ, calculate CD (in µF) to avoid chatter at the logic output

using

Note that by increasing CD, the logic output response time decreases.

Using the above equations with fo = 1.0 kHz, ∆f = 20 Hz, R = 18kΩ, Rx = 5 kΩ tunable

resistor, and R + Rx set to 20kΩ, the following values were calculated for the respective

circuit components: Co = 0.05µF, R1 = 1MΩ, C1 = 0.0125µF (with ζ = ½), and CD ≥ 0.42µF.

Some of these calculated values were rounded off to the nearest standard value. For the

actual circuit, Co = 56000pF (0.056µF), C1 = 10000pF (0.01µF), and CD = 0.47µF. In

addition, only the value of R was changed to obtain a different center frequency. This was

done so several sensors could be built without having to use many different components.

The chip used in the tone detection circuit was chosen for several reasons. First, the

component has a wide frequency range, from 0.01 Hz to 300 kHz. Not only can this element

o
o

fRR
C

x)(
1

+
=

f
fRRR ox

∆
×+

=
)(

1

Equation 5.1

Equation 5.2

21
16ξ

oCC = Equation 5.3

Hz)in range capture(
16

≥DC Equation 5.4

 48

be used for detecting audible sounds, it can also be used to detect signals above the human

audible range, which is attractive for covert applications. Another feature of this chip is the

ability to have a “tunable” bandwidth for the incoming signal. By changing only one

resistor, different bandwidths can be set depending on the application. It also has an

attractive operating voltage range, from 4.5 volts to 20 volts. This wide operating voltage

range accommodates the operating voltages of both the microphone and the operational

amplifier. Finally, it has a wide input range, from 2mVrms to 3Vrms. Due to this wide

dynamic range, the detected signal does not require several stages of amplification in order to

boost the signal to a required level. In fact, it may not require any amplification at all,

resulting in a reduction of the overall sensor size. Amplification was used in this application

to prevent the use of an unnecessarily loud tone for communicating with the robots.

Section 5.2.2 – Sensor Construction

 To facilitate easy integration of the microphone sensor with the LEGO® robots, it

was determined that the circuit needed to be housed inside LEGO® blocks. In order to make

this possible, surface mount components must be used to keep the overall size of the circuit

minimal. This required a printed circuit board to be designed and fabricated. The layouts of

the fabricated two-sided boards are shown in Figure 5.16. The fabricated boards with all

Figure 5.16 Circuit board layout for tone detection circuit (left), amplifier circuit
(middle), and microphone circuit (right)

 49

components attached are shown in Figure 5.17. The inside of the LEGO® blocks were

hollowed out to allow the circuit boards to fit inside the blocks. The microphone board

(≈1cm x 1cm) was designed to fit inside of a 2x2 LEGO® brick. The amplifier board (≈1cm

x 2cm) was designed to fit inside of a 2x4 LEGO® brick. The tone detection circuit (≈2.5cm

x 3cm) was designed to fit inside of two 2x4 LEGO® bricks. To make the enclosure for the

tone detection circuit, one side of each 2x4 brick was removed, and the two bricks were

glued together to create a 4x4 LEGO® brick. The completed sensor is shown in Figure 5.18.

Section 5.2.3 – Interfacing the Sensor with the RCX

 Since the output of the circuit is either logic high or logic low, interfacing the

microphone sensor with the RCX was not difficult. First, the sensor input port that was used

for the microphone was configured as sensor type light. This will result in a voltage at the

Figure 5.17 Top and bottom view of fabricated tone detection circuit board (left) and
amplifier and microphone circuit boards (right)

Figure 5.18 Completed tone detection sensor

 50

input port. If the output of the tone detector circuit (pin 5) is connected to the RCX sensor

input port, the voltage at the port will be forced to zero when the tone is detected. This will

change the sensor raw value from 1023 to 0. When the value drops to zero, the robot will

know a tone has been detected.

 Several issues arose when this sensor was added to the LEGO® robots. Most

interestingly, the center frequency was quite a bit higher than expected. This could have

resulted because of the rounding that occurred when choosing components used in the tone

detection circuit. There was also an error found in the circuit board layout after the boards

were fabricated. However, the circuit did function properly at the higher center frequency,

and the error was not corrected. Another problem that could be attributed to the error in the

circuit layout is that constant recalibration must occur. The center frequency is greatly

affected by the supply voltage level. As the batteries wear down, the center frequency slowly

decreased in value. This might also occur since the operating voltage is close to the

minimum value specified. A significant problem regarding the overall weight of the robot

resulted when the tone detection sensor was added. The sensor itself is not heavy. However,

the four AA batteries that are needed to power this circuit result in a significant amount of

added weight. They were originally attached in the front of the robot, and this caused the

rear wheels to spin without moving the robot. This problem was alleviated when the

batteries were moved to the back of the robot. This added weight resulted normal movement

by the robot.

 51

Chapter 6 – Experiments and Results

 Once the robot colony was constructed, several experiments were performed using

some or all of the members. First, the original experiment was conducted with the upgraded

robots. Next, communication between robots was investigated. Finally, the interaction

between robot teammates was studied. Detailed accounts of the various experiments

performed on the colony, as well as the results, are provided in this chapter.

Section 6.1 – Robot Calibration

 Before any experiments could be conducted, a calibration of each robot occurred.

The most important factor to consider was the light level in the room where the experiments

were being conducted. Because the robots make decisions based on the amount of light

detected by the light sensor, it is very important the light sensors on the robots be calibrated.

First, the light sensor for the sheep, sheepdog, and helper dog used to detect the wall was

calibrated. As the robot approaches the black walls, the output of the light sensor increases

as the amount of light detected decreases. The identifying light source on each robot

(infrared LED array or light bulb) must be turned on or the calibration will be incorrect.

Some of the emitted light is reflected off the wall and detected by the light sensor. The

reflected light effectively makes the walls appear lighter than they actually are. The output

value of the light sensor was recorded at various positions along the wall, from about six to

eight inches away. The normal measured value when not looking at a wall is in the range of

850 to 875. When near a wall, the minimum value for the sheep was 930, the minimum

value for the sheepdog was 920, and the minimum value for the helper dog was 890. These

values are used as the threshold value for the wall. The minimum value measured was used

 52

to ensure it would recognize the wall at all times. If the light sensor detected any value

higher than this threshold, the robot would immediately take action in order to avoid the wall.

 Next, the light sensor for the sheepdog and helper dog was calibrated to recognize the

pen. Since it is required that both dogs be able to see the pen from anywhere in the field, the

calibration must take place at the farthest point from the pen. Because the field is a square

and the pen is in the corner, the farthest distance from the pen is along the diagonal. At this

distance, the light sensor for both the sheepdog and helper dog measured 780. This value

was used as the threshold for recognizing the pen. For any value less than the threshold, both

dogs assume they are looking at the pen. The normal value measured by this sensor when

not looking at the pen ranged from 800 to 850. Since there is no overlap, the robots should

not think they are looking at the pen when, in reality, they are looking at something else.

Both the sheepdog and helper dog were then calibrated to detect the sheep. Again, it

is required that the sheep can be detected from across the pen. Along the diagonal of the

field, both robots measured 815. The same principle that was used for detecting the pen is

used for sensing the sheep. For any value lower than 815, the sheepdog and helper dog

would assume they had detected the sheep. The sensor used to detect the sheep is also used

to detect the walls. This is possible since there is no overlap of the possible values of a wall

or the sheep. The value for a wall is greater than 890 (for the helper dog) or 920 (for the

sheepdog) and the value for a sheep is less than 815.

Finally, the sheep was calibrated to detect the sheepdog and helper dog. Since the

sheep should run away from the dog when it is close, this calibration was performed from a

distance of six inches. The maximum value measured from different locations around the

two dogs was 730. For any value less than this, the sheep will run away from both dogs.

 53

This sensor is also used to detect the walls. This is not a problem because the value for a

wall is greater than 930 and the value for the sheepdog and helper dog is less than 730.

There is no overlap of the possible values for the dog or a wall.

The other calibration that needed to be performed was for the sheepdog regarding the

distance to move forward when tracking the sheep. Since the helper dog and sheep do not

track anything, the distance they travel at any one time is not important. The sheep never has

to worry about moving a precise distance to reach an object. It must only be concerned with

running away from the dogs. The helper dog only needs to be in a position where the sheep

is in between itself and the pen. It does not need to be a certain distance from the sheep. The

sheepdog is the only robot that must move precise distances during operation. To minimize

the time taken to herd the sheep into the pen, the sheepdog should move forward for a period

of time that corresponds with the distance to the sheep. For example, if the light sensor on

the sheepdog measures a value close to 815, the sheepdog is far away from the sheep. In

order to reach the sheep, the sheepdog will need to move forward for a longer period of time

than if it was closer to the sheep.

The first step in this calibration process was to measure how far the dog traveled for a

given amount of time with the highest motor power. Figure 6.1 shows a plot of these

measurements. As expected, the results are linear. The next step was to measure the value of

the light sensor used to detect the sheep at different distances from the sheep. These

measurements are shown in Figure 6.2. There were four different measurements taken at

each distance corresponding to the front, back, left side, and right side of the sheep. The

average of all four measurements was also calculated and graphed. The equation of the

average trendline is shown below the legend. Notice these results are non-linear. Figure 6.3

 54

Distance Travelled vs. Time Motor is ON
y = 12.679x - 0.555

R2 = 0.9992

0

10
20

30

40

50
60

70

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

D
is

ta
nc

e
(In

ch
es

)

Figure 6.1 Distance the sheepdog traveled for a given amount of time

Dog Light Sensor Value vs. Distance from Sheep

y = 0.0009e0.0142x

R2 = 0.9983

0

10

20

30

40

50

60

70

80

575 600 625 650 675 700 725 750 775 800

Sensor Value(RAW value)

D
is

ta
nc

e
(in

ch
es

)

Sheep Front
Side
Sheep Right
Side
Sheep Left Side

Sheep Back
Side
Average

Average
Trendline

Figure 6.2 Sheepdog light sensor values at different distances from the sheep

Average Sensor Values (RAW) vs. Time of Travel

0

1

2

3

4

5

6

550 600 650 700 750 800
Sensor Value (RAW)

Ti
m

e
(s

ec
on

ds
)

Figure 6.3 Amount of time to travel for a specific light sensor value

 55

shows the time of travel for a specific light sensor value. This plot was generated using the

average sensor values from Figure 6.2 and the equation of the generated trendline. This plot

illustrates that if the light sensor read approximately 750, the dog must travel for almost three

seconds to reach the sheep. Using this graph, a look-up table was created that matched a

given time to travel with a range of sensor values.

 Unfortunately, this calibration procedure did not work very well, especially for lower

light sensor values. Since the dog finds the sheep by spinning, it will stop once the light

sensor measures a value less than the maximum threshold for the sheep (815). However, the

point where it detects the sheep might not where the beam of infrared light is at the

maximum intensity. This causes the sheepdog to calculate an incorrect distance. This is not

a problem when the sheepdog is far away from the sheep. For example, the light sensor

could read 750 and the maximum intensity reading could be 740. This would not cause

much of a difference in travel time, if any. However, if the sheepdog is close to the sheep

and the light sensor reads 675 instead of 550, this results in a problem. The dog will travel a

distance that corresponds to 675 instead of 550. More than likely, the sheepdog will go past

the sheep, causing it to backtrack and resulting in additional time needed to the herd the

sheep into the pen. Due to this problem, the travel times that correspond to a specific range

of light sensor values were determined by trial and error.

Section 6.2 – Original Experiment

 With the updated robots, the original experiment was recreated with the sheep and

sheepdog. A number of experiments were performed with the sheep and sheepdog starting at

different positions within the field. A grid was defined in order to accurately position the

robots for each experiment. At the outset of each experiment, the robots were placed at the

 56

center of one of the grid elements.

Figure 6. 4 shows an overhead picture

of the field with an overlay of the grid.

Each block is approximately two feet

by two feet, and the pen is defined to be

at position (0,0). For each experiment,

the initial position, start time, end time,

and behavioral observations were

recorded. The results are tabulated in

Table 6.1. For the experiments, the

Sheepdog Starting Position Sheep Starting Position Total Time Result
4 min 10 sec Success
5 min 10 sec Fail
5 min 56 sec Fail
7 min 8 sec Fail

(0,0) (3,3)

3 min 59 sec Fail
1 min 35 sec Success
1 min 39 sec Success
1 min 58 sec Success
4 min 2 sec Success
3 min 3 sec Success

(0,0) (2,2)

5 min 13 sec Fail
0 min 43 sec Success
1 min 25 sec Success
2 min 8 sec Success
6 min 34 sec Fail
2 min 50 sec Fail
4 min 19 sec Fail
1 min 48 sec Fail

(2,2) (1,1)

6 min 4 sec Fail
2 min 11 sec Success
4 min 4 sec Success
2 min 7 sec Success
2 min 39 sec Success

(0,3) (2,1)

6 min 25 sec Fail

Figure 6.4 Field with starting position grid

Table 6.1 Sheep and sheepdog experiment results

 57

overall success rate was

just over 54%. This may

seem a bit low, but sensor

malfunction, incorrect

robot calibration, or low

battery levels caused most

of the failures. The

majority of these

problems can easily be

overcome. Figure 6.5

shows the path taken by the sheep and sheepdog during a successful trial. The total time

taken to compete this experiment was 3 minutes and 31 seconds. An X marks the starting

position of both robots. The sheepdog path is shown in red, and the sheep path is in green.

From these results, several interesting behaviors are noticed. First, if the sheep is placed

close to a wall (i.e. position (3,3)) at the outset of the experiment, the dog does not perform

well. When the experiment begins, the sheep will immediately notice a wall and move away

from it. This immediate movement seems to confuse the dog. It appears that the dog needs

to formulate a plan and begin to implement it before the sheep moves. This is evident by the

results achieved when the sheep was placed at position (2,2). The success rate was over 80%

as opposed to only 20% when the sheep began at position (3,3). The dog was able to begin

herding the sheep before the sheep made its first movement.

 Another result was the least amount of time needed to herd the sheep into the pen

occurred when the sheep began in between the sheepdog and the pen. This result was

Figure 6.5 Paths taken by sheep and sheepdog

 58

expected. However, the number of failures was not. As it turns out, four of the failures were

due to a decrease in battery power provided to the infrared LED array on the sheep. As the

voltage level drops, the strength of the infrared signal emitted from the array weakens. This

results in the dog miscalculating the distance to the sheep or even not being able to find the

sheep. When the 9V battery was replaced with a tether, there was only one failure and two

successes.

 An interesting statistic that resulted is the average time of success and failure. For a

successful experiment, the average time to herd the sheep into the pen was 2 minutes and 26

seconds. The average time a failed experiment lasted was 5 minutes and 2 seconds. This

leads to the belief that if the sheepdog is not able to herd the sheep into the pen relatively

quickly, it will never be able to complete the mission. This could occur for a number of

reasons. First of all, there is a heavy strain on the 9V battery used to power the infrared

LEDs. The signal emitted from the LEDs is not pulsed, resulting in the battery being used

constantly. After a few minutes, the battery will lose its strength, and the signal emitted from

the array weakens. The longer an experiment lasts, the more distance miscalculations by the

sheepdog will occur. However, allowing the battery to rest between experiments gives it the

opportunity to regain some of its charge, and the experiments can continue. Also, as the light

sensor rotates, some error occurs when measuring the amount of rotation. This error is due to

the slippage of the scanning device. The longer the experiment takes, the larger the error will

be. Eventually, it could reach a point where the error is so large that the sheepdog can no

longer make accurate decisions based on the position of the light sensor. Finally, the robots

became stuck during some trials. If, after a significant period of time, they were still stuck,

the experiment was stopped.

 59

Section 6.3 – Microphone Sensor Test

 For this experiment, a microphone sensor was placed on the sheepdog. The purpose

of this test was to determine if communication between robots was possible. Using the NQC

command PlayTone(frequency, duration), the RCX can generate a tone of a specific

frequency in Hertz for a period of hundredths of seconds. The output of the microphone

sensor on the sheepdog switches from logic high to logic low when a 2.8 kHz tone is

detected. Initially, an RCX played a tone of 2.8 kHz and when the microphone sensor

detected it, the dog was supposed to move forward. However, the tone played by the RCX

was not loud enough for the microphone sensor to detect it. This indicates that robot-to-robot

communication using sound is not feasible using LEGO® Mindstorms™.

 Instead, a tone was generated using a function generator. The function generator was

connected to a solid-state stereo amplifier, and the tone was output through a standard

bookshelf stereo speaker. This simulated a robot issuing a command to another robot.

During this experiment, the

sheepdog would attempt to

herd the sheep into the pen.

If the microphone sensor

detected a tone of 2.8 kHz,

the sheepdog was to stop

herding the sheep and return

to the pen. Figure 6.6 shows

the results of one trial. The

path taken by the sheepdog is
Figure 6.6 Results of microphone sensor test

Dog was called
to pen here

 60

shown in red, and the path taken by the sheep is in green. The starting positions of each

robot are marked with an X. For every trial, the sheepdog was successful in recognizing the

tone and returning to the pen. However, there was one problem that occurred during this

experiment. As the experiment progressed, the frequency that the microphone sensor would

detect decreased. As the batteries used to power the circuit wore down, the frequency

decreased. This resulted in constant recalibration of the robot, but not in system failure.

Section 6.4 – Assisting the Sheepdog

 The final set of experiments was conducted with all three robots in the field. Again,

the task of the sheepdog was to herd the sheep into the pen. However, this time, the helper

dog was used to assist the sheepdog if needed. The helper dog would wander around the

field until the microphone sensor detected a tone. Once the tone was detected, the helper dog

would move to a position where the sheep was between itself and the pen. This action was

intended to help the sheepdog funnel the sheep towards the pen. Unfortunately, the helper

dog only hindered the mission. Instead of stopping when it had reached the desired position,

it would continue to move in circles around the sheep. Since it did not have enough sensor

ports to have a rotating light sensor, both light sensors were fixed. In this configuration, the

only way the helper dog knew the sheep was between itself and the pen was to have one light

sensor detect the pen and the other detect the sheep at the same time. Most of the time, the

helper dog would be in the desired position, but it would only detect the sheep and not the

pen.

The helper dog would also become caught on the sheepdog during the trials. There

was no available sensor port on the helper dog to use for detecting the sheepdog. As it would

move around the sheep, it would often run into the sheepdog and cause the test to fail.

 61

Another problem that was encountered was that the sheepdog would sometimes get confused

and think the helper dog was the sheep. The light sensor on the sheepdog used to detect the

infrared LED array on the sheep would also detect the light on the helper dog. It would

eventually reach a point where the light sensor could not “see” the light on the helper dog

and would look for the sheep. Interestingly, in one of the trials, the sheepdog managed to

herd the sheep into the pen despite the disruptions caused by the helper dog. Despite this

perceived success, the helper dog did not provide any aid to the sheepdog.

In an attempt to prevent some of the problems encountered in the previous tests, the

sheepdog was also equipped with a microphone sensor. If the sheepdog had problems, it was

commanded to stop. Next, the helper dog was called on to provide support. Once the helper

dog had positioned itself as desired, the sheepdog would be commanded to resume herding

the sheep into the pen. The addition of the microphone sensor to the sheepdog did not really

improve the performance. Both the sheepdog and helper dog continued to interfere with each

other. However, the overall amount of times the two were stuck on each other was reduced.

In addition, the sheepdog continued to confuse the helper dog with the sheep and attempted

to herd it into the pen. Despite the poor performance of the robots, this experiment showed

that communicating to the LEGO® robots with audible sound can be achieved with great

success.

 62

Chapter 7 – Conclusions and Future Research

 Several conclusions about the feasibility of using LEGO® Mindstorms™ to develop

autonomous robots have been developed from the research presented in previous chapters.

The desirable aspects of this platform, as well as its deficiencies, are summarized below.

Finally, recommendations on ways to improve the platform and future research using the

LEGO® Mindstorms™ are offered.

Section 7.1 – Concluding Remarks

 An extensive investigation was conducted to determine the possibility of using the

LEGO® Mindstorms™ platform for mobile robot development. This research resulted in the

emergence of several limitations. The biggest obstacle to overcome when using LEGO®

Mindstorms™ is the limited number of sensor input ports. Only three sensors can be used on

each robot at any one time. If more sensors are needed, a multiplexer or similar device must

be added. However, the use of a multiplexer does not solve the problem completely. It just

reduces it. Even with a multiplexer, only three sensors can be used at once. This research

showed that effective communication between robots could not occur without more sensors.

Those sensors needed to complete the task of herding the sheep into the pen used all of the

input ports. Without having the ability for robot-to-robot communication, having the helper

dog provide assistance to the sheepdog is not possible.

 Another major problem experienced was the significant reduction in battery power

that occurred during operation. The largest consumers of battery power are the motors. With

three motors (on the sheep and sheepdog) running continuously during the mission, there is a

large strain placed on the batteries. Additionally, all of the sensors used on each robot

 63

require power to operate. This, combined with the continuous use of the motors, resulted in

large battery consumption causing a rapid discharge. As the battery power decreased, the

outputs of the light sensors would change without the light conditions changing. Eventually,

the sensors would output incorrect readings and the task would fail.

 Even with these major drawbacks, LEGO® Mindstorms™ prove to serve as an

adequate platform for developing inexpensive mobile robots. One of the major research

areas in the field of robotics deals with designing inexpensive mobile robots with limited

capabilities that, when used in conjunction with other robots of the same type, can function

the same as a single advanced robot. The results of the experiments conducted with the

sheep and sheepdog prove that LEGO® Mindstorms™ robots can perform fairly complex

tasks with limited sensor capabilities. By having the ability to use advanced programming

languages, complex tasks can be performed using the LEGO® robots. Also, the LEGO®

Mindstorms™ platform allows for moderately advanced sensors, such as the microphone

sensor, to be integrated into the system if needed. The research showed that detecting

sound with the microphone sensor could control the robots. While the sheepdog was

performing the complex task of herding the sheep into the pen, it could be instructed to stop

and execute another task. It could then be commanded to resume the task of herding the

sheep. Being able to use these types of sensors with the LEGO® robots also results in the

possibility of completing complex tasks.

Section 7.2 – Future Research

 In the immediate future, two items can be changed to improve overall system

performance. First, the tone decoder circuit should be fixed. To operate at the desired center

frequency, the layout of the circuit board should be changed to the layout shown in Figure

 64

5.16. This change was not made since the sensor functioned as desired, although at a higher

frequency. Fixing the circuit could potentially eliminate the need for constant recalibration

during operation. Also, the identifying infrared LED array should be pulsed using a standard

555-timer circuit. This would help conserve the 9V battery used to provide power to the

circuit.

 In order to create a cooperative team using the LEGO® Mindstorms™, a

communication link between the robots must be established. At the present time, this is not

possible. First, a tone must be generated by one robot that can be heard by the other. Since

the RCX cannot produce a loud enough tone, additional hardware will have to be developed.

Next, the limited sensory capabilities must be overcome. If the same task of herding the

sheep into a pen is desired, more sensors will need to be added in order for communication

between robots to occur. However, three sensor inputs are probably sufficient for robot-to-

robot communication, assuming the robots can generate a tone and the task required to be

completed is much simpler. One method that should be investigated is using multiple RCX

units for a single robot. This would not only increase the sensor capabilities, it would also

double the output ports. These could be used to power any custom hardware used. Finally,

instead of a simulated mother robot, an actual robot should be used. Incorporating the

LEGO® robots into the CRIM’s EvBot robot colony [18] [33] would allow for research in

the area of marsupial robot colonies to be conducted.

 65

Chapter 8 – References

[1] “Active Sensor Multiplexer.” Mindsensors Robotics. Retrieved 4 February 2003.
<http://www.mindsensors.com/active_mux.htm>

[2] Angeli, Frank. Light Sensor disassembly report. Updated 16 September 1988. Retrieved

1 February 2003. < http://www.crynwr.com/LEGO-robotics/light-sensor.html>

[3] Arkin, Ronald C. Behavior-Based Robotics. Cambridge: The MIT Press, 1998.

[4] Asama, Hajime, Akihiro Matsumato, and Yoshiki Ishida. “Design of an Autonomous and

Distributed Robot System: ACTRESS.” In Proceedings of the IEEE/RSJ
International Workshop on Intelligent Robots and Systems, 4-6 September 1989,
pages 283-290.

[5] Baum, Dave. Dave Baum’s Definitive Guide to LEGO Mindstorms. New York:

Springer-Verlag New York, Inc., 2000.

[6] Baum, Dave. NQC Programmer’s Guide, Version 2.5 a4. Released 27 January 2003.

Retrieved 31 January 2003. <http://www.baumfamily.org/nqc/beta/
NQC_Guide.pdf>

[7] Berger, Daniel. Advanced LEGO Mindstorms Programming in Visual C++. Max Plank

Institute for Biological Cybernetics. Updated 20 November 2002. Retrieved 23
January 2002. <http://www.kyb.tuebingen.mpg.de/bu/people/berger/
Mindstorms.html>

[8] Braly, J. Chris, Kyle Luthy, Jason Stevens, Carey Merrit, Mohammed Faza, and Kyle

Pruitt. “Development of a Low-Cost, Robust Platform for Building Mobile Robots.”
Unpublished CRIM project report. North Carolina State University, 2002.

[9] Beni, Gerardo. “The Concept of Cellular Robotic System.” In Proceedings of the IEEE

International Symposium on Intelligent Control, Arlington, VA, 24-26 August 1998,
pages 57-62.

[10] Casper, Jennifer L. “Human-Robot Interactions During the Robot-Assisted Urban

Search and Rescue Response at the World Trade Center.” Masters Thesis,
Department of Computer Science and Engineering, University of South Florida, April
2002.

[11] Casper, Jennifer L. and Robin R. Murphy. “Workflow Study on Human-Robot

Interaction in USAR.” In Proceedings of IEEE International Conference on Robotics
and Automation, Washington, DC, May 2002, pages 1997-2003.

 66

[12] Chaimowicz, Luiz, Mário F. M. Campos, and Vijay Kumar. “Dynamic Role

Assignment for Cooperative Robots.” In Proceedings of the IEEE International
Conference on Robotics and Automation, Washington, DC, May 2002, pages 293-
298.

[13] Dario, P., F. Ribechini, V. Genovese, and G. Sandini. “Instinctive Behaviors and

Personalities in Societies of Cellular Robots.” In Proceedings of the IEEE
International Conference on Robotics and Automation, Sacramento, CA, 9-11 April
1991, pages 1927-1932.

[14] Davids, Angela. “Urban Search and Rescue Robots: From Tragedy to Technology.”

IEEE Intelligent Systems, Vol. 17, Iss. 2, March/April 2002, pages 81-83.

[15] Emery, Rosemary, Kevin Sikorski, and Tucker Balch. “Protocols for Collaboration,

Coordination and Dynamic Role Assignment in a Robot Team.” In Proceedings of
the IEEE International Conference of Robotics and Automation, Washington, DC,
May 2002, pages 3008-3015.

[16] Fagin, Barry. “An Ada Interface to LEGO Mindstorms”. Ada Letters Vol. 21 No. 2

(September 2000). Retrieved 23 January 2003. <http://www.faginfamily.net/
barry/Papers/AdaLetters.htm>

[17] Fukuda, Toshio and Seiya Nakagawa. “Dynamically Reconfigurable Robotic System.”

In Proceedings of the IEEE International Conference of Robotics and Automation,
Philadelphia, PA, 24-29 April 1988, pages 1581-1586.

[18] Galeotti, John. “The EvBot: A Small Autonomous Mobile Robot for the Study of

Evolutionary Algorithms in Distributed Robotics.” Master’s Thesis. North Carolina
State University, 2002.

[19] Gasperi, Michael. “Machina Speculatrix.” Retrieved 12 February 2003.

<http://www.plazaearth.com/usr/gasperi/walter.htm>

[20] Gasperi, Michael. Mindstorms RCX Sensor Input Page. Retrieved 29 January 2002.

<http://www.plazaearth.com/usr/gasperi/LEGO.htm>

[21] Halme, Aarne, Peter Jakubik, Torsten Schönberg, and Mika Vianio. “The Concept of

Robot Society and its Utilization.” In Proceedings of the IEEE/Tsukuba International
Workshop on Advanced Robotics, 8-9 November 1993, pages 29-35.

[22] Hanley, David and Sean Hearne. LEGO Robotics Course. Retrieved 23 January 2003.

<http://emhain.wit.ie/~p98ac25/>

[23] Hempel, Ralph. pbForth Home Page. Retrieved 23 January 2003.

<http://www.hempeldesigngroup.com/LEGO/pbForth/homePage.html>

 67

[24] Hurbain, Philippe. LEGO Mindstorms compatible devices. Retrieved 1 February 2003.

<http://www.philohome.com/sensors.htm>

[25] Iversen, Tortsen K., Kåre J. Kristofferson, Kim G. Larsen, and Morten Laursen.

“Model-Checking Real-Time Control Programs: Verifying LEGO Mindstorms
Systems Using UPPAAL.” In Proceedings of Euromicro Conference on Real-Time
Systems, Stockholm, Sweden, 19-21 June 2000, pages 147-155.

[26] Jennings, James S., Greg Whelan, and William F. Evans. “Cooperative Search and

Rescue with a Team of Mobile Robots.” In Proceedings of the International
Conference on Advanced Robotics, Monterey, CA, 7-9 July 1997, pages 193-200.

[27] Kumar, Amruth N. “Using Robots in an Undergraduate Artificial Intelligence Course:

An Experience Report.” In Proceedings of the ASEE/IEEE Frontiers in Education
Conference, Reno, NV, 10-13 October 2001, pages TD4-10-14.

[28] Lambert, Robert L. “A Talented Robot.” Unpublished project report. University of

Strathclyde, 1990.

[29] LeBouthillier, Arthur E. “W. Grey Walter and his Turtle Robots.” The Robot Builder

Vol. 11 Num. 5 (May 1999): Retrieved 7 February 2003. <http://www.csulb.edu/
~wmartinz/rssc/newsletters/may99.pdf>

[30] “LogIT Sensors.” DCP Microdevelopments. Retrieved 3 February 2003.

<http://www.dcpmicro.com/LEGO/index.htm>

[31] Liu, Jiming and Jianbing Wu. Multi-agent robotic systems. Boca Raton: CRC Press,

2001.

[32] Luthy, K. A., J. C. Braly, L. S. Mattos, E. Grant, J. F. Muth, A. Seyam, A. Dahwan, and

T. Ghosh. “Initial Development of a Portable Acoustic Array on a Large-Scale E-
Textile Substrate.” In Proceedings of the Materials Research Society Fall
Symposium, Vol. 736, Boston, MA, 2002.

[33] Mattos, Leonardo. “The EvBot II: An Enhanced Evolutionary Robotics Platform

Equipped with Integrated Sensing for Control.” Master’s Thesis (not published).

[34] Murphy, Robin R. Introduction to AI Robotics. Cambridge: The MIT Press, 2000.

[35] Murphy, Robin R. “Marsupial and shape-shifting robots for urban search and rescue.”

IEEE Intelligent Systems, Vol. 15, Iss. 2, March/April 2000, pages 14-19.

 68

[36] Murphy, Robin R., Jennifer L. Casper, Jeff Hyams, Mark Micire, and Brian Minten.
“Mobility and Sensing Demands in USAR.” In Proceedings of the International
Conference of the IEEE Industrial Electronics Society, Nagoya, Japan, 22-28 October
2000, pages 138-142.

[37] Murphy, Robin R., Michelle Ausmus, Magda Bugajska, Tanya Ellis, Tonia Johnson, Nia

Kelley, Jodi Kiefer, and Lisa Pollock. “Marsupial-like Mobile Robot Societies.” In
Proceedings of ACM International Conference on Autonomous Agents, Seattle, WA,
1999, pages 364-365.

[38] New Japan Radio Co., Ltd. “FSK Demodulator/Tone Decoder (NJM2211M).”

Datasheet. Retrieved 26 February 2003. < http://www.njr.co.jp/pdf/be/be06008.pdf>

[39] Panasonic USA. “Omnidirectional Electret Condenser Microphone Cartridge (WM-

52BM)”. Datasheet. Retrieved 26 February 2003.
<http://rocky.digikey.com/WebLib/ Panasonic/Web%20data/WM-
52B,54B%20Series.pdf>

[40] Parker, Lynne E. “ALLIANCE: An Architecture for Fault Tolerant Multirobot

Cooperation.” In IEEE Transactions on Robotics and Automation, Vol. 14 Iss. 2,
April 1998, pages 220-240.

[41] Parker, Lynne E. “The Effect of Action Recognition and Robot Awareness in

Cooperative Robotic Teams.” In Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems, Pittsburgh, PA, 5-9 August 1995, pages 212-219.

[42] Pereira, Guilherme A. S., Bruno S. Pimentel, Luiz Chaimowicz, and Mário F. M.

Campos. “Coordination of Multiple Mobile Robots in an Object Carrying Task
Using Implicit Communication.” In Proceedings of the IEEE International
Conference on Robotics and Automation, Washington, DC, May 2002, pages 281-
286.

[43] PITSCO Online Store. Retrieved 3 February 2003. <http://www.pldstore.com>

[44] Proudfoot, Kekoa. RCX Internals. Retrieved 29 January 2002.

<http://graphics.stanford.edu/~kekoa/rcx/>

[45] Russell, Andrew, David Theil, and Alan Mackay-Sim. “Sensing Odour Trails for

Mobile Robot Navigation.” In Proceedings of the IEEE International Conference on
Robotics and Automation, San Diego, CA, 8-13 May 1994, pages 2672-2677.

[46] Rybski, Paul E., Nikolaos P. Papanikolopoulos, Sascha A. Stoeter, Donald G. Krantz,

Kemal B. Yesin, Maria Gini, Richard Voyles, Dean F. Hougen, Brad Nelson, and
Michael D. Erickson. “Enlisting Rangers and Scouts for Reconnaissance and
Surveillance.” IEEE Robotics and Automation Magazine, Vol. 7 Issue 4, December
2000, pages 14-24.

 69

[47] Solorzano, Jose et al. leJOS: JAVA for the RCX. Updated 21 January 2003. Retrieved

23 January 2003. <http://lejos.sourceforge.net/>

[48] Texas Instruments, Inc. “General-Purpose Operational Amplifiers (UA741CD).”

Datasheet. Copyright 2000. Retrieved 26 February 2003. < http://www-
s.ti.com/sc/psheets/ slos094b/slos094b.pdf>

[49] Wallich, Paul. “Mindstorms™’s: Not Just a Kid’s Toy.” IEEE Spectrum September

2001: 52-57.

[50] Walter, W. Grey. The Living Brain. New York: W.W. Norton & Company, 1953.

[51] Ward, Mark. “Walter’s World.” New Scientist. Vol. 159 Issue 2144 (25 July 1998):

p54.

[52] Yamamoto, Masaya, Tomonori Hashiyama, and Shigeru Okuma. “Reducing

Computational Time on Evolution Under the Real Environment Using Fitness
Estimation.” In Proceedings of the Annual Conference of the IEEE Industrial
Electronics Society, Nagoya, Japan, 22-28 October 2000, pages 2497-2500.

 70

Appendix

 71

Chapter 9 – Appendix

 The following sections include photographs of the robot colony developed, the NQC

source code used to control the individual robots, an explanation of how images were

acquired during experimentation, and a comprehensive parts list.

Section 9.1 – LEGO® Robot Colony

 This section will offer different views of each agent that comprises the robot colony.

Following the photographs of the robots, pictures of the field and pen will be shown.

Section 9.1.1 – Sheepdog

Figure 9.1 Front side of the sheepdog

Pen Light Sensor

Identifying
Light Bulb

Sheep/Wall Light Sensor

Microphone
Sensor

 72

Figure 9.2 Left side of the sheepdog

Figure 9.3 Backside of the sheepdog

 73

Section 9.1.2 – Sheep

Figure 9.4 Right side of the sheepdog

Figure 9.5 Front side of the sheep

Dog/Wall
Light Sensor Identifying infrared

LED array

Microphone Sensor

 74

Figure 9.6 Left side of the sheep

Figure 9.7 Backside of the sheep

 75

Section 9.1.3 – Helper Dog

Figure 9.9 Front side of the helper dog

Figure 9.8 Right side of the sheep

Pen Light Sensor

Identifying
Light Bulb

Sheep/Wall
Light Sensor

Microphone
Sensor

 76

Figure 9.10 Left side of the helper dog

Figure 9.11 Backside of the helper dog

 77

Section 9.1.4 – Field

Figure 9.13 The 8’ x 8’ field used to conduct experiments

Figure 9.12 Right side of the helper dog

 78

Section 9.2 – NQC Source Code

 This section includes the NQC source code used to control the sheepdog, sheep, and

the helper dog.

Section 9.2.1 – Sheepdog NQC Source Code

#define LEFT OUT_A //define motor output A as LEFT motor
#define HEAD OUT_B //define motor output B as HEAD motor
#define RIGHT OUT_C //define motor output C as RIGHT motor
#define EAR SENSOR_1 //define sensor input 1 as EYE
#define ANGLE SENSOR_2 //define sensor input 2 as ANGLE
#define MUX SENSOR_3 //define sensor input 3 as MUX

int TURN = 7; //LEFT and RIGHT motor power for turning
int FWD = 7; //LEFT and RIGHT motor power for going forward
int PEN = 780; //threshold for detecting the pen
int SHEEP = 815; //threshold for detecting the sheep from far away
int SHEEPCLOSE = 600; //threshold for detecting the sheep up close
int WALL = 920; //threshold for detecting the wall
int LDIR = 1; //1 = FWD MOTION of the tread; 0 = REV MOTION of the tread;
int RDIR = 1; //used in task trackPen if the EYE loses the pen
int FOUND = 0; //flag used for detecting the pen; see function init()
int SDIR = 0; //1 = Left; 0 = Right; flag used to determine which way to spin when looking for the sheep
int direction; // -1 = right; 1 = left; this flag is used for scanning purposes
int distance; //distance from the dawggy to the sheep
int decapitation = 590; //threshold for determing if the dog is too close to the pen
int sound = 50; //threshold for detecting sound

Figure 9.14 The pen used for experiments

 79

int HELP = 1; //flag used to tell the sheepdog to stop and start
int angleLast = 0; //variable used in stuck task

//This task is used to corral the sheep towards the pen.
task corral()
 {
 while(1)
 {
 findSheep();
 getDistance();
 findPen();
 turn();
 go();
 Eye();
 Wait(30);

 if (MUX <= decapitation) //If the dog is too close to the pen,
 { //go in reverse for one second
 GoRev();
 OnFor(LEFT+RIGHT, 100);
 }
 }
 }

//This function will cause the dog to look for the sheep by spinning around
//until the NOSE locates the sheep.
void findSheep()
 {
 Nose();
 Wait(30);

 while(MUX > SHEEP)
 {
 if (SDIR == 1) //dog will spin left to look for the sheep
 {
 TurnLeft();
 On(LEFT + RIGHT);
 }
 else if (SDIR == 0) //dog will spin right to look for the sheep
 {
 TurnRight();
 On(LEFT + RIGHT);
 }
 }
 Off(LEFT+RIGHT);
 }

//This function is used for finding the pen once the sheep has been located
//The EYE is used to look for the pen
void findPen()
 {
 Eye();
 Wait(30);

 while(!FOUND)
 {
 On(HEAD);

 if (MUX < PEN)
 {
 FOUND = 1;
 Off(HEAD);
 }

 if ((ANGLE <= -66) && (direction == -1) && (!FOUND))
 {
 OnRev(HEAD);
 direction = 1;
 }

 80

 if ((ANGLE >= 69) && (direction == 1) && (!FOUND))
 {
 OnFwd(HEAD);
 direction = -1;
 }
 }
 FOUND = 0;
 }

//Determines the distance from the dog to the sheep
void getDistance()
 {
 Nose();
 Wait(30);

 if ((MUX >= 802) && (MUX < SHEEP))
 distance = 13;
 else if ((MUX >= 780) && (MUX < 802))
 distance = 11;
 else if ((MUX >= 760) && (MUX < 780))
 distance = 10;
 else if ((MUX >= 743) && (MUX < 760))
 distance = 8;
 else if ((MUX >= 735) && (MUX < 753))
 distance = 6;
 else if ((MUX >= 705) && (MUX < 735))
 distance = 5;
 else if ((MUX >= 687) && (MUX < 705))
 distance = 4;
 else if ((MUX >= 655) && (MUX < 687))
 distance = 3;
 else if ((MUX >= 580) && (MUX < 655))
 distance = 2;
 else if ((MUX >= 440) && (MUX < 580))
 distance = 1;
 else distance = 0;
 }

//This function turns the dog a specific direction depending on
//its position relative to the pen before moving towards the sheep
void turn()
 {
 int timeAngle = 30;
 if (ANGLE > 5)
 {
 TurnLeft();
 OnFor(LEFT + RIGHT, timeAngle);
 SDIR = 0;
 }
 else if (ANGLE < -5)
 {
 TurnRight();
 OnFor(LEFT + RIGHT, timeAngle);
 SDIR = 1;
 }
 }

//This function moves the sheep dog towards the sheep
void go()
 {
 Nose();
 Wait(30);
 GoFwd();
 start sheepDistance;
 OnFor(LEFT + RIGHT, 20*distance);
 }

//This task is used to prevent the dog from running into the sheep
//If the dog is too close to the sheep, it will stop
task sheepDistance()

 81

 {
 while(1)
 {
 if (MUX <= SHEEPCLOSE)
 {
 Off(LEFT+RIGHT);
 stop sheepDistance;
 }
 }
 }

//This function sets up the motors to turn right
void TurnRight()
 {
 SetDirection(LEFT, OUT_REV);
 SetDirection(RIGHT, OUT_FWD);
 SetPower(LEFT + RIGHT, TURN);
 LDIR = 1;
 RDIR = 0;
 }

//This function sets up the motors to turn left
void TurnLeft()
 {
 SetDirection(LEFT, OUT_FWD);
 SetDirection(RIGHT, OUT_REV);
 SetPower(LEFT + RIGHT, TURN);
 LDIR = 0;
 RDIR = 1;
 }

//This function sets up the motors to move forward
void GoFwd()
 {
 SetDirection(RIGHT, OUT_REV);
 SetDirection(LEFT, OUT_REV);
 SetPower(LEFT + RIGHT, FWD);
 LDIR = 1;
 RDIR = 1;
 }

//This function sets up the motors to move in reverse
void GoRev()
 {
 SetDirection(RIGHT, OUT_FWD);
 SetDirection(LEFT, OUT_FWD);
 SetPower(LEFT + RIGHT, FWD);
 LDIR = 0;
 RDIR = 0;
 }

//Changes the MUX to Channel 1 to detect the pen
void Eye()
 {
 SetSensorType(MUX,SENSOR_TYPE_TOUCH);
 Wait(2);
 SetSensorType(MUX,SENSOR_TYPE_LIGHT);
 SetSensorMode(MUX,SENSOR_MODE_RAW);
 }

//Changes the MUX to Channel 2 to detect the sheep
void Nose()
 {
 SetSensorType(MUX,SENSOR_TYPE_TOUCH);
 Wait(2);
 SetSensorType(MUX,SENSOR_TYPE_LIGHT);
 Wait(2);
 SetSensorType(MUX,SENSOR_TYPE_TOUCH);
 Wait(2);
 SetSensorType(MUX,SENSOR_TYPE_LIGHT);

 82

 SetSensorMode(MUX,SENSOR_MODE_RAW);
 }

//This task will cause the dog to back up and turn around if it gets
//too close to a wall. The NOSE is used to detect the wall
task avoidWall()
 {
 SetPower(LEFT + RIGHT, TURN);
 while(true)
 {
 while (MUX >= WALL)
 {
 stop corral;
 SetDirection(LEFT + RIGHT, OUT_FWD);
 OnFor(LEFT + RIGHT, 50);
 SetDirection(LEFT, OUT_REV);
 SetDirection(RIGHT, OUT_FWD);
 OnFor(LEFT + RIGHT, 50);
 Nose();
 Wait(30);
 SDIR = 0;
 start corral;
 }
 }
 }

//This task prevents the dog from getting stuck often. If the rotation sensor does not detect movement in
//20 seconds, the sheepdog will move in reverse
task stuck()
 {
 while(true)
 {
 angleLast = ANGLE;
 Wait(2000);
 if (ANGLE == angleLast)
 {
 PlayTone(600,100);
 stop corral;
 stop avoidWall;
 Off(LEFT + RIGHT);
 GoRev();
 OnFor(LEFT + RIGHT, 200);
 OnFor(HEAD, 10);

 start corral;
 start avoidWall;
 }
 }
 }

task main()
 {
 direction = -1;
 SetSensor(EAR, SENSOR_LIGHT); //Defines EAR as a light sensor
 SetSensorMode(EAR, SENSOR_MODE_RAW); //Sensor outputs RAW (0-1023) values
 SetSensor(ANGLE, SENSOR_ROTATION); //Defines ANGLE as a rotation sensor
 SetDirection(HEAD, OUT_FWD);
 SetPower(LEFT + RIGHT, TURN);

 Wait(1000);

 start corral;
 start avoidWall;
 start stuck;

 while(true) //corral sheep unless a sound is detected
 {
 if ((EAR < sound) && (HELP == 1)) //If sound is detected, stop
 {
 stop corral;

 83

 stop stuck;
 stop avoidWall;
 Off(LEFT + RIGHT + HEAD);
 HELP = 0;
 }

 if ((EAR < sound) && (HELP == 0)) //Resume corralling the sheep if a sound is detected
 {
 start corral;
 start stuck;
 start avoidWall;
 HELP = 1;
 }
 }
 }

Section 9.2.2 – Sheep NQC Source Code

#define ANGLE SENSOR_1 //Define sensor input 1 as ANGLE (rotation sensor)
#define EAR SENSOR_2 //Define sensor input 2 as EAR (mic)
#define EYE SENSOR_3 //Define sensor input 3 as EYE (light sensor)
#define RIGHT OUT_C //Define motor output C as LEFT motor
#define HEAD OUT_B //Define motor output B as HEAD motor
#define LEFT OUT_A //Define motor output A as RIGHT motor

int time = 0; //variable used in wander()
int black = 930; //threshold for detecting a wall
int detect = 0; //flag used when sheep sees either the dog or wall
int dog =710; //threshold for detecting the dog
int run = 4; //motor power for when sheep is running from the dog or wall
int fwd = 2; //motor power for when sheep is moving forward while grazing
int turn = 4; //motor power for when sheep is turning while grazing
int sound = 50; //threshold for detecting sound

//For this task, the sheep is continuously scanning and looking for the dog or a wall.
//When it sees either of the two, it will react accordingly.
task scan()
 {
 while(true)
 {
 On(HEAD);
 while((ANGLE > -68) && (ANGLE <= 0)) //scans counterclockwise for 180 degrees
 {
 OnFwd(HEAD);
 if((EYE >= black) || (EYE <= dog))
 detect = 1;
 }
 Off(HEAD);
 Wait(20);
 while (ANGLE < 0) //scan clockwise -- returns to zero degree position
 {
 OnRev(HEAD);
 if((EYE >= black) || (EYE <= dog))
 detect = 1;
 }
 Off(HEAD);
 Wait(20);
 while((ANGLE > 0) && (ANGLE < 68)) //scans clockwise for 180 degrees
 {
 OnRev(HEAD);
 if((EYE >= black) || (EYE <= dog))
 detect = 1;
 }
 Off(HEAD);
 Wait(20);
 while(ANGLE > 0) //returns EYE to zero degree position
 {

 84

 OnFwd(HEAD);
 if((EYE >= black) || (EYE <= dog))
 detect = 1;
 }
 Off(HEAD);
 Wait(20);
 }
 }

//This funciton is called when a wall detected. The sheep will move away from the wall.
void wall()
 {
 SetPower(LEFT + RIGHT, run);
 while (EYE >= black)
 {
 Off(HEAD);
 if ((ANGLE < -3) && (ANGLE >= -60)) //robot turns RIGHT
 {
 SetDirection(LEFT, OUT_REV);
 SetDirection(RIGHT, OUT_FWD);
 OnFor(LEFT + RIGHT, 75);
 SetDirection(RIGHT, OUT_REV);
 OnFor(LEFT + RIGHT, 50);
 }
 else if ((ANGLE >= -3) && (ANGLE <= 3)) //robot moves backward and spin away from wall
 {
 SetDirection(LEFT + RIGHT, OUT_FWD);
 OnFor(LEFT + RIGHT, 75);
 SetDirection(LEFT, OUT_REV);
 SetDirection(RIGHT, OUT_FWD);
 OnFor(LEFT + RIGHT, 75);
 }
 else if ((ANGLE > 3) && (ANGLE <= 60)) //robot turns LEFT
 {
 SetDirection(LEFT, OUT_FWD);
 SetDirection(RIGHT, OUT_REV);
 OnFor(LEFT + RIGHT, 75);
 SetDirection(LEFT, OUT_REV);
 OnFor(LEFT + RIGHT, 50);
 }
 else if ((ANGLE < -60) || (ANGLE > 60)) //robot moves forward
 {
 SetDirection(LEFT + RIGHT, OUT_REV);
 OnFor(LEFT + RIGHT, 75);
 }
 }
 start scan;
 start wander;
 }

//This function is called when the sheep sees the dog. The sheep will run away from the dog.
void panic()
 {
 SetPower(LEFT + RIGHT, run);
 while (EYE <= dog)
 {
 Off(HEAD);
 if ((ANGLE < -10) && (ANGLE > -25)) //robot turns RIGHT
 {
 SetDirection(LEFT, OUT_REV);
 SetDirection(RIGHT, OUT_FWD);
 OnFor(LEFT + RIGHT, 80);
 SetDirection(RIGHT, OUT_REV);
 OnFor(LEFT + RIGHT, 60);
 }
 else if ((ANGLE <= -25) && (ANGLE >= -35)) //robot turns RIGHT
 {
 SetDirection(LEFT, OUT_REV);
 SetDirection(RIGHT, OUT_FWD);
 OnFor(LEFT + RIGHT, 70);

 85

 SetDirection(RIGHT, OUT_REV);
 OnFor(LEFT + RIGHT, 60);
 }
 else if ((ANGLE < -35) && (ANGLE >= -60)) //robot turns RIGHT
 {
 SetDirection(LEFT, OUT_REV);
 SetDirection(RIGHT, OUT_FWD);
 OnFor(LEFT + RIGHT, 50);
 SetDirection(RIGHT, OUT_REV);
 OnFor(LEFT + RIGHT, 60);
 }
 else if ((ANGLE >= -10) && (ANGLE <= 10)) //robot moves backward and spin away from dog and then runs
 {
 SetDirection(LEFT + RIGHT, OUT_FWD);
 OnFor(LEFT + RIGHT, 50);
 SetDirection(LEFT, OUT_REV);
 SetDirection(RIGHT, OUT_FWD);
 OnFor(LEFT + RIGHT, 100);
 SetDirection(RIGHT, OUT_REV);
 OnFor(LEFT + RIGHT, 60);
 }
 else if ((ANGLE > 10) && (ANGLE < 25)) //robot turns LEFT
 {
 SetDirection(LEFT, OUT_FWD);
 SetDirection(RIGHT, OUT_REV);
 OnFor(LEFT + RIGHT, 80);
 SetDirection(LEFT, OUT_REV);
 OnFor(LEFT + RIGHT, 60);
 }
 else if ((ANGLE >= 25) && (ANGLE <= 35)) //robot turns RIGHT
 {
 SetDirection(LEFT, OUT_FWD);
 SetDirection(RIGHT, OUT_REV);
 OnFor(LEFT + RIGHT, 70);
 SetDirection(LEFT, OUT_REV);
 OnFor(LEFT + RIGHT, 60);
 }
 else if ((ANGLE > 35) && (ANGLE <= 60)) //robot turns RIGHT
 {
 SetDirection(LEFT, OUT_FWD);
 SetDirection(RIGHT, OUT_REV);
 OnFor(LEFT + RIGHT, 50);
 SetDirection(LEFT, OUT_REV);
 OnFor(LEFT + RIGHT, 60);
 }
 else if ((ANGLE < -60) || (ANGLE > 60)) //robot moves forward
 {
 SetDirection(LEFT + RIGHT, OUT_REV);
 OnFor(LEFT + RIGHT, 40);
 }
 }
 Wait(100);
 start scan;
 start wander;
 }

//This task simulates a sheep grazing.
task wander()
 {
 while(true)
 {
 SetDirection(LEFT + RIGHT, OUT_REV);
 SetPower(LEFT + RIGHT, fwd);
 On(RIGHT + LEFT);
 time = Random(100);
 Wait(time);
 Off(LEFT + RIGHT);
 time = Random(250);
 Wait(time);
 if((time%2) == 0)

 86

 {
 SetPower(LEFT+RIGHT,turn);
 OnRev(LEFT);
 OnFwd(RIGHT);
 }
 else
 {
 SetPower(LEFT+RIGHT,turn);
 OnRev(RIGHT);
 OnFwd(LEFT);
 }
 time = Random(75);
 Wait(time);
 Off(LEFT + RIGHT);
 Wait(1500);
 }
 }

task main()
 {
 SetSensorType(EYE, SENSOR_TYPE_LIGHT); //Defines EYE as a light sensor
 SetSensorMode(EYE, SENSOR_MODE_RAW);
 SetSensorType(EAR, SENSOR_TYPE_LIGHT); //Defines EAR as a light sensor
 SetSensorMode(EAR, SENSOR_MODE_RAW);
 SetSensor(ANGLE, SENSOR_ROTATION); //Defines ANGLE as a rotation sensor
 SetPower(HEAD, 1);

 SetPower(LEFT, fwd);
 SetPower(RIGHT, fwd);

 Wait(1000);

 while (true)
 {
 start scan;
 start wander;

 while(true)
 {
 if (detect == 1)
 {
 stop wander;
 Off(LEFT + RIGHT);

 if (EYE >= black)
 {
 PlayTone(500, 50);
 wall();
 }
 else if (EYE <= dog)
 {
 stop scan;
 Off(HEAD);
 PlayTone(3000, 50);
 panic();
 }
 detect = 0;
 start scan;
 }
 }
 }
 }

 87

Section 9.2.3 – Helper Dog NQC Source Code

#define PEN_EYE SENSOR_1 //Define sensor input 1 as PEN_EYE (light sensor)
#define EAR SENSOR_2 //Define sensor input 2 as EAR (mic)
#define EYE SENSOR_3 //Define sensor input 3 as EYE (light sensor)
#define LEFT OUT_C //Define motor output C as LEFT motor
#define LIGHT OUT_B //Define motor output B as LIGHT (used to power lightbulb)
#define RIGHT OUT_A //Define motor output A as RIGHT motor

int black = 889; //threshold for detecting a wall
int detect = 0; //flag used when helper dog sees either the sheep or wall
int run = 6; //motor power for when helper dog is helping the dog
int turn = 5; //motor power for when helper dog is turning while monitoring
int sound = 50; //threshold for detecting sound
int pen = 780; //threshold for detecting the pen
int sheep = 815; //threshold for detecting the sheep
int sheepclose = 700; //too close to sheep when under this value
int decapitation = 590; //too close to the pen when under this value

//This funciton is called when a wall detected. The helper dog will move away from the wall.
task avoidWall()
 {
 while (EYE >= black)
 {
 GoRev();
 OnFor(LEFT + RIGHT, 100);
 TurnRight();
 OnFor(LEFT + RIGHT, 100);
 }
 }

//This function sets up the motors to turn right
void TurnRight()
 {
 SetDirection(LEFT, OUT_REV);
 SetDirection(RIGHT, OUT_FWD);
 SetPower(LEFT + RIGHT, turn);
 }

//This function sets up the motors to turn left
void TurnLeft()
 {
 SetDirection(LEFT, OUT_FWD);
 SetDirection(RIGHT, OUT_REV);
 SetPower(LEFT + RIGHT, turn);
 }

//This function sets up the motors to move forward
void GoFwd()
 {
 SetDirection(RIGHT, OUT_REV);
 SetDirection(LEFT, OUT_REV);
 SetPower(LEFT + RIGHT, run);
 }

//This function sets up the motors to move in reverse
void GoRev()
 {
 SetDirection(RIGHT, OUT_FWD);
 SetDirection(LEFT, OUT_FWD);
 SetPower(LEFT + RIGHT, run);
 }

//This function is called when the helper dog must find the sheep
void findSheep()
 {
 while(EYE > sheep)
 {
 TurnLeft();

 88

 On(LEFT + RIGHT);
 }
 Off(LEFT + RIGHT);
 }
task main()
 {
 SetSensorType(EYE, SENSOR_TYPE_LIGHT); //Defines EYE as a light sensor
 SetSensorMode(EYE, SENSOR_MODE_RAW); //Sensor outputs RAW (0-1023) values
 SetSensorType(PEN_EYE, SENSOR_TYPE_LIGHT); //Defines PEN_EYE as a light sensor
 SetSensorMode(PEN_EYE, SENSOR_MODE_RAW); //Sensor outputs RAW (0-1023) values
 SetSensorType(EAR, SENSOR_TYPE_LIGHT); //Defines EAR as a light sensor
 SetSensorMode(EAR, SENSOR_MODE_RAW); //Sensor outputs RAW (0-1023) values

 start avoidWall;

 while(true) //Wait until a sound is heard, and then move to a position
 { //where the sheep is between the helper dog and the pen
 if (EAR <= sound)
 {
 stop avoidWall;

 while(EYE >= black)
 {
 GoRev();
 OnFor(LEFT + RIGHT, 100);
 TurnRight();
 OnFor(LEFT + RIGHT, 100);
 }

 findSheep();

 while(PEN_EYE > pen)
 {
 start avoidWall;
 TurnRight();
 OnFor(LEFT + RIGHT, 50);
 GoFwd();
 OnFor(LEFT + RIGHT, 150);
 findSheep();
 }
 }
 }
 }

 89

Section 9.3 – Experiment Image Acquisition

 This section consists of a detailed explanation of how the images were acquired

during the experiments. The steps taken to process the images, as well as how these images

were made into a movie will be discussed.

Section 9.3.1 – Image Acquisition

 The images taken during experimentation were obtained using a camera that is fixed

over the mobile robot test bed located in the

CRIM laboratory. In order to be able to

view the entire test bed, the camera is

centered above the area of interest and has a

fish-eye lens. Figure 9.15 shows a sample

image acquired during experimentation.

Notice the field in the upper right quadrant

of the picture and the pen in the upper right-

hand corner of the image. Using

MATLAB, the distortion in this image can

be removed. The processed image is shown

in Figure 9.16. If desired, the image can be

cropped such that only the area of interest is

shown. For this application, only the field

is shown in the final image. Notice how the

defished image has been flipped over the

horizon. This algorithm is used to correct

Figure 9.15 Image acquired while conducting
experiments

Figure 9.16 Defished and cropped image

 90

images of various experiments that were taken with this camera. For a different application,

the axes of a simulated world are oriented differently than the test bed. When the image is

corrected, it is flipped so the axes of the defished image and those in the simulated world are

aligned. Flipping the image does not serve any purpose for this application.

 After all of the original images have been acquired, the robots used in the experiment

can be tracked, and their individual paths can be plotted on the images (see Figure 9.17). For

each image, the user clicks on the

robot with the mouse. These points

are stored in MATLAB and then

connected for the sequence of

images. Once the robot path

information has been created, a

MATLAB movie can then be

created. When the movie is created,

the image is flipped back to its

original position. If desired, the

MATLAB movie can be converted to a format (Audio Video Interleaved or AVI) that can be

viewed using another software application, such as Windows Media Player.

Section 9.3.2 – MATLAB Source Code

 In the following section, the MATLAB source code used to process the images and

make a movie with these processed images is listed. Andrew L. Nelson of the CRIM

laboratory wrote all pieces of code, and each is included with his permission.

Figure 9.17 One frame of the MATLAB movie showing
two robots and the paths they have taken

X

X

 91

Section 9.3.2.1 defish_image_set.m

 This file takes the original “fishy” image (see Figure 11.1) and removes this distortion

(see Figure 11.2). The user must specify a path in the MATLAB working directory where

the images are located. The distortion is removed from the images, and then saved into the

same location with a different name. In order for this segment of code to run, the function

defish_image2.m must be included in the MATLAB working directory also.

%defish_image_set.m %no comments past here *
%
% Purpose: Generate and save a set of defished images.
%
%
% Record of revisions:
% Date Programmer Changes Made
% ==== ========== ============
% 5-30-02 A. L. Nelson Original Code
%
% Notes: 1) defish_image_set
%
% 2) Slow: takes about 30 sec per image.
%

clear all

%Set beginning and final image to be processed
start_index = 5; end_index = 62;

number_images = 0;

%Set file name strings so MATLAB can find where the images
%that need to be processed are located
%Note Matlab doesn't like dots (.) in path names
file_name_str = '3_11_03/test5';

from_file_name_string = [file_name_str '/image']; %preprocessed image
to_file_name_string = [file_name_str '/defished_image']; %processed image

%Processes images
for i = start_index:end_index
 number_images = number_images + 1;

 %plot top view camera image
 image_name_string = [from_file_name_string, num2str(i)];

 %Input file might be .jpg, .jpeg, or .bmp
 %Use one ot the following lines of code:

 %top_view_image = double(imread([image_name_string '.bmp']));
 top_view_image = double(imread([image_name_string '.jpg']));
 %top_view_image = double(imread([image_name_string '.jpeg']));

 %Format image for plotting
 %function --> defish_image2.m must be in working directory
 top_view_image=defish_image2(top_view_image);

 %Plot real world
 subplot(1,1,1)
 image(top_view_image/255)
 axis xy

 92

 axis square
 pause(0.001)

 %.bmp files are about 850K while .jpg files are about 30K
 %choose the type of file that is desired to be created
 %imwrite(top_view_image/255, [to_file_name_string, num2str(i), '.bmp']); disp(['Writing ', to_file_name_string, num2str(i), '.bmp'])
 imwrite(top_view_image/255, [to_file_name_string, num2str(i), '.jpg']); disp(['Writing ', to_file_name_string, num2str(i), '.jpg'])
end

Section 9.3.2.2 – defish_image2.m

 This function performs the procedure of removing the fish-eye distortion from the

original image. It also crops the image to the desired size of the user. This function must be

in the MATLAB working directory, along with defish_image_set.m for the image processing

to succeed.

%defish_image2.m
%
% Purpose: Version2: Remove fish-eye distortion from an over-head maze image.
% Image is also sized, cropped and fliped to by 540 by 540. (size is
% a result of the defishing process)
%
% Record of revisions:
% Date Programmer Changes Made
% ==== ========== ============
% 5-20-02 A. L. Nelson Origonal Code
% 5-28-02 A. L. Nelson Curve extrapolation method
%
% Notes 1) Called by video_get_range with defish_image2(640_by_480_image);
%
% 2) Only for use with 480 by 640 .bpm images from overhead winTV cam
%
% 3) defish_image2(white_grid_top_view_image);
%
% 4) white_grid_top_view_image = double(imread(['calib_new_images/white_grid_on_maze.bmp']));
%
% 5) this function is now set to crop the image around the "field" located in the upper
% right hand quadrant of the preprocessed fishy image

function [unfished_image]=y(fishy_image)

%Crop image so it is square
image_width = size(fishy_image, 2);
image_height = size(fishy_image, 1);

%Crop image x dimention = cols. (y is already 480)
% size should be 480 by 480
center_error = 16;
fishy_image = fishy_image(:, 81+center_error:560+center_error, :);

%size(fishy_image) %debug

%Flip image over hoizon so axes match those of the simulated world (origin in lower left)
% Note: flipud requires a 2D matrix...
fishy_image(:,:,1) = flipud(fishy_image(:,:,1));
fishy_image(:,:,2) = flipud(fishy_image(:,:,2));
fishy_image(:,:,3) = flipud(fishy_image(:,:,3));

max_offset = 100;

%pad array
for i = 1:3

 93

 col_padded_fishy_image(:,:,i) = [zeros(image_height,max_offset) fishy_image(:,:,i) zeros(image_height,max_offset)];
end

new_image_width = size(col_padded_fishy_image, 2);

for i = 1:3
 padded_fishy_image(:,:,i) = [zeros(max_offset,new_image_width); col_padded_fishy_image(:,:,i);
zeros(max_offset,new_image_width)];
end

new_image_height = size(padded_fishy_image, 1);

center_index = round(new_image_height/2);

% The index of is the radial distance of the point
%i.e. new 67 reads its element from 60...
shift_points = [1 2
 60 67
 115 134
 160 201
 196 269
 225 335
 275 480];
shift_points(:,1) = shift_points(:,1)*1.2;

max_radius = (2^0.5)*(center_index)+1;

shift_vector = []; %This is one of the few times where you must init a matrix var

%This loop creats a vector of linear extraplation points from shift_points
for count = 2:size(shift_points,1)
 start_ind = shift_points(count,2);
 prev_start_ind = shift_points(count-1,2);
 max_shift = shift_points(count,2) - shift_points(count,1);
 prev_max_shift = shift_points(count-1,2) - shift_points(count-1,1);
 new_elems = prev_max_shift:(max_shift-prev_max_shift)/(start_ind-prev_start_ind):max_shift;
 shift_vector = [shift_vector, new_elems];
end

%fill out any undefined elements in the linear extraplation shift curve vector
shift_vector(length(shift_vector):round(max_radius)) = 0;

x_dim = size(padded_fishy_image,2); %Columns
y_dim = size(padded_fishy_image,1); %Rows

for quad_count = 1:4
 %Select a quadrant of the image. Note that there is a row-column to Cartesian coord change
 switch quad_count
 case 1
 padded_fishy_image_quad(:,:,1:3) = padded_fishy_image(ceil(y_dim/2)+1:y_dim,ceil(x_dim/2)+1:x_dim,1:3);

 case 2
 padded_fishy_image_quad(:,:,1:3) = padded_fishy_image(ceil(y_dim/2)+1:y_dim,1:ceil(x_dim/2),1:3);
 padded_fishy_image_quad(:,:,1) = fliplr(padded_fishy_image_quad(:,:,1));
 padded_fishy_image_quad(:,:,2) = fliplr(padded_fishy_image_quad(:,:,2));
 padded_fishy_image_quad(:,:,3) = fliplr(padded_fishy_image_quad(:,:,3));

 case 3
 padded_fishy_image_quad(:,:,1:3) = padded_fishy_image(1:ceil(y_dim/2),1:ceil(x_dim/2),1:3);
 padded_fishy_image_quad(:,:,1) = flipud(fliplr(padded_fishy_image_quad(:,:,1)));
 padded_fishy_image_quad(:,:,2) = flipud(fliplr(padded_fishy_image_quad(:,:,2)));
 padded_fishy_image_quad(:,:,3) = flipud(fliplr(padded_fishy_image_quad(:,:,3)));

 case 4
 padded_fishy_image_quad(:,:,1:3) = padded_fishy_image(1:ceil(y_dim/2),ceil(x_dim/2)+1:x_dim,1:3);
 padded_fishy_image_quad(:,:,1) = flipud(padded_fishy_image_quad(:,:,1));
 padded_fishy_image_quad(:,:,2) = flipud(padded_fishy_image_quad(:,:,2));
 padded_fishy_image_quad(:,:,3) = flipud(padded_fishy_image_quad(:,:,3));

 end %case quad_count

 94

 for x_index = 1:center_index
 for y_index = 1:center_index
 radial_dist = (x_index^2 + y_index^2)^.5;

 if radial_dist < 1 %remove devide by zero errors
 radial_dist = 1;
 end

 cos_theta = x_index/radial_dist;
 sin_theta = y_index/radial_dist;

 x_offset = cos_theta*shift_vector(ceil(radial_dist));
 x_offset = round(x_offset);

 y_offset = sin_theta*shift_vector(ceil(radial_dist));
 y_offset = round(y_offset);

 x_read_from_index = x_index-x_offset;
 if x_read_from_index < 1 %remove zero index errors
 x_read_from_index = 1;
 end
 y_read_from_index = y_index-y_offset;
 if y_read_from_index < 1 %remove zero index errors
 y_read_from_index = 1;
 end
 new_image_matrix_quad(x_index, y_index,:) = padded_fishy_image_quad(x_read_from_index, y_read_from_index,:);
 end %for y_index
 end %for x_index

 %Un-flip and set resulting quadrant sub-matrixes
 switch quad_count
 case 1
 sub_image_quad1 = new_image_matrix_quad;
 case 2
 new_image_matrix_quad(:,:,1) = fliplr(new_image_matrix_quad(:,:,1));
 new_image_matrix_quad(:,:,2) = fliplr(new_image_matrix_quad(:,:,2));
 new_image_matrix_quad(:,:,3) = fliplr(new_image_matrix_quad(:,:,3));
 sub_image_quad2 = new_image_matrix_quad;

 case 3
 new_image_matrix_quad(:,:,1) = flipud(fliplr(new_image_matrix_quad(:,:,1)));
 new_image_matrix_quad(:,:,2) = flipud(fliplr(new_image_matrix_quad(:,:,2)));
 new_image_matrix_quad(:,:,3) = flipud(fliplr(new_image_matrix_quad(:,:,3)));
 sub_image_quad3 = new_image_matrix_quad;

 case 4
 new_image_matrix_quad(:,:,1) = flipud(new_image_matrix_quad(:,:,1));
 new_image_matrix_quad(:,:,2) = flipud(new_image_matrix_quad(:,:,2));
 new_image_matrix_quad(:,:,3) = flipud(new_image_matrix_quad(:,:,3));
 sub_image_quad4 = new_image_matrix_quad;

 end %case quad_count
end %for quad_count

%combine sub-images
uncroped_unfished_image = [sub_image_quad3 sub_image_quad4; sub_image_quad2 sub_image_quad1];

%Crop the image to only include the field (upper right-hand quadrent)
% Std is 480 by 480.
% Origonal was 640 by 480
crop_error = -5;
unfished_image(:,:,1:3) = uncroped_unfished_image(81+crop_error:620+crop_error,81+crop_error:620+crop_error,1:3);
cropped_image(:,:,1:3) = unfished_image(220:540,210:520,:);
unfished_image = cropped_image;

 95

Section 9.3.2.3 – make_real_robot_paths.m

 This segment of code is used to plot a robot path over a sequence of images. The user

defines a sequence of images to use, and is then prompted to enter the position of the robot

on the image by using the mouse.

%make_real_robot_paths.m
%
% Purpose: Show a sequence of images and collect a corresponding set of
% robot path points generated from user input via the mouse...
%
% Record of revisions:
% Date Programmer Changes Made
% ==== ========== ============
% 8-8-2001 A. L. Nelson Origonal Code
% 2-28-2002 A. L. Nelson Modified for multiple robots
% 2-19-2003 A. L. Nelson Altered to make movie info for version 4 games
%
% Notes 1) Order of path following: red green red green.

clear robot_path;

axis on

%Set the file name strings so MATLAB can find the images to use
file_name_str = '3_11_03/test5';
%frame_prefix_string = [file_name_str, '/image']; %use fish-eye images
frame_prefix_string = [file_name_str, '/defished_image']; %use Defished images

%Set start and end image numbers
start_image_fraim_number = 5; end_image_fraim_number = 62;

%Use one or the other of these lines depending on file type
file_type_str = '.jpg';
%file_type_str = '.jpeg';
%file_type_str = '.bmp'; %big. try not to use

incr_intreval = 1;

%set number of robots that are used
number_of_robots = 2;

%are numbers padded or not...
padded = 0; %1 for winTV, 0 for server
pad_level = 4

for i = 1:pad_level
 pad_str(i) = '0';
end

disp('Order of path following: red green.');

%Collect path vectors
for robot_count = 1:number_of_robots
 path_index = 0;
 evalc(['clear robot', num2str(robot_count), '_path']);
 for wii = start_image_fraim_number:incr_intreval:end_image_fraim_number

 if padded
 count_str = pad_str;
 count_str(length(pad_str) - length(num2str(wii))+1:length(pad_str)) = num2str(wii)
 else
 count_str = wii;
 end

 96

 path_index = path_index + 1;
 disp(['frame number' ' ' num2str(wii)]);
 image(imread([frame_prefix_string num2str(count_str) file_type_str]));

 if path_index ~= 1
 evalc(['line(robot', num2str(robot_count), '_path(:,1), robot', num2str(robot_count), '_path(:,2))']);
 end

 switch robot_count
 case 1
 disp('click on RED robot #1 center')
 case 2
 disp('click on GREEN robot #2 center')
 end

 evalc(['robot', num2str(robot_count), '_path(path_index, :) = GINPUT(1);']);

 end
 disp(['Done with robot' num2str(robot_count), ' path: hit any key to continue'])
 pause
end

%Display last image with path lines
image(imread([frame_prefix_string num2str(count_str) file_type_str]));

%Set colors of the various paths that will be plotted
color_array(1,:) = [.7 0 0];
color_array(2,:) = [0 .7 0];

for robot_count = 1:number_of_robots
 evalc(['Hndl = line(robot', num2str(robot_count), '_path(:,1), robot', num2str(robot_count), '_path(:,2))']);
 set(Hndl, 'LineStyle', '--', 'Color', color_array(robot_count,:), 'LineWidth', 2.5);
end

%Save path data for figures and movies
% Note Matlab doesn't like dots (.) in path names
save([file_name_str '/path_and_movie_data'], 'robot1_path', 'robot2_path', 'start_image_fraim_number', 'end_image_fraim_number',
'file_type_str', 'frame_prefix_string', 'padded');

Section 9.3.2.4 – robot_movie_maker_ver4.m

 Using the sequence of images and the robot paths created for the images by

make_real_robot_paths.m, a MATLAB movie is created. In order for a movie to be made,

the file path_and_movie_data.m that was created when the robot paths were defined must be

in the same location as the images that are being used to create the movie. Once a MATLAB

movie has been created, it can be played using MATLAB or converted to AVI movie using

the MATLAB function movie2avi. Once in AVI format, the movie can be played using

Windows Media Player or another application.

%robot_movie_maker_ver4.m
%
% Purpose: Show a sequence of images and collect a corresponding set of
% robot path points generated from make_real_robot_paths.m
%

 97

%
% Record of revisions:
% Date Programmer Changes Made
% ==== ========== ============
% 8-8-2001 A. L. Nelson Origonal Code
% 2-28-2002 A. L. Nelson Modified for multiple robots
% 6-3-2002 A. L. Nelson Modified to play movies
% 2-20-2003 A. L. Nelson Modified for Version 4 movies
%
% Notes 1) Call with robot_movie_player_ver4
%
% 2) A file '/path_and_movie_data' must exist at file_name_str,
% generated by make_real_robot_paths.m

clear robot_path;

axis on
draw_paths = 1

%Set the file name string so MATLAB can find the images and the path information to use
file_name_str = '3_11_03/test5';
load([file_name_str, '/path_and_movie_data'])

%These variables are all now set by loading /path_and_movie_data (all saved from path tracking)
%frame_prefix_string =
%path_data_string =
%start_image_fraim_number =
%end_image_fraim_number =
%file_type_str =
%padded =

%Sets color of robot paths
color_array(1,:) = [.7 0 0];
color_array(2,:) = [0 .7 0];

incr_intreval = 1
number_of_robots = 2
pad_level = 4

for i = 1:pad_level
 pad_str(i) = '0';
end

 path_index = 0;
 for wii = start_image_fraim_number:incr_intreval:end_image_fraim_number

 if padded
 count_str = pad_str;
 count_str(length(pad_str) - length(num2str(wii))+1:length(pad_str)) = num2str(wii)
 else
 count_str = wii;
 end

 path_index = path_index + 1;
 disp(['Making frame number' ' ' num2str(wii)]);
 image(imread([frame_prefix_string num2str(count_str) file_type_str]));
 title(['frame number' ' ' num2str(wii)])

 if draw_paths
 for robot_count = 1:number_of_robots
 evalc(['Hndl = line(robot', num2str(robot_count), '_path(1:', num2str(path_index), ',1), robot', num2str(robot_count),
'_path(1:', num2str(path_index), ',2))']);
 set(Hndl, 'LineStyle', '--', 'Color', color_array(robot_count,:), 'LineWidth', 1.5);
 end
 end

 axis xy
 pause(.01)
 movie_frames(path_index) = getframe;
 end

 98

clf
frames_per_second = 1;
times_to_play = 2;
disp(['Done making movie. The movie will play ', num2str(times_to_play), ' times at ', num2str(frames_per_second), ' frames per second']);

movie(movie_frames,times_to_play,frames_per_second);

save new_movie movie_frames

movie(movie_frames); %plays MATLAB movie

break

%Display last image with path lines
image(imread([frame_prefix_string num2str(count_str) file_type_str]));

color_array(1,:) = [.7 0 0];
color_array(2,:) = [0 .7 0];

for robot_count = 1:number_of_robots
 evalc(['Hndl = line(robot', num2str(robot_count), '_path(:,1), robot', num2str(robot_count), '_path(:,2))']);
 set(Hndl, 'LineStyle', '--', 'Color', color_array(robot_count,:), 'LineWidth', 2.5);
end
title(['frame number' ' ' num2str(wii)])

axis equal
axis tight
axis off
axis xy

Section 9.4 – Parts List

 An extensive parts list and datasheets for several major components used in the

microphone sensor are included in this section. Specifications of the LEGO® multiplexer

used on the sheepdog are also included.

Section 9.4.1 – Microphone Sensor Parts

 Listed below are the components used to make one microphone sensor. Resistors and

capacitors were chosen based on their value and size, not ratings. For example, the 10000 pF

capacitor used for the tone decoder board is rated at 100V. This high voltage rating is not

needed for this application, but the capacitor was used because it was in stock and it met the

size and value requirements. All components were purchased from Digikey Corporation, and

the part numbers listed are the Digikey part numbers.

 99

Section 9.4.1.1 – Component List

Microphone Circuit Board Components (see Figure 5.16)

Quantity Part Description Digikey Part Number

1 Panasonic Omnidirectional Electret Condenser
Microphone Cartridge (WM-52B) P9970-ND

1 680 Ω Resistor (⅛ W, 1%, 0805 SMD) 311-680CCT-ND
1 3.3 µF Capacitor (6.3V ceramic X5R 0805) PCC1925CT-ND

Amplifier Circuit Board Components (see Figure 5.16)
Quantity Part Description Digikey Part Number

1 µA741 General Purpose Operational
Amplifier (8-SOIC) 296-11106-5-ND

2 1 kΩ Resistor (⅛ W, 1%, 0805 SMD) 311-1.00KCCT-ND
1 100 Ω Resistor (⅛ W, 1%, 0805 SMD) 311-100CCT-ND
1 10 kΩ Resistor (⅛ W, 1%, 0805 SMD) 311-10.0KCCT-ND
1 10 µF Capacitor (6.3V ceramic X5R 0805) PCC2225CT-ND

Tone Decoder Circuit Board Components (see Figure 5.16)
Quantity Part Description Digikey Part Number

1 FSK Demodulator/Tone Decoder (SO14) NJM2211M
2 0.1 µF Capacitor (25V ceramic X7R 0805) PCC1828CT-ND
1 0.47 µF Capacitor (16V ceramic X7R 0805) PCC1818CT-ND
1 56000 pF Capacitor (16V ceramic X7R 0805) PCC1809CT-ND
1 10000 pF Capacitor (100V ceramic X7R 0805) 399-1159-1-ND
1 5 kΩ Potentiometer CT20P502-ND
1 470 kΩ Resistor (⅛ W, 1%, 0805 SMD) 311-470KCCT-ND
1 10 kΩ Resistor (⅛ W, 1%, 0805 SMD) 311-10.0KCCT-ND
1 1 MΩ Resistor (⅛ W, 1%, 0805 SMD) 311-1.00MCCT-ND

1 XXX Ω Resistor used to set center frequency
(⅛ W, 1%, 0805 SMD) TBD

Table 9.1 Components used for the microphone circuit board

Table 9.2 Components used for the amplifier circuit board

Table 9.3 Components used for the tone detector circuit board

 100

Section 9.4.1.2 – Component Datasheets

 Portions of the datasheets for the major components used in the microphone sensor

are included below.

Section 9.4.1.2.1 – Panasonic Microphone [39]

 101

Section 9.4.1.2.2 – Texas Instruments Op-Amp [48]

 102

 103

 104

 105

Section 9.4.1.2.3 – New Japan Radio Tone Decoder [38]

 106

 107

 108

 109

 110

 111

 112

Section 9.4.2 – LEGO® Multiplexer

 The multiplexer used on the sheepdog was purchased from Mindsensors Robotics [1].

This three-channel active multiplexer allows for up to three LEGO® sensors to be plugged

into a single input port on the RCX. The circuit diagram of the multiplexer is shown in

Figure 9.18. There are some limitations to using this multiplexer. Only sensors that require

power can be connected to the multiplexer. For example, a light sensor or angle sensor can

be used with the multiplexer, but a touch sensor cannot. Also, if the multiplexer is not

connected to the RCX in the correct polarity, it will not work. When power the RCX is

turned on, only CH1 should receive power. Take the following steps to check for correct

polarity [“Active”]:

1. Connect the multiplexer to the RCX
2. Connect a light sensor to CH2
3. Switch on the RCX
4. If the light sensor is ON (red LED will be on), reverse the polarity of the RCX

connection by rotating it 180º

The technical specifications of the multiplexer are included in Table 9.4.

Figure 9.18 Circuit diagram of the 3-channel active multiplexer [1]

 113

Total power consumption 4 mW (< 3% of total power available)
Current consumption

(with no sensor connected) 500 mA

Voltage drop
(with Light sensor connected) 50 mV

Channel selection time 75 ms
Channel access logic Random access to any channel

Size (W x L x H) 2 by 8 by 2 plate with 2 by 4 block with plate at
b

Connector Standard Mindstorms electric connector plate on top of
a 2 by 8 for sensor connection

Devices used High reliability solid state SMT and low power
microcontroller

Table 9.4 Technical specifications of the three-channel multiplexer [1]

