
Abstract 

BRALY, JOHN CHRISTOPHER.  The Development of a Low-Cost and Robust 
Autonomous Robot Colony Using LEGO  Mindstorms.  (Under the direction of Dr. 
Edward Grant) 
 
 The late twentieth century marked the birth of urban search and rescue robots.  The 

act of rescuing victims from collapsed or damaged buildings is extremely dangerous for the 

humans involved.  After the attacks on the World Trade Center, researchers recognized the 

need for small robots with limited capabilities to be used in conjunction with more advanced 

robots for urban search and rescue.  This research has developed a low-cost, autonomous 

robot colony with limited sensor capabilities using the LEGO  Mindstorms development 

platform.  The study of this colony will provide insight into the group behavior of a 

marsupial robot colony used for urban search and rescue. 

 A microphone sensor was developed to facilitate communication among the robot 

agents that comprise the colony.  The incoming analog signal was amplified using a standard 

non-inverting operational amplifier configuration.  This amplified signal was input into a 

tone detection circuit.  This circuit was designed to provide a digital output to the LEGO  

robot if a single tone of a specific frequency was detected.  Other frequency tones have no 

effect on the circuit.  Using this sensor, the robots could be controlled with different 

frequency tones. 

 The task undertaken by the robots was a shepherding mission.  The goal of the 

sheepdog robot was to herd the sheep robot into a pen located at a fixed location.  A helper 

dog robot was added to assist the sheepdog when needed.  The interaction, as well as 

communication, between the sheepdog and helper dog was studied. 
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Chapter 1 – Introduction 

The study of cooperative animal societies helps to provide insight into group 

dynamics and behavior.  By studying the foraging behaviors of fish, the mob behavior of 

whip-tail wallabies, or the organization of primate colonies, researchers gain an in-depth 

knowledge of animal behavior.  Ants are one of the most studied biological systems.  Their 

social organization, methods of communication, and decision-making are some of the most 

sophisticated of any biological society [3].  Studying different biological societies serves as a 

model for mobile robot societies.  In fact, cooperative multi-agent robot society research was 

motivated by biological systems [31].  Many researchers have attempted to create robot 

societies that mimic animal societies. 

Section 1.1 – Project Motivation 

Mobile robotics research changed directions in the mid-1990s after two disasters 

stunned the world.  The Kobe earthquake in January of 1995 and the Oklahoma City 

bombing in April of 1995 resulted in massive devastation and a tremendous loss of life.  

Robotics researchers recognized that rescuers needed help when searching for victims 

trapped in the rubble of collapsed buildings.  The act of searching for victims is not only 

difficult, but also extremely dangerous.  Rescue workers face the possibility of gas leaks, 

explosions, and further collapse.  The use of mobile robots for urban search and rescue 

missions help reduce the risks faced by workers at the outset of the operation. 

One of the major problems faced by the robots at a search and rescue site is the 

overall size of the search robot.  Most robots that have the ability to perform complex tasks 

are rather large due to the extensive onboard sensor suite, the complex communication 

system, and numerous batteries.  Unfortunately, their size prevents them from searching 
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much of the search area.  For this reason, many are investigating the possibility of using 

small “micro-rovers” in tandem with the larger robots for search and rescue missions.  The 

larger robots will remain relatively unchanged except for having the smaller robots gather the 

sensory information.  The larger robot also transports the micro-rovers to the rescue site.  

This cooperative group of mobile robots has been termed “marsupial robots” because it is 

similar to the way a kangaroo mother carries her young.   

This research focuses on developing a marsupial-like robot colony using a low-cost, 

robust robot platform.  Instead of concentrating on creating the larger robot, several micro-

rovers are built to investigate ways of communicating with the team of robots.  This thesis 

presents background information regarding the LEGO® Mindstorms™ platform used to 

develop the mobile robots.  A description of the experiments performed on the colony and 

the results are then presented.  Finally, potential future research areas are suggested. 

Section 1.2 – Project Goals 

 The objectives of this thesis are to 

1. Provide a complete description of the LEGO® Mindstorms™ platform used 

to develop the robot colony. 

2. Investigate various communication schemes that can be used to provide 

instruction to the robot colony. 

3. Describe the design and construction of the robot colony, including additional 

hardware and software used. 

4. Establish a communication link between colony members and examine the 

interaction among team members during experimentation. 
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Section 1.3 – Thesis Outline 

 In Chapter 2, an extensive literature review is presented.  Cooperative, multi-agent 

robot societies are discussed, as well as biologically inspired research, LEGO® 

Mindstorms™ research, and robots used for urban search and rescue.  A complete overview 

of the LEGO® Mindstorms™ robot development platform is presented in Chapter 3.  In 

Chapter 4, different methods of communicating with the members of the robot colony are 

discussed.  Chapter 5 contains a description of the robot colony developed.  In Chapter 6, the 

experiments performed with the robot colony and the results of these experiments are then 

presented.  Chapter 7 contains concluding remarks and suggestions for future research.  

Finally, an extensive list of references is included in Chapter 8, and detailed descriptions of 

the hardware and software used are provided in the Appendix. 
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Chapter 2 - Literature Review 

In 1948 and 1949, while investigating his theories about the nervous system, W. Grey 

Walter built two autonomous robots to help him understand the operation of animal brains.  

Each Machina speculatrix robot had a vacuum tube that simulated two interconnected 

neurons.  These amplifier circuits connected two sensors, a photocell and a touch sensor, to 

the two motors [29] [50].  When the touch sensor was closed, one of the amplifier circuits 

oscillated, and the robot changed direction [29] [50] [51].  The two “tortoises” exhibited 

some intriguing behaviors, including the tendency “to explore the environment rather than to 

wait passively for something to happen” [50, pg. 126].  Other behaviors included the 

attraction to moderate light, the repulsion when exposed to bright light, mutual recognition 

(the robots would “flock” together when there was no outside stimulus present), prioritizing 

tasks (i.e. avoiding an obstacle instead of moving toward a light), and the inclination to seek 

environments with favorable conditions (i.e. moderate light) [3] [50].   

Walter then began to study whether or not his robots could learn.  He attached a 

circuit, the Conditioned Reflex Analogue (CORA), to his original robots creating Machina 

docilis.  CORA provided a link between either of the robot’s sensors (light or contact) with a 

sound stimulus.  Using this circuit, Walter trained his robots to come by first blowing a 

whistle and then showing the robot a light.  He then trained it move away from a loud sound 

by blowing the whistle and then triggering the contact reflex [29] [50] [51].  These 

experiments with Machina speculatrix and Machina docilis provided the foundation for the 

study of robot-robot and human-robot interaction. 

Prior to the 1980s, robotics researchers focused their efforts primarily on issues 

dealing with single-robot systems.  However, researchers began to shift their interests to 
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multiple mobile robot systems in the late 1980s [31].  In 1988, Fukuda and Nakagawa [17] 

proposed a robotic system that would be able to autonomously reconfigure its shape and 

software given a specific task.  This system is comprised of individual autonomous “cells” 

that have a single function and a small amount of intelligence, much like the individual cells 

of the body.  In the body, each cell works alone but can cooperate with other cells in the 

group to perform a specific task.   Gerardo Beni [9] discusses the idea of creating an 

autonomous robotic system in which the individual robots work together to accomplish an 

explicit task.  These simplistic robots do not have a central controller nor do they share 

memory, but when working together, they can accomplish complex tasks.   

Throughout the 1990s, several research themes emerged for multi-agent systems.  

Some of the most common themes include foraging for items, performing tasks (assembly or 

disassembly), maintaining formations while moving throughout an area, surveillance, 

transporting objects, path-planning, collision avoidance, and robot-soccer [3] [31].  Rybski 

and others [46] have developed a multi-agent system that can be used for reconnaissance and 

surveillance.  The system is comprised of a few large robots and several small “scouts” that 

serve as the eyes and ears of the operation.  The large robots function as supervisors, collect 

data from the scouts, and coordinate the behaviors of the scouts.  Researchers in Brazil [42] 

have developed two robots that perform a box-carrying task without having to explicitly 

communicate (no data flow between robots) with each other.  The determination of the 

robot’s role in the task is made by relying solely on local sensor data.  The research has 

shown that this method of communication is just as effective as explicit communication.  

Other researchers have investigated dynamic role assignment of multi-agent teams for 

various tasks.  Emery et al. [15] present several techniques for collaboration and coordination 
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of a team of robots that play soccer.  This approach allows for the reduction of interference 

among team members, as well as determining their role (i.e. offense or defense) based on 

their location on the field.  This eliminates the need for specialized players and allows all 

teammates to help each other if needed.  Chaimowicz and others [12] also use dynamic role 

assignment for a group of robots that cooperatively search and retrieve objects scattered 

throughout the environment.  This allows for adaptations to be made if an unexpected change 

in the environment occurs and results in improved overall efficiency.  Lynne Parker [41] has 

investigated how cooperative team performance is affected by robot team member awareness 

when performing a puck-moving mission.  Her research indicates that the awareness on team 

performance is a function of several factors, including team size, how well the effects of 

actions are sensed, the amount of work available for each team member, and the cost of 

executing redundant tasks.   She has also developed ALLIANCE [40], a software architecture 

that “facilitates fault tolerant, reliable, and adaptive cooperation among small- to medium-

sized teams of heterogeneous mobile robots, performing (in dynamic environments) missions 

composed of independent tasks that can have ordering dependencies” [40, pg 221].  The 

feasibility of this control architecture was demonstrated by performing a simulated hazardous 

waste cleanup with a team of mobile robots in the laboratory.  The research indicates that 

ALLIANCE improves the team robustness by continually monitoring the sensors of a single 

robot and then adapting the robot’s response based on environmental changes that have 

occurred and the actions of its teammates. 

Many researchers [3] [4] [13] [21] [31] [34] [41] acknowledge the benefits of using 

multiple-robot systems instead of single-robot systems.  Such systems are more cost effective 

since many smaller robots can be built for the same cost as one large robot.  Multi-agent 
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systems are also more redundant, and therefore more fault-tolerant, than a single-robot 

system.  If one robot fails, the others can still complete the task without any major problems.  

Also, with a team of robots, the sensor information of one robot can be shared with the 

others, allowing for more informed decisions to be made by individual team members.  

Finally, there is an improved system performance when several robots are used, allowing for 

divide and conquer techniques to be employed.  With multi-agent systems, several “tasks can 

be completed considerably more efficiently overall for a wide range of tasks and 

environments using groups of robots working together” [3, pg 359]. 

There are, however, several problems that can arise when using multiple robots [3] 

[34].  Interference can occur with too many robots and not enough work.  Problems can also 

occur when numerous robots are being used in confined areas.  Team members can 

unintentionally interfere with each other in this situation.  It is also difficult for a robot to 

know when it or another team member is being unproductive.  Communication between team 

members is also a problem area with multi-agent systems.  Specialty hardware, extra 

processing, and more power are required for successful communication.  Also, noisy 

channels and signal strength can affect system performance.  Noisy channels can degrade the 

signal to the point where the message is misunderstood or not even received at all.  Signal 

strength is especially important when sending distress signals.  Too weak of a signal might 

result in it not being heard, while too large of a signal might cause the entire colony to 

provide assistance.  For successful operation, a robot must know what its team members are 

doing.  Without communication between robot team members, as well as an appropriate 

sensor suite, robots may compete against each other and reduce overall system performance.  

Nevertheless, these problems can be overcome with careful planning by the system designer. 
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The multi-agent robot systems research that emerged at the end of the 1980s and 

continued through the mid-1990s was inspired by biological systems and “the collective 

intelligence demonstrated by social insects” [31, pg 7].  An ant colony provides a good 

example.  The colony is comprised of hundreds of ants, each with a specific duty.  Yet a 

group of these ants can work together to move a dead earthworm from one place to another 

[31].  Russell et al. [45] created a robotic system that replicates the way ants mark the trail 

between their nest and a food source (both ingoing and outgoing).  Like ants, the robots in 

this system perform navigation tasks by leaving and detecting trails of volatile chemicals.  

The researchers suggest that this type of system could be used by a group of cleaning robots 

to mark an area of the floor that has already been cleaned.  At the University of Strathclyde 

in Glasgow, Scotland, Lambert [28] and Russell designed and built autonomous robots to 

imitate the behavior of a sheepdog and a sheep.  The primary goal of their project was to 

have the sheepdog herd the sheep into a pen located at an arbitrary location while 

maintaining the natural behaviors of both the sheep and sheepdog.   

The dog was designed to round up any sheep in the “field” and corral them into a pen 

without any external assistance from a “shepherd” or another dog.  It was also designed to 

identify the pen and sheep and to calculate the distance and direction to each object.  The 

sheep was designed to identify the dog and other sheep (if any) and also establish the 

distance and direction to each object.  In order to accomplish the goal of rounding up the 

sheep while maintaining natural behavior, the dog was allowed to travel at a faster speed than 

the sheep.  Both robots were designed to detect and avoid collisions with objects in the field.  

In addition, both the sheep and sheepdog were to be identical, with the exception of the 
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software used to control the two robots.  Finally, they were to operate over as large of an area 

as possible. 

The behavioral model of the sheep consisted of three parts:  graze, flock, and flee.  

First, the sheep would move within the field in a random way, thus appearing to graze.  If the 

sheep detected the dog at a distance, it flocks towards other sheep if they are not close to the 

dog.  If the dog moved too close to the sheep, it would panic and move away at full speed.  

The behavioral model of the dog is made up of four parts:  finding the pen, locating the 

sheep, herding the sheep towards the pen, and funneling it into the pen.  First, the dog would 

search for the pen.  Once the pen was located, the dog would search for the sheep.  When it 

was located, the dog moves towards the sheep.  It would move around the sheep to a position 

where the sheep is between itself and the pen.  This caused the sheep to move away from the 

dog and towards the pen.  Once the dog had moved the sheep near the pen, it would the force 

the sheep into the pen. 

Combining the biologically inspired multi-robot systems research of the mid-1990s 

and the need to help rescuers during urban search and rescue missions resulted in the 

development of marsupial robots.  “Urban search and rescue (USAR) focuses on locating and 

extracting people trapped in collapsed or damaged structures.  Rescuers are under extreme 

time pressure; after 48 hours, victim mortality drastically increases owing to exposure and 

lack of food, water, and medical treatment” [35, pg 14]. Marsupial robots are simply a group 

of robots in which there is a large “mother” robot that carries at least one smaller “daughter” 

robot, similar to the way a kangaroo mother carries her young.  The mother robot provides 

for the daughter robot in many ways.  It protects the daughter robot by transporting it from 

one location to another.  It also provides battery power to the daughter robot, by either a 
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tether or a recharging station.  It can also help the smaller microrover during its mission by 

acting as a leader or manager.  The mother can collect the sensor data from the daughter 

robot and use it to make decisions that pertain to the task at hand.  It can also serve as a 

communication relay station between the microrover and the human operator.  Finally, the 

mother robot can rescue the daughter robot if it gets into trouble [34] [35] [37]. 

Traditionally, only highly trained individuals and dogs were used in USAR missions.  

However, the idea of using robots to help rescue survivors came about in 1995.  On January 

17, 1995, an earthquake centered near the area of Kobe and Osaka, Japan registered 7.2 on 

the Richter scale.  This earthquake killed 5,100 people, injured 26,800 others, and caused 

approximately US$100 billion damage.  Soon after the earthquake, the Tokyo Fire 

Department’s Fire Science Laboratories began to develop a line of robots that could be used 

in urban search and rescue applications.   On April 19, 1995, 168 people were killed and 

more than 500 people were injured in the bombing of the Alfred P. Murrah Federal Building 

in Oklahoma City, OK.  John Blitch, a Masters of Science student of Robin Murphy at the 

Colorado School of Mines, served as a rescue worker.  When he returned, he and Murphy, an 

expert researcher in the field of USAR, decided to focus their research efforts on developing 

robots that could be used to help urban search and rescue missions [14].  Others [26] also 

began researching the use of robots for urban search and rescue in the late 1990s.  A 

distributed team of mobile robots without a central supervisor was developed to search for an 

object and then move the object to a determined area.  Using the implemented algorithm, 

each robot searches for the object concurrently, signals to other team members once the 

object has been found, and then cooperatively moves the object once it has been found. 
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One of the major problems with USAR research is the lack of realistic field studies.  

Researchers at the University of South Florida have teamed together with the local fire 

department [10] [11] [14] [36] to test their robots in a staged search and rescue environment.  

However, these staged environments can only identify potential problems and validate 

hypothesized situations that may be encountered during an urban search and rescue mission.  

Unstaged USAR environments are needed in order to determine if the current research is 

moving in the right direction.   After the attacks on the World Trade Center in New York 

City on September 11, 2001, robots were used in an actual search and rescue mission for the 

first time.  Soon after the attacks, Blitch organized a group of robot researchers and 

manufacturers to help with the search and rescue mission.  The group was at the site for 

about four weeks, and found ten victims (more than 2% of all victims discovered).  This 

experience helped to validate that the USAR research is moving in the right direction [10] 

[14]. 

There are several benefits of using robots, especially marsupial robot teams, for urban 

search and rescue efforts.  Most importantly, rescue situations are extremely dangerous for 

those involved.  There is a high potential for gas leaks, explosions, and further collapse.  

Robots can send environmental conditions of the search area, such as the presence of harmful 

gasses and seismic data, to rescue workers.  Using robots can reduce the risks faced by 

humans at the outset of the rescue mission.  Also, rescue workers must be very deliberate 

while searching for victims in order to remain safe.  In some situations, workers might be 

required to leave an unstable site until it becomes safe to return.  Robots can perform 

searches at a faster pace without feeling the fatigue and stress a human would feel [35] [36].   
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Marsupial robots are particularly useful in search and rescue situations.  A marsupial 

robot team is specifically designed for very small robots to be carried to a site by a larger 

robot.  The size of the daughter robot allows it to move through small voids that larger robots 

and humans cannot fit into.  Also, the daughter robot does not have to worry about sending 

sensory information back to the rescue workers.  This is performed by the mother, resulting 

in the battery power of the daughter being used primarily for the search.  Murphy’s 

experiments show that a marsupial team can perform better than individual robots can when 

it comes to reaching destinations and arriving at these destinations quicker over longer 

distances.  Murphy is also investigating using robots as part of the marsupial team that can 

change their shape depending on the environment, as well as the human-marsupial team roles 

during a USAR mission [35] [37]. 

Lambert and Russell’s experiment was replicated in 2002 by graduate students at 

North Carolina State University using LEGO® Mindstorms™ [8].  Using primarily LEGO® 

Mindstorms™ parts, a sheep and sheepdog were built.  The sheepdog was able to herd the 

sheep into the pen without the aid of any additional processing power or human intervention.  

This project showed that the LEGO® Mindstorms™ were a feasible platform to develop 

autonomous mobile robots.  Many others have used LEGO® Mindstorms™ effectively in 

their research.  Michael Gasperi has recreated Grey Walter’s tortoises using LEGO® 

Mindstorms™ [19].  Kumar [27] uses LEGO® Mindstorms™ as an integral part of his 

undergraduate artificial intelligence (AI) course.  The robot development kit gives students 

the opportunity to focus their attention on solving AI problems, and spending time building 

their robot.  The kit is also relatively inexpensive, averaging about $200, and can be found at 

local toy stores or online.  This allows for most of the students to purchase their own set.  
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Researchers in Japan [52] have performed experiments that evolve the morphology and 

controller of a LEGO® robot.  Iversen et al. [25] present findings on the automatic 

verification of real-time control programs running on LEGO® Mindstorms™ system.  They 

demonstrate their verification techniques by building a robot that can sort LEGO® bricks by 

color.  These researchers show that LEGO® Mindstorms™ can be used as an effective 

platform to develop fairly complex, but inexpensive, robots. 
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Chapter 3 – The LEGO® Mindstorms™ Platform 

Previous research was conducted to determine the feasibility of using the LEGO® 

Mindstorms™ Robotics Invention System 2.0 as a platform for autonomous mobile robot 

development [8].  During this project, two mobile robots were created to mimic the behavior 

of a sheep and a sheepdog.  The results of this research indicated that the LEGO® 

Mindstorms™ could serve as a capable platform to use for the design and construction of 

mobile robots without having to make any modifications to the original system.  The 

capabilities and limitations of the LEGO® Mindstorms™ platform will be discussed in the 

following section.   

Section 3.1 – RCX and Programming 

At the heart of the LEGO® Mindstorms™ Robotics Invention System is the robotic 

command explorer, or RCX (Figure 3.1).  Each RCX is powered by a total of six AA 

batteries.  The major components of the RCX are the Hitachi H8 microcontroller with 32 KB 

of RAM, three output ports used to power the motors, 

three input sensor ports, and a liquid-crystal-display 

(LCD) screen.  It also contains an infrared transmitter 

and receiver, which can be used to communicate with 

the base station plugged into a computer or another 

RCX block [44] [49].  A Stanford University 

graduate student, Kekoa Proudfoot, was the first 

person to disassemble the RCX and fully document the internal components [49].  A picture 

of Kekoa’s disassembled RCX is shown in Figure 3.2. 

Figure 3.1 LEGO® Mindstorms™ RCX
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The lack of sensor input and motor output ports are the most serious limitations of the 

RCX.  Only three sensors can be used with the RCX at one time.  In order to build a 

functional autonomous robot, more than three sensors are often needed.  However, the lack 

of motor ports does not hinder development as much.  For most applications, the three motor 

output ports will suffice.  For most applications, more than three motors will result in too 

much weight, and the robot will not be able to move very well.  To allow for more than three 

sensors to be connected to the RCX, several sensors can be connected to the same port by 

multiplexing them together.  By changing the sensor type from light to touch and then back 

to light, the RCX can cycle through the sensors.  This action is similar to cycling though 

outputs of a standard multiplexer using a clock.  As the RCX changes from one sensor to 

another sensor, it does not only just switch the signal to the sensor, but it also switches the 

power to the sensor off.  This results in a conservation of battery power, since only one of the 

Figure 3.2 Disassembled RCX [44] 
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multiplexed sensors will be on at a time [1].  Other similar expansion techniques for more 

input and output ports have been found in online literature [20]. 

Another drawback is the limited amount of onboard memory (32 KB), of which about 

half is taken up by the firmware.  The firmware is used to interpret the downloaded programs 

and execute the processor machine code [49].  A total of five programs can be loaded onto 

the RCX at one time.  However, these programs can be no larger than 6 KB and must be 

limited to the use of up to 32 variables [27].  This limited amount of memory for a program is 

not a severe drawback since typical RCX programs tend to be only hundreds of bytes long 

[5].  This shortcoming does not prevent the development of autonomous mobile robots. 

The visual programming environment for the LEGO® Mindstorms™ Robotics 

Invention System 2.0 poses a slight problem when developing robots using this platform.  In 

order to write a program, blocks are arranged using the supplied PC software [49].  This 

method of programming may be perfect for the audience the product was designed for 

(children ages 12 and up).  It is, however, difficult to implement advanced algorithms using 

this technique.  The supplied programming environment does not support recursion and 

nested control constructs [27].   Fortunately, alternative languages and cross compliers have 

been developed for more advanced programming.  These options include Not Quite C (NQC) 

[5] [6], pbForth (a variant of Forth) [23], leJOS (JAVA based) [47], Visual Basic [22], Visual 

C++ [7], and Ada [16]. 

For this project, all code was written in the NQC programming language (Beta 

Release – 2.5 a5) due to the familiarity of the C language by the researcher.  NQC, developed 

by Dave Baum, allows the user to write programs using an ordinary text editor in a known 

dialect.  The compiler then converts the NQC code into a language that can be downloaded 
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and understood by the RCX firmware.  Using this technique to write programs, rather than 

the LEGO® visual programming technique, gives the user more control over the RCX 

hardware [49]. 

NQC supports traditional C function definitions and commands (such as for and while 

loops) with additional commands designed specifically for the LEGO® Mindstorms™ kit.  

These functions include commands to define sensor ports, to define motor directions and 

power levels, to play various sounds, and to send and receive simple messages and serial data 

using infrared [6].  The major drawback to using infrared communication between two 

different RCX blocks is that the message cannot be received from all directions.  In order for 

an RCX block to receive a message, its receiver must be pointing directly at the transmitter 

of the other RCX block that is sending the message.  There is also extremely large power 

consumption when sending a message, resulting in a battery lifespan much shorter than 

normal.   

One aspect of NQC that is different from traditional C is the task code block.  Since 

the RCX supports multi-tasking, “an NQC task directly corresponds to an RCX task” [6, pg. 

50].  The RCX can support up to 10 tasks running simultaneously, including main, which is a 

task in NQC rather than a function as it is in the C programming language [6].  Tasks have a 

distinct advantage over traditional functions because, once started, they run continuously 

until a stop command is issued.  Functions only execute once when called, making tasks 

more convenient for procedures that must run constantly. 

Section 3.2 – Motors and Gearing 

Next to the RCX, the motors, gears, and the specialty LEGO® bricks are the most 

important components of the LEGO® Mindstorms™ kit.  Without them, a robot could not be 
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built.  The Robotics Invention System contains numerous gears of varying sizes that allow 

for many different ways to “gear up” (increase rotational speed) or “gear down” (decrease 

rotational speed) the motor.  It also contains several unique LEGO® blocks that can be used 

with the motors and gears to create an assortment of moving parts. 

The two motors (one is shown in Figure 3.3) included effectively provide the 

necessary power needed to develop a functional LEGO® robot.  Unfortunately, the LEGO® 

Mindstorms™ kit only comes with two motors, 

which makes it difficult to create more complex 

robots.  Individual motors, however, can be 

purchased if they are required [43].  The motors 

can be driven forward or backward in the on 

mode, not move at all in the off mode, or be 

allowed to “coast” in the floating mode.  The 

floating mode is synonymous to neutral for an automobile.  Each motor can operate at one of 

eight power levels.  The RCX uses pulse-width modulation to create the intermediate power 

levels using a digital signal.  Varying the widths of the pulses creates the intermediate power 

levels.  The RCX sends pulses every 8ms with the width of the lowest power level being 1ms 

and the width of the highest power level being 8ms.  The motor is constructed such that an 

internal flywheel is used to keep the motor spinning until the next pulse is supplied [5]. 

In 2002, LEGO® upgraded the motors supplied with the Robotics Invention System.  

Due to the fact that some of the kits were purchased prior to the change, the new (LEGO® 

part number 43362) and old (LEGO® part number 71427) motors will be discussed.  The 

two motors are almost identical, but there are slight differences.  Most noticeable is the 

Figure 3.3 LEGO® Mindstorms™ motor 
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weight of the two motors.  The pre-2002 motor weighs about 42 grams as compared to about 

28 grams of the new motor.  This decrease in weight will help when larger, more complex 

robots are being developed.  Another less noticeable change is the addition of a PTC resistor 

that protects the motor from over-current by increasing the resistance if the temperature rises, 

thus limiting current.  Based on Phillipe Hurbain’s experiments, the old motor performs 

slightly better, but the weight of the new motor can justify its use [24]. 

Section 3.3 – LEGO® Sensors 

The following section describes the sensors included in the LEGO® Mindstorms™ 

Robotics Inventions System and the Ultimate Accessory Set.  The usefulness of the sensors 

will be discussed along with ways to improve the 

effectiveness of the sensors.  In addition to the 

extra sensors, the Ultimate Accessory Set also 

contains a remote control, a LEGO® lamp (Figure 

3.4), and extra LEGO® building materials.  The 

LEGO® lamp does not produce much light and is 

not very useful in a lit room.  It might, however, 

be useful if the robot is operating in a dark environment.  The remote control can be used to 

manually drive the motors, send a message to the RCX, or select which of the five programs 

to run.  It is particularly useful since the robot can be started from a distance and prevents the 

user from getting in the way.  The infrared receiver on the RCX must be pointed at the 

remote control in order for the remote to work. 

 

Figure 3.4 LEGO® remote and lamp from 
Ultimate Accessory Set 
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Section 3.3.1 – Light Sensor 

The two major components of the LEGO® light sensor (Figure 3.5) are a red light 

emitting diode (LED) and a phototransistor.  The phototransistor responds to the amount of 

incoming light, whether it is the amount of light being produced by a source or the amount of 

reflected light produced by the red LED [5].  Because of these two components, it is one of 

the most versatile LEGO® sensors.  For example, it can be used on a robot to measure the 

amount of ambient light in a room 

and perform various tasks 

accordingly.  It can also be used to 

determine the distance from a 

particular light source (by measuring 

the amount of incoming light) or the 

distance to an object (by measuring 

the amount of reflected red light).  

However, measuring the distance to 

an object using the light sensor is not 

very effective unless the object is very close to the sensor.  Finally, it can be used as a sensor 

that detects different colors by measuring the amount of reflected red light produced by the 

LED, since different colors reflect a different amount of red light. 

If the red LED is not needed for the desired application, it can be “eliminated” to 

increase the sensitivity and performance of the light sensor.  The light sensor can be 

disassembled and the red LED can be physically removed, resulting in improved 

performance [2] [20].  This method is not recommended since permanent damage to the 

Figure 3.5 LEGO® Mindstorms™ sensors from left to 
right: rotation sensor, lamp, light sensor, 
and touch sensor
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structure of the sensor will occur, and possible damage to the sensor circuitry could result, 

rendering it useless.  Another method that does not require any disassembly of the sensor has 

been performed [24].  Inserting a tiny piece of black plastic between the red LED and the 

phototransistor effectively blocks the red light and prevents it from being detected by the 

phototransistor.  A 2x1 LEGO® Technic block can then be placed in front of the light sensor 

to secure the plastic.  A small piece of electrical tape might be required to attach the plastic.  

Pictures illustrating this procedure are shown below in Figure 3.6. 

 

 

 
With this configuration, the light sensor is not as susceptible to the effects of ambient 

light.  It also makes the sensor extremely directional by restraining the detection of incoming 

light to the light that enters through the hole in the Technic brick.  Tests have shown that 

when using this design, infrared light can be detected at distances up to twelve feet with the 

room lights on.  This is quite impressive when compared to the results achieved when using 

standard cadmium sulfide (CdS) photoresistors. 

One important factor to remember when using the light sensor is that the robot will 

need to be calibrated each time it is used.  Each environment has a different amount of 

ambient light.  Even if a Technic brick is placed in front of the sensor as shown above, 

Figure 3.6 Improving light sensor sensitivity.  Use a small piece of black plastic 
to block the red LED emitter from the light detector (far left picture). 
Insert the plastic in between the red LED on the left and the light 
detector on the right (center picture).  Put a 2x1 LEGO® Technic 
brick in front of the light sensor to secure the “filter” and allow the 
light detector to sense light through the hole (far right picture) [24]. 
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calibration might be required in order to work properly.  Also, the light sensor requires power 

to operate.  This means that as the batteries become weaker, the power supplied to the sensor 

decreases.  The decrease in power will also result in the need for recalibration [5]. 

Section 3.3.2 – Rotation Sensor 

The LEGO® rotation sensor (Figure 3.5) is not included in the Robotics Invention 

System.  It comes in the Ultimate Accessory kit, or it can be purchased separately from 

LEGO®.  This sensor measures the amount of rotation relative to a base position.  The base 

position is defined, by default, as the position of the sensor when the program is started.  

However, a special command can be issued during operation to change the base position 

from the default position to the current position of the sensor [5].   

The base position of the sensor is given the value of zero.  After one complete 

revolution, the value of the sensor is 16, which corresponds to 22.5° per count.  To increase 

the accuracy of the measurement, gear reduction can be used [5].  The sensor also counts 

down.  For example, if the sensor completes one complete revolution by rotating in one 

direction (i.e. clockwise), the value will be 16.  If it then completes one revolution in the 

opposite direction (anti-clockwise), then the value of the sensor will be zero.  If it then makes 

another revolution in the anti-clockwise direction, the value of the sensor will be -16.  The 

rotation sensor ranges from -32767 to +32767 [19]. 

The major drawback of the rotation sensor is that it performs very poor when the 

speed of rotation is slow.  Experiments have shown that the sensor skips values when it is 

rotating slowly, resulting in an error of 22.5° per skipped value.  In some applications, this 

might not be a problem.  Yet for most applications, this large error would result in failure.  

Philippe Hurbain has disassembled his rotation sensor, and after performing an in depth 
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analysis to determine exactly how it works, has determined that if a capacitor is added to the 

circuit, the sensor no longer skips values at low speeds [24].  An easier way to remedy this 

problem is to put the sensor on the shaft of the motor before any gear reduction is added.  By 

doing this, the motor speed can be set high enough so the sensor does not skip any values.  

Gear reduction then can be added to increase the accuracy of the sensor.  This method does 

not risk damage to the sensor by attempting to take it apart. 

Section 3.3.3 – Touch Sensor 

The LEGO® touch sensor (Figure 3.5) is the simplest of all the LEGO® sensors.  

When the button on the front of the sensor is not pressed, the circuit is open and the output 

value is LOW.  The output value changes to HIGH when the button is pressed and the circuit 

is closed.  These sensors can be connected to the same input port in a variety of ways to 

create either an AND configuration or an OR configuration.  If connected in the AND 

configuration, two LEGO® lamps can be used to determine which touch sensor has been 

pressed [20].  When the sensors are connected in the OR configuration, the RCX cannot 

distinguish which sensor is being pressed [5].  The touch sensors can be used to construct 

“bumpers” that will result in the robot performing a certain task, such as reversing its 

direction, if it runs into an obstacle. 

Section 3.3.4 – Other LEGO® Sensors 

Besides the sensors that are included with the Robotics Invention System and the 

Ultimate Accessory kit, there are numerous sensors available that interface with the RCX.  

Several companies sell sensors that can be used with the RCX.  PITSCO (the LEGO® 

educational division) sells all the sensors previously discussed, as well as a temperature 

sensor [43].  DCP Microdevelopments also makes a variety of sensors that will interface with 
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the RCX, including a humidity sensor, a pH sensor, a pressure sensor, and a sound level 

sensor [30]. 

There are also many LEGO® enthusiasts that have built “homebrew” sensors using 

LEGO® blocks, standard electronics, and a bit of ingenuity.  Michael Gasperi has an 

extensive list of sensors built by hobbyists, including an angle sensor, a rotation sensor, a 

motor speed/torque sensor, a differential light sensor, a pyroelectric motion sensor, and an 

ultrasonic range sensor [20].  Philippe Hurbain has developed several sensors including a 

color sensor and a wire guidance sensor that allows a robot to follow a wire using an AC 

current flow to generate a magnetic field [24]. 
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Chapter 4 – Robot Communication 

 One if the most challenging aspects when developing a cooperative robot team is 

establishing a communication link between team members.  The major problem is that a 

communication system is not reliable at all times.  For example, noisy channels can cause a 

robot to miss a message or interpret it incorrectly.  Also, in some environments, electronic 

countermeasures may be used to block communications between team members.  

Malfunctioning receivers can also cause a robot to miss a message.  Other important factors 

regarding a communication system are range, signal strength, and type of communication 

(direct communication or communicating through observation) [3].  In this chapter, the two 

primary techniques of establishing a communication link between the LEGO® robots that 

were investigated are discussed. 

Section 4.1 – Infrared Light 

 Two methods of infrared communication between robots were explored.  The first 

method consisted of using the infrared transmitter and receiver on the RCX.  The second 

method was to pulse infrared light at different frequencies, each corresponding to different 

messages. 

Section 4.1.1 – RCX Infrared Transmitter/Receiver 

 The first communication scheme that was investigated was using the RCX infrared 

transmitter and receiver to send messages to the robots.  The RCX has the ability to receive 

simple 8-bit messages ranging from 0 to 255.  It continually monitors for incoming messages, 

remembering the most recently received message.  If no message has been received, the 

default value stored in memory is zero [5] [6].   
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The basic idea behind this method of communication is each numbered message 

corresponds to a different instruction.  With 255 possible messages (since the default value 

for no received message is zero), many different instructions can be given to the robots.  

Another benefit to using this communication scheme is that no additional hardware or 

software is required.  The RCX has the ability to send and receive infrared messages by using 

predefined NQC functions. 

Unfortunately, there are major drawbacks to using this communication scheme.  First 

of all, in order to receive a message, the robot must point the receiver directly at the 

transmitter.  The receiver is not omnidirectional.  If the transmitter is at a fixed orientation, 

this is not that big of a problem.  The robot could easily orient itself so it could receive a 

message.  It would either have to know when it is being given an instruction, or check at 

regular intervals to see if a message is being sent.  If the transmitter were allowed to move, it 

would be extremely difficult to align both it and receiver in order to detect a message.  

Another problem is the amount of power required to send an infrared message.  If an RCX is 

used to transmit the message, the batteries are drained very rapidly, even when using the low-

power transmission setting.  On the other hand, if the infrared tower used to download 

programs onto the RCX is employed to send messages, the power consumption is not an 

issue.  Using the infrared tower, however, does not allow for communication among team 

members, which is desired.  Due to this, as well as the high power expenditure that occurs 

and the fact that messages cannot be received at any orientation, the built-in RCX infrared 

transmitter was not used to communicate between robots. 
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Section 4.1.2 – Pulsing Infrared Light 

 By transmitting infrared light at different frequencies, different messages can be sent 

by changing the frequency of the transmitted signal.  When the robot detects a signal of a 

specific frequency, the instruction associated with that frequency could then be executed.  

Detection of the infrared signal can be accomplished by building an array with several 

detectors designed to sense infrared light of a specific wavelength.  Each array element 

would detect a different wavelength, and thus correspond to a different instruction.  A block 

diagram of this detection scheme is shown in Figure 4.1.  In order to tell which array element 

was sensing the signal, the output of 

each element would be sent to a 

multiplexer before being interfaced 

with the RCX.  If a multiplexer is 

used, a clock is required to cycle 

through each input.  Either a 555-

timer circuit or RCX sensor input 

will provide an adequate clock for the 

multiplexer.  In order to use the RCX 

sensor input as a clock, the sensor 

type must be changed from touch to light and back to touch over a pre-determined duration.  

The only problem with using this configuration is that two sensor inputs would be used, 

leaving only one for the remaining sensors.  For this reason, the more desirable configuration 

to use is the 555-timer circuit. 

Infrared Detection
Array

with N elements

Infrared signal
with frequency fo

N

N:1 Analog
Multiplexer

RCX Sensor
Input 2

RCX
Sensor
Input 1

Hz

555-timer
Circuit

Use either the 555-
timer circuit or RCX
to generate a clock

Figure 4.1 Block diagram of infrared detector [8]
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 The easiest way to transmit an infrared signal at a specific frequency is by using the 

555-timer, as shown below in Figure 4.2.  The frequency of the output signal can be adjusted 

by changing R1, R2, or C1.  The frequency is 

related to these circuit elements by 

121 )2(
44.1

CRR
f

+
=  [8].  The obvious 

problem is that in order to change the 

emitted frequency, the circuit elements have 

to be changed.  To make it simple to change 

the frequency, R2 and C1 should remain 

constant while R1 should be adjustable.  

This circuit configuration still requires an 

operator to change the emitted frequency.  Therefore, it cannot be used for robot-to-robot 

communication.  As with the RCX infrared transmitter, this infrared transmitter must be 

aligned with the detector in order to receive the signal.  For this reason, as well as the 

inability to send signals at different frequencies automatically, this method is not used. 

Section 4.2 – Audible Sound 

 The second technique for establishing a communication link between robots is by 

using audible sound.  The major advantage to using sound over infrared light is that the 

sound can be detected from any direction, especially when using an omnidirectional 

microphone.  In addition, if there is an object blocking the infrared signal, the receiver will 

not detect the signal.  However, this is not the case with an audible sound signal.  The 

microphone can be orientated away from the sound source and still detect the sound.  

Another benefit of using audible sound for communication between the robots is the fact that 

Figure 4.2 Block diagram of infrared emitter [8]
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the RCX has sound generating capabilities.  The RCX can play tones of a specific frequency 

and duration using NQC commands [6].  This prevents the need for additional hardware 

required to generate tones.  It also allows for the robots to communicate with each other 

instead of just having a human operator issuing instructions.   

There are a few drawbacks to using sound.  Weak signal strength or noise could cause 

problems when receiving the sound signal.  However, with proper amplification and filtering, 

these problems can be reduced significantly.  Also, in hostile environments, audible sound 

used to communicate between robots will not prevent the robots from being detected by the 

opposition.  Therefore, it is not a viable option for robot-to-robot communication. 

The idea of using sound as of method of communicating between robots stemmed 

from the research conducted in the Center for Robotics and Intelligent Machines (CRIM) 

during the summer of 2002 regarding the development of a flexible acoustic array [32].  This 

large-scale acoustic array was designed to use triangulation and beam-forming methods in 

order to determine the location of and track a sound source.  From this research, the concept 

of creating a scaled-down version of this acoustic array that could be used on an autonomous 

mobile robot was developed.  The smaller version of the large-scale acoustic array could also 

be used for locating the position of a sound source and for tracking sounds, as well as for 

communicating with other robots.  For the purpose of this research, a “one-element array” 

was developed in order to investigate the communication among robots.   
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Chapter 5 – LEGO® Robot Colony 

 The robot colony developed for this project stems from previous research that 

resulted in the creation of LEGO® robots that mimic the behavior a sheep and sheepdog.  For 

that project, the goal of the sheepdog was to locate the sheep and herd it into a pen.  Every 

movement made by the dog depended on its orientation relative to the sheep and the pen.  

The overall “thought process” of the dog was to move around the sheep such that the sheep 

was between itself and the pen.  Once this occurred, the dog would then attempt to force the 

sheep into the pen.  The pen is located in the corner of an 8’ x 8’ “field” enclosed by black 

walls.  The new robot colony consists of two additional agents, as well as the sheep and 

sheepdog.  While the overall task of the robots that comprise the new colony remains the 

same (for the sheepdog to force the sheep into the pen), the major objectives of this project 

are quite different. 

Section 5.1 – Robot Colony Agents 

 This robot colony consists of four agents, each with a different task.  Two agents, the 

sheep and sheepdog, have already been introduced.  The last robot that comprises this multi-

agent robot colony is essentially a “helper dog” robot.  As indicated by its name, the purpose 

of this robot is to help the sheepdog when needed.  The final agent of the colony is a human 

operator, or “shepherd.”  The human oversees the mission and provides guidance and 

instruction when needed.  The role of these agents, as well as their design, will now be 

discussed in detail.  Pictures of each robot are included in the Appendix. 
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Section 5.1.1 – Robot Design and Sensors 

 This section provides an in-depth description of several design issues that were 

present during the development of this robot colony.  For the most part, the basic design of 

all three robots is the same.  There are, however, some differences among the three.  The 

basic design of the robots will be presented first, followed by specific details of each robot. 

Section 5.1.1.1 – Basic Robot Design 

 For each robot, two motors located at the rear are used to drive and steer the robot.  

The drive motors are shown in Figure 5.1.  For this application, the gear ratio is 1:1.  No 

special gearing configuration was required for this design.  By rotating the motors the same 

direction, the sheep will move either forward 

or backward.  If the motors are rotated in 

opposite directions, the robot will effectively 

turn left or right.  This method of “turning” 

the robot actually causes it to spin.  In fact, it 

is based on the way a tank turns.  The original 

design included tank treads, but the weight of 

the robot increased with the addition of extra components and resulted in difficulties with 

turning.  For this reason, the tank treads were removed.  Since there is no caster on the robot, 

the two front wheels have no tires.  By not putting tires on the wheels, they will slide along 

the floor when the robot spins, resulting in an effective method of turning the robot.  

A third motor is used to rotate a LEGO® light sensor on the sheep and sheepdog.  

The light sensor is attached to a shaft that is “connected” to the motor shaft using a worm 

gear.  This allows the motor to rotate at high speeds, while rotating the light sensor at a much 

Figure 5.1 Left and right rear drive motors 
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slower speed.  A picture of the scanner is shown 

in Figure 5.2.  The LEGO® rotation sensor is 

mounted on the shaft of the motor.  It monitors 

the position of the light sensor.  Approximately 

4.25 rotations by the motor correspond to 

rotating the light sensor by 180º.  By having the 

rotation sensor mounted on the motor shaft 

before any gear reduction, better resolution and 

less error are achieved. 

One of the problems that occurred 

frequently while running experiments were the 

robots kept getting stuck along the walls and 

with each other.  The walls are comprised of 

several 29.5” x 1.5” x 9” (L x W x H) boards 

attached together.  In some places, the wall 

sections do not come together flush.  A front 

bumper with wheels was added to ensure that 

the robots would not get stuck at these places if 

they ended up along the wall.  A picture of the 

front bumper is shown in Figure 5.3.  Left-side 

and right-side bumpers (Figure 5.4) were added 

to prevent the robots from getting caught on 

each other.  These bumpers run along the entire 

Figure 5.3 Front bumper 

Figure 5.4 Side bumper 

Figure 5.2 Light sensor scanning device 
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length of the robot and protect the wheels of the 

robots.  The addition of bumpers around the 

robots significantly reduced the number of 

times the robots became stuck.  These bumpers 

serve as a barrier around the robot and are not 

part of any sensor.  Occasionally, the back of 

the robots would become stuck on the wall if 

they attempted to turn while in contact with them.  In order to remedy this problem, wheels 

were added to the back corners of the robots.  The addition of these wheels allows the robots 

to slide along the walls if they run into them while turning.  Figure 5.5 shows these wheels on 

the robot. 

Section 5.1.1.2 – Sheep 

 There are three sensors used on the sheep.  The LEGO® light sensor is used to detect 

both the wall and the sheepdog.  It is set to output the raw (0 to 1023) values when measuring 

light.  The sensor value approaches zero as the amount of light detected increases.  Since the 

walls are black, the light sensor will read a high number (greater than 900) when it is close to 

a wall.  When the dog is near, the light sensor will detect the light mounted on the dog and 

read a lower number (less than 720).   

 The location of the light sensor is critical for detecting the sheepdog.  To reduce the 

effects of ambient light on the sensor, a 2x1 LEGO® Technic block was placed in front of 

the sensor.  This makes the light sensor extremely directional by only allowing light to enter 

through the hole in the Technic brick.  Since this is the case, the light on the sheepdog must 

be at the same height as the light sensor on the sheep.  Otherwise, the sheep would not be 

Figure 5.5 Back corner wheels to aid when 
turning near a wall 
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able to “see” the dog.  It is not vital that the 

sheep recognize the dog from across the field.  

The sheep is only concerned when the dog is in 

close proximity.  For this reason, a Maglite 

flashlight bulb is used to identify the sheepdog.  

Figure 5.6 shows the Maglite flashlight bulb 

used to identify the dog. 

 The second sensor used is the LEGO® rotation sensor.  This sensor is used to 

determine the direction the light sensor is pointing relative to the front of the sheep.  The 

information provided by the sensor is used to determine which direction to move away from 

either the wall or dog.  It is also used to determine when the sensor has rotated approximately 

180º.  Initially, the light sensor is pointing toward the front of the sheep, and the rotation 

sensor reads zero.  While the light sensor is scanning, if the rotation sensor reads a value that 

corresponds to ±180°, it will cause the light sensor to stop and rotate in the opposite 

direction.  This prevents the wire connecting the sensor to the RCX from becoming wrapped 

around the rotating shaft.  The rotation sensor also helps determine on which side of the 

sheep the dog or wall has been detected.  For example, if the sensor reads a negative value 

(other than the value corresponding to -180°), the light sensor is pointing toward the left side 

of the sheep.  Conversely, if the sensor reads a positive value (other than the value equivalent 

to +180°), the light sensor is pointing toward the right side of the sheep.  By using the value 

of the rotation sensor, the sheep know which way to turn so it can move away from any 

trouble.   

Figure 5.6 Light bulb used to identify the dog 
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Section 5.1.1.3 – Sheepdog 

 The sheepdog uses four sensors to complete the task of herding the sheep into the 

pen.  Like the sheep, it has a scanning device with a light sensor mounted on a rotating shaft.  

A rotation sensor is used to monitor the position of the light sensor.  However, this light 

sensor is used to find the pen, and not used for detecting walls or the sheep.  The location of 

the light sensor is critical in order for the dog to locate the pen.  The light sensor must be at 

the same height of the infrared array mounted on the pen or the dog will not be able to herd 

the sheep into the pen.  An array of infrared LEDs is used to identify the pen because the dog 

needs to be able to find the pen from any position in the field.  The dog is also equipped with 

same bumpers that the sheep has.  The front bumper has three wheels that prevent the robot 

from becoming stuck along the wall, and the side bumpers run along the length of the robot.  

There are also back corner wheels that facilitate turning if it is along the wall. 

 The second light sensor on the dog is used to detect the sheep and walls.  Unlike the 

light sensor used to detect the pen, this sensor does not rotate.  Since all three motor outputs 

are being used, this sensor must remain fixed.  In order to search for the sheep using this 

sensor, the dog spins in a circle until the light sensor detects the infrared LED array (shown 

in Figure 5.7) mounted on the sheep.  This 

array of ten infrared LEDs is positioned on 

the sheep such that they are at the same height 

as a light sensor on the sheepdog.  Infrared 

LEDs, rather than light bulbs, are used 

because the dog needs to be able to identify 

the sheep from across the field.  This 
Figure 5.7 Infrared LED array on the sheep 
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technique of detecting the sheep has proven to be effective since tracking the sheep is not 

required.  Once the sheep has been found, the dog immediately moves to a location based on 

its distance from the sheep and orientation relative to the pen.  For this reason, the pen, rather 

than the sheep, must be tracked at all times.  The final sensor used by the dog is a tone 

detection sensor.  This sensor is used to listen for a specific frequency tone.  When the dog 

hears this tone, it will stop its current task and perform different, predefined task.  A detailed 

discussion regarding the design of this sensor is presented later in this chapter. 

 With only three sensor input ports and four sensors being used, there is a slight 

problem.  Several hobbyists [20] have devised numerous ways of overcoming the problem of 

a lack of sensor inputs.  One solution is to use a multiplexer so multiple sensors can be 

connected to the same port.  A three-channel active multiplexer from Mindsensors Robotics 

[1] was used to allow the dog to have four sensors.  The term “active” implies that power is 

required to operate each sensor (i.e. rotation, light, etc.).  A picture of the Mindsensors 

Robotics multiplexer is shown in Figure 5.8.  

This simple multiplexer consists of one output 

port and three input ports.  The output port 

connects the multiplexer to an RCX sensor input 

port.  The three input ports are used to connect 

the sensors.  A circuit diagram of the multiplexer 

is shown in the Appendix.  For this application, 

only two sensors (both light sensors) are connected to the multiplexer.  In order to cycle 

through each output of a multiplexer, a clock is required.  Switching the sensor type of the 

input port from light to touch and back to light will create a clock.  Because the light sensor 

Figure 5.8 Three-channel active multiplexer 
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requires power to operate and the touch sensor does not, changing sensor types effectively 

creates a clock that can be used to cycle from one input to another.  An interesting feature of 

this multiplexer is that it is not necessary to sequentially cycle through inputs.  For example, 

Channel 3 can be selected after Channel 1 has been selected without having to read Channel 

2.  One benefit of using this multiplexer is that only one channel receives power at a time.  

For instance, if it is desired to switch from Channel 2 to Channel 3, power will only be 

applied to Channel 3 once the switch has occurred.  This results in the power requirement of 

only one sensor when using the multiplexer regardless of the amount of sensors connected to 

the multiplexer.  The one drawback is that only one of the possible three sensors can be used 

at a time.  If a sensor must remain on for the entire mission, it cannot be connected to the 

RCX via the multiplexer.  The multiplexer allows for a larger sensing suite onboard the 

robot, however, only a total of three sensors can be used at once. 

Section 5.1.1.4 – Helper Dog 

 The purpose of this robot is to help the sheepdog corral the sheep into the pen when 

called upon.  The helper dog uses three sensors (two light sensors and one microphone 

sensor) when providing help to the sheepdog.  Like the sheepdog, this robot has two light 

sensors that are used to detect the sheep, wall, and pen.  One sensor is at the same height as 

the infrared LED array on the sheep.  This sensor is also used to detect a wall.  The second 

light sensor is at the same height as the infrared LED array on the pen.  The only difference 

with these sensors when compared to those on the sheepdog is that they are both fixed and 

oriented pointing forward.  Since all of the sensor inputs are being used, there is not a port 

available to use an angle sensor for monitoring the rotation of a light sensor.  Instead of being 

able to scan and look for the pen or sheep, the helper dog must turn to look for both.  This 
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causes a few problems in regards to decision making, but they can be overcome because of 

the role the helper dog plays during this mission.  The microphone sensor is used to listen for 

a signal instructing the dog to help the sheepdog with corralling the sheep.  This sensor will 

be discussed in detail later in this chapter. 

 Like the sheep and sheepdog, there are also bumpers present on the helper dog.  The 

front bumpers with wheels help keep the dog from getting stuck on the wall.  The side 

bumpers prevent the wheels of the robots from becoming caught on each other.  There are 

also wheels mounted on the back corners of the robot to facilitate turning when near a wall. 

 The helper dog uses a Maglite flashlight bulb in the same manner as the sheepdog.  

The light bulb is placed at the same height as the light sensor on the sheep.  When the sheep 

comes close to the helper dog, it will run away.  The sheep has the identical reaction to the 

helper dog as it does with the sheepdog.  Again, it is not important that the sheep see the 

helper dog from anywhere in the field.     

Section 5.1.1.5 – Human Agent 

 The final agent that comprises this robot colony is the human operator.  For this 

application, the human serves as the shepherd of the flock.  He allows the dog to herd the 

sheep into the pen independently, but also provides assistance when necessary.  In other 

words, the human operator is the manager of this mission.  If he deems it necessary that the 

dog requires help, he will instruct the helper dog to help herd the sheep into the pen by 

playing a tone.  The human operator plays the role of the mother robot in a marsupial robot 

colony by overseeing the mission and providing guidance or help when needed. 
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Section 5.1.2 – Control Software 

 In this section, the software used to control the robots will be discussed.  Each robot 

was programmed using the Not Quite C (NQC) programming language developed by Dave 

Baum.  This language was chosen because of the researcher’s familiarity with the C 

programming language.  The NQC code for each robot is provided in the Appendix. 

Section 5.1.2.1 – Sheep NQC Control Software 

 The behavioral model of the sheep consists of four major components:  look for the 

dog or wall, randomly move around in the field, run away from the dog, and move away 

from the wall.  A diagram of the 

behavioral model of the sheep is 

shown in Figure 5.9.  Initially, the 

sheep is wandering, or “grazing,” 

in the field.  The sheep moves 

around the area randomly, thus 

simulating the grazing pattern of 

sheep.  While grazing, the sheep is 

also scanning and looking for the 

dog or wall.  The scanner is rotated 

180° clockwise, and then it is 

rotated 360° in the counterclockwise direction.  Once the light sensor has finished this 

rotation, it reverses its direction of rotation and completes another 360° rotation.  This 

process is repeated unless the dog or a wall is detected.  Both actions (scanning and 

Figure 5.9 Behavioral model of sheep 
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wandering) are defined as tasks and they occur simultaneously.  Once started, they will 

continue unless the stop command is issued.   

When the sheep detects either a wall or the dog, it will stop grazing and perform the 

appropriate action depending on what has been noticed.  If the sheep encounters a wall, it 

will calmly move away from it and then resume with wandering and scanning.  However, if 

the sheep detects the dog, it will panic and run away.  Both of these actions are accomplished 

in similar manners.  First, the wander task is stopped, and then the corresponding function 

that will move the sheep away from the wall or dog is called.  The direction the sheep will 

move depends on where the wall or dog is detected.  For example, when the wall or dog is 

detected on the left side of the sheep, it will spin clockwise (to the right) and then move away 

from the wall or dog.  The major difference with these two actions is the speed at which the 

sheep moves away.  It treats the wall as a fence and calmly moves away from it.  The sheep, 

however, fears the dog and runs away when it is detected.  Both maneuvers are repeated until 

the sheep is at a safe distance from either one.  The sheep then returns to grazing and 

scanning. 

Section 5.1.2.2 – Sheepdog NQC Control Software 

 The behavioral model of the sheep dog is comprised of two parts: avoid walls and 

corral the sheep into the pen.  A diagram of its behavior model is provided in Figure 5.10.  

Initially, both tasks occur simultaneously.  If a wall is detected, the sheepdog will stop the 

corral task, move away from the wall, and then resume corralling the sheep.  If the dog 

remains near a wall, it will continue to move away from the wall before restarting the process 

of herding the sheep into the pen.  If a wall is not detected, the sheepdog will continually 

repeat the corral task until the sheep has been funneled into the pen.  If, at any time, the 
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sheepdog becomes stuck, a 

procedure is attempted to free 

the sheepdog.  If the angle 

sensor does not move over a 

specified amount of time, the 

sheepdog will assume it has 

become stuck.  It will then 

move backward and attempt to 

free itself. 

 The corral task is made 

up of five functions.  A block 

diagram of the corral task is 

shown in Figure 5.11.  The first 

action undertaken by the 

sheepdog is finding the sheep.  

The dog uses the fixed light 

sensor to “look” for the sheep.  

It spins around until the infrared 

light emitted from the array 

mounted on the sheep is 

detected.  Once the sheep has 

been detected, the sheepdog 

stops spinning.  The dog then 
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Figure 5.10 Behavioral model of sheepdog 
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determines its distance from the sheep based on the strength of the light signal detected.  This 

distance will determine how far the sheepdog should travel before repeating the corral task.  

Using the light sensor mounted on the rotating shaft, the dog then searches for the pen.  Once 

the pen has been found, the position of the light sensor is recorded and used to help 

determine how the sheepdog should approach the sheep.  Based on the orientation of the light 

sensor, the dog will spin either clockwise or counterclockwise.  This is performed with the 

intention of having the dog move to one side of the sheep rather than directly at it.  

Eventually the dog will move into a position such that the sheep is between itself and the pen.  

When this is the case, the dog will not need to turn before traveling toward the sheep, and it 

can move directly towards the sheep.  The final action that is performed in the corral task is 

moving toward the sheep.  Based on the distance to the sheep that was determined earlier, the 

dog will move forward for a corresponding amount of time.  The task is then repeated until 

the sheep has been corralled into the pen.   

If the microphone sensor detects a tone, all actions are stopped in order to execute a 

“higher” priority action.  This action is analogous to one member of a marsupial robot colony 

sending a distress signal to other team members.  When another team member receives a call 

for help, the robot will go to the aid of the teammate regardless of what was being performed 

prior to getting the call.  However, this signal does not necessarily have to represent a call for 

help.  If a member of a search and rescue team finds a survivor, a signal can be sent to the 

other team members and system operators to alert them of the discovery.  Other team 

members can then respond to the call and give additional aid to the victim.  For this 

application, the sheepdog is instructed to return to the pen when the microphone sensor 

detects a tone.   
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Section 5.1.2.3 – Helper Dog NQC Control Software 

 The behavioral model of the helper dog is not complex.  It has three parts: to wander 

around the field, to avoid walls, and to help the sheepdog corral the sheep.  A block diagram 

of the behavioral model of the helper dog is shown in Figure 5.12.  Initially, the helper dog 

wanders around the field.  While it is moving in the field, if a wall is detected, it will stop, 

move away from the wall, and 

then resume its movements.  

During the time the helper dog 

is moving in the field, it is not 

attempting to detect the sheep, 

sheepdog, or pen.  Since its 

light bulb will be on, the helper 

dog should not have a problem 

with getting stuck on the sheep.  

If it gets too close to the sheep, 

the sheep will detect the light 

and move away from the 

helper dog.  There could be 

some problems with the sheepdog, since the helper dog cannot see it.  However, since the 

sheepdog is tracking the sheep and the sheep will avoid the helper dog, the sheepdog should 

also avoid the helper dog. 

 If the microphone sensor on the helper dog detects a tone, it will stop “wandering” 

and begin to help corral the sheep.  The helper dog will position itself such that the sheep is 
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Figure 5.12 Behavioral model of the helper dog 
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between itself and the pen.  If both light sensors detect the sheep and the pen, the helper dog 

will know the sheep is between the pen and itself.  Once the helper dog has reached this 

position, it will stop and wait for another tone.  When it detects another tone, it will again 

find the sheep and move into a position where the sheep and pen are in front of itself.  The 

purpose of moving to this position is to reduce the area the sheep will be able to move. 

Section 5.2 – Microphone Sensor 

 In order to make communication between robots possible, a sensor was designed to 

recognize a certain frequency tone.  The microphone sensor developed for robot-to-robot 

communication will be discussed in this section.  The circuit design, sensor construction, and 

sensor interfacing will be presented in detail.  The datasheets of the major components of the 

circuit are included in the Appendix. 

Section 5.2.1 – Circuit Design 

 The circuit for the microphone sensor can be divided into two distinct parts: input 

sound amplification and frequency detection.  The microphone circuit used to detect and 

amplify the sound was designed during the CRIM development of a large-scale acoustic 

array.  This circuit consists of a microphone and an operational amplifier configured in a 

non-inverting manner.  A circuit diagram is provided in Figure 5.13.  Notice that the 

microphone is a two-pin microphone.  One pin is connected to ground, and the other is for 

power/output.  In order to block the DC voltage used to power the microphone, a capacitor 

was added to the input of the op-amp.  In addition, since there is not a negative supply 

voltage available when using four AA batteries, the input has to be biased in order for the 

entire input signal to be amplified.  The microphone used for sound detection is the 

Panasonic omnidirectional electret condenser microphone cartridge [39].  This microphone 
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was chosen primarily because it can 

detect sound from any direction, but 

also for the wide frequency 

response (20 Hz to 16 kHz) and the 

wide range of operating voltages 

(maximum of 10 volts).  The op-

amp used to amplify the detected 

sound is the Texas Instruments 

µA741 general-purpose operational 

amplifier [48].  Note that the gain of 

the amplifier circuit is 100.  In order 

to boost the signal strength for the 

tone detection circuit, the gain needs 

to be as large as possible without saturating the signal. 

 The tone detection circuit used in this sensor was developed as a simple way to 

convert an analog input to a digital output in order to interface the sensor with the RCX.  The 

basic idea behind the tone detection circuit is to send a digital output to the RCX when a 

specific frequency sound is detected.  The integrated circuit used to perform the frequency 

detection is the New Japan Radio FSK Demodulator/Tone Decoder chip [38].  The internal 

components of this chip are shown in Figure 5.14.  Using this component, the output is either 

a logic high or logic low.  Using Figures 5.14 and the tone detection circuit diagram  
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Figure 5.13 Circuit diagram of the microphone amplifier 
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(Figure 5.15) as reference, the roles of 

several circuit components can be 

explained.  The components that are used 

to set the center frequency are resistors R, 

Rx (used to fine tune the center 

frequency), and capacitor C0.   Resistor R1 

sets the detection bandwidth, capacitor C1 

sets the lowpass-loop filter time constant 

and the loop damping factor, RQ is a pull-

up resistor for the logic high output, and resistor RD and capacitor CD are used to prevent 

chatter at the logic output.  The following steps are taken to determine the values of certain 

components of the tone detection circuit [38]. 
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chip [38] 

C0

NJM211

1

2

3

4

5

6

7 8

9

10

11

12

13

14

0.1 µF

C1

CD

0.1 µF

RD

R

RQ

R1

RX

Microphone
Input

+5V

+5V

+5V

Figure 5.15 Tone detection circuit 

To RCX 



 47

Step 1: Pick the center frequency, fo, in Hz and the bandwidth, ± ∆f, in Hz.  Set R + 
Rx to be any value between the range of 15kΩ to 100kΩ.  Calculate Co to set 
fo using 

Step 2: Calculate R1 to set ± ∆f using 

Step 3: Calculate C1 for a given loop damping factor ζ using 

 For most tone-detection applications, ζ = ½ is optimal.  By increasing C1, the 
out-of-band signal rejection is improved, but the phase-lock loop capture time 
is increased. 

 
Step 4: Setting RD = 470 kΩ, calculate CD (in µF) to avoid chatter at the logic output 

using 

Note that by increasing CD, the logic output response time decreases. 

Using the above equations with fo = 1.0 kHz, ∆f = 20 Hz, R = 18kΩ, Rx = 5 kΩ tunable 

resistor, and R + Rx set to 20kΩ, the following values were calculated for the respective 

circuit components:  Co = 0.05µF, R1 = 1MΩ, C1 = 0.0125µF (with ζ = ½), and CD ≥ 0.42µF.  

Some of these calculated values were rounded off to the nearest standard value.  For the 

actual circuit, Co = 56000pF (0.056µF), C1 = 10000pF (0.01µF), and CD = 0.47µF.  In 

addition, only the value of R was changed to obtain a different center frequency.  This was 

done so several sensors could be built without having to use many different components.    

The chip used in the tone detection circuit was chosen for several reasons.  First, the 

component has a wide frequency range, from 0.01 Hz to 300 kHz.  Not only can this element 
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be used for detecting audible sounds, it can also be used to detect signals above the human 

audible range, which is attractive for covert applications.  Another feature of this chip is the 

ability to have a “tunable” bandwidth for the incoming signal.  By changing only one 

resistor, different bandwidths can be set depending on the application.  It also has an 

attractive operating voltage range, from 4.5 volts to 20 volts.  This wide operating voltage 

range accommodates the operating voltages of both the microphone and the operational 

amplifier.  Finally, it has a wide input range, from 2mVrms to 3Vrms.  Due to this wide 

dynamic range, the detected signal does not require several stages of amplification in order to 

boost the signal to a required level.  In fact, it may not require any amplification at all, 

resulting in a reduction of the overall sensor size.  Amplification was used in this application 

to prevent the use of an unnecessarily loud tone for communicating with the robots.  

Section 5.2.2 – Sensor Construction 

 To facilitate easy integration of the microphone sensor with the LEGO® robots, it 

was determined that the circuit needed to be housed inside LEGO® blocks.  In order to make 

this possible, surface mount components must be used to keep the overall size of the circuit 

minimal.  This required a printed circuit board to be designed and fabricated.  The layouts of 

the fabricated two-sided boards are shown in Figure 5.16.  The fabricated boards with all 

Figure 5.16 Circuit board layout for tone detection circuit (left), amplifier circuit 
(middle), and microphone circuit (right) 
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components attached are shown in Figure 5.17.  The inside of the LEGO® blocks were 

hollowed out to allow the circuit boards to fit inside the blocks.  The microphone board 

(≈1cm x 1cm) was designed to fit inside of a 2x2 LEGO® brick.  The amplifier board (≈1cm 

x 2cm) was designed to fit inside of a 2x4 LEGO® brick.  The tone detection circuit (≈2.5cm 

x 3cm) was designed to fit inside of two 2x4 LEGO® bricks.  To make the enclosure for the 

tone detection circuit, one side of each 2x4 brick was removed, and the two bricks were 

glued together to create a 4x4 LEGO® brick.  The completed sensor is shown in Figure 5.18. 

Section 5.2.3 – Interfacing the Sensor with the RCX 

 Since the output of the circuit is either logic high or logic low, interfacing the 

microphone sensor with the RCX was not difficult.  First, the sensor input port that was used 

for the microphone was configured as sensor type light.  This will result in a voltage at the 

Figure 5.17 Top and bottom view of fabricated tone detection circuit board (left) and 
amplifier and microphone circuit boards (right) 

Figure 5.18 Completed tone detection sensor 



 50

input port.  If the output of the tone detector circuit (pin 5) is connected to the RCX sensor 

input port, the voltage at the port will be forced to zero when the tone is detected.  This will 

change the sensor raw value from 1023 to 0.  When the value drops to zero, the robot will 

know a tone has been detected. 

 Several issues arose when this sensor was added to the LEGO® robots.  Most 

interestingly, the center frequency was quite a bit higher than expected.  This could have 

resulted because of the rounding that occurred when choosing components used in the tone 

detection circuit.  There was also an error found in the circuit board layout after the boards 

were fabricated.  However, the circuit did function properly at the higher center frequency, 

and the error was not corrected.  Another problem that could be attributed to the error in the 

circuit layout is that constant recalibration must occur.  The center frequency is greatly 

affected by the supply voltage level.  As the batteries wear down, the center frequency slowly 

decreased in value.  This might also occur since the operating voltage is close to the 

minimum value specified.  A significant problem regarding the overall weight of the robot 

resulted when the tone detection sensor was added.  The sensor itself is not heavy.  However, 

the four AA batteries that are needed to power this circuit result in a significant amount of 

added weight.  They were originally attached in the front of the robot, and this caused the 

rear wheels to spin without moving the robot.  This problem was alleviated when the 

batteries were moved to the back of the robot.  This added weight resulted normal movement 

by the robot. 
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Chapter 6 – Experiments and Results 

 Once the robot colony was constructed, several experiments were performed using 

some or all of the members.  First, the original experiment was conducted with the upgraded 

robots.  Next, communication between robots was investigated.  Finally, the interaction 

between robot teammates was studied.  Detailed accounts of the various experiments 

performed on the colony, as well as the results, are provided in this chapter. 

Section 6.1 – Robot Calibration 

 Before any experiments could be conducted, a calibration of each robot occurred.  

The most important factor to consider was the light level in the room where the experiments 

were being conducted.  Because the robots make decisions based on the amount of light 

detected by the light sensor, it is very important the light sensors on the robots be calibrated.  

First, the light sensor for the sheep, sheepdog, and helper dog used to detect the wall was 

calibrated.  As the robot approaches the black walls, the output of the light sensor increases 

as the amount of light detected decreases.  The identifying light source on each robot 

(infrared LED array or light bulb) must be turned on or the calibration will be incorrect.  

Some of the emitted light is reflected off the wall and detected by the light sensor.  The 

reflected light effectively makes the walls appear lighter than they actually are.  The output 

value of the light sensor was recorded at various positions along the wall, from about six to 

eight inches away.  The normal measured value when not looking at a wall is in the range of 

850 to 875.  When near a wall, the minimum value for the sheep was 930, the minimum 

value for the sheepdog was 920, and the minimum value for the helper dog was 890.  These 

values are used as the threshold value for the wall.  The minimum value measured was used 
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to ensure it would recognize the wall at all times.  If the light sensor detected any value 

higher than this threshold, the robot would immediately take action in order to avoid the wall. 

 Next, the light sensor for the sheepdog and helper dog was calibrated to recognize the 

pen.  Since it is required that both dogs be able to see the pen from anywhere in the field, the 

calibration must take place at the farthest point from the pen.  Because the field is a square 

and the pen is in the corner, the farthest distance from the pen is along the diagonal.  At this 

distance, the light sensor for both the sheepdog and helper dog measured 780.  This value 

was used as the threshold for recognizing the pen.  For any value less than the threshold, both 

dogs assume they are looking at the pen.  The normal value measured by this sensor when 

not looking at the pen ranged from 800 to 850.  Since there is no overlap, the robots should 

not think they are looking at the pen when, in reality, they are looking at something else. 

Both the sheepdog and helper dog were then calibrated to detect the sheep.  Again, it 

is required that the sheep can be detected from across the pen.  Along the diagonal of the 

field, both robots measured 815.  The same principle that was used for detecting the pen is 

used for sensing the sheep.  For any value lower than 815, the sheepdog and helper dog 

would assume they had detected the sheep.  The sensor used to detect the sheep is also used 

to detect the walls.  This is possible since there is no overlap of the possible values of a wall 

or the sheep.  The value for a wall is greater than 890 (for the helper dog) or 920 (for the 

sheepdog) and the value for a sheep is less than 815. 

Finally, the sheep was calibrated to detect the sheepdog and helper dog.  Since the 

sheep should run away from the dog when it is close, this calibration was performed from a 

distance of six inches.  The maximum value measured from different locations around the 

two dogs was 730.  For any value less than this, the sheep will run away from both dogs.  
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This sensor is also used to detect the walls.  This is not a problem because the value for a 

wall is greater than 930 and the value for the sheepdog and helper dog is less than 730.  

There is no overlap of the possible values for the dog or a wall. 

The other calibration that needed to be performed was for the sheepdog regarding the 

distance to move forward when tracking the sheep.  Since the helper dog and sheep do not 

track anything, the distance they travel at any one time is not important.  The sheep never has 

to worry about moving a precise distance to reach an object.  It must only be concerned with 

running away from the dogs.  The helper dog only needs to be in a position where the sheep 

is in between itself and the pen.  It does not need to be a certain distance from the sheep.  The 

sheepdog is the only robot that must move precise distances during operation.  To minimize 

the time taken to herd the sheep into the pen, the sheepdog should move forward for a period 

of time that corresponds with the distance to the sheep.  For example, if the light sensor on 

the sheepdog measures a value close to 815, the sheepdog is far away from the sheep.  In 

order to reach the sheep, the sheepdog will need to move forward for a longer period of time 

than if it was closer to the sheep.   

The first step in this calibration process was to measure how far the dog traveled for a 

given amount of time with the highest motor power.  Figure 6.1 shows a plot of these 

measurements.  As expected, the results are linear.  The next step was to measure the value of 

the light sensor used to detect the sheep at different distances from the sheep.  These 

measurements are shown in Figure 6.2.  There were four different measurements taken at 

each distance corresponding to the front, back, left side, and right side of the sheep.  The 

average of all four measurements was also calculated and graphed.  The equation of the 

average trendline is shown below the legend.  Notice these results are non-linear.  Figure 6.3  
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Figure 6.1 Distance the sheepdog traveled for a given amount of time 
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Figure 6.2 Sheepdog light sensor values at different distances from the sheep 
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shows the time of travel for a specific light sensor value.  This plot was generated using the 

average sensor values from Figure 6.2 and the equation of the generated trendline.  This plot 

illustrates that if the light sensor read approximately 750, the dog must travel for almost three 

seconds to reach the sheep.  Using this graph, a look-up table was created that matched a 

given time to travel with a range of sensor values.   

 Unfortunately, this calibration procedure did not work very well, especially for lower 

light sensor values.  Since the dog finds the sheep by spinning, it will stop once the light 

sensor measures a value less than the maximum threshold for the sheep (815).  However, the 

point where it detects the sheep might not where the beam of infrared light is at the 

maximum intensity.  This causes the sheepdog to calculate an incorrect distance.  This is not 

a problem when the sheepdog is far away from the sheep.  For example, the light sensor 

could read 750 and the maximum intensity reading could be 740.  This would not cause 

much of a difference in travel time, if any.  However, if the sheepdog is close to the sheep 

and the light sensor reads 675 instead of 550, this results in a problem.  The dog will travel a 

distance that corresponds to 675 instead of 550.  More than likely, the sheepdog will go past 

the sheep, causing it to backtrack and resulting in additional time needed to the herd the 

sheep into the pen.  Due to this problem, the travel times that correspond to a specific range 

of light sensor values were determined by trial and error. 

Section 6.2 – Original Experiment 

 With the updated robots, the original experiment was recreated with the sheep and 

sheepdog.  A number of experiments were performed with the sheep and sheepdog starting at 

different positions within the field.  A grid was defined in order to accurately position the 

robots for each experiment.  At the outset of each experiment, the robots were placed at the 
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center of one of the grid elements.  

Figure 6. 4 shows an overhead picture 

of the field with an overlay of the grid.  

Each block is approximately two feet 

by two feet, and the pen is defined to be 

at position (0,0).  For each experiment, 

the initial position, start time, end time, 

and behavioral observations were 

recorded.  The results are tabulated in 

Table 6.1.  For the experiments, the  

Sheepdog Starting Position Sheep Starting Position Total Time Result 
4 min 10 sec Success 
5 min 10 sec Fail 
5 min 56 sec Fail 
7 min 8 sec Fail 

(0,0) (3,3) 

3 min 59 sec Fail 
1 min 35 sec Success 
1 min 39 sec Success 
1 min 58 sec Success 
4 min 2 sec Success 
3 min 3 sec Success 

(0,0) (2,2) 

5 min 13 sec Fail 
0 min 43 sec Success 
1 min 25 sec Success 
2 min 8 sec Success 
6 min 34 sec Fail 
2 min 50 sec Fail 
4 min 19 sec Fail 
1 min 48 sec Fail 

(2,2) (1,1) 

6 min 4 sec Fail 
2 min 11 sec Success 
4 min 4 sec Success 
2 min 7 sec Success 
2 min 39 sec Success 

(0,3) (2,1) 

6 min 25 sec Fail 

Figure 6.4 Field with starting position grid 

Table 6.1 Sheep and sheepdog experiment results 
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overall success rate was 

just over 54%.  This may 

seem a bit low, but sensor 

malfunction, incorrect 

robot calibration, or low 

battery levels caused most 

of the failures.  The 

majority of these 

problems can easily be 

overcome.  Figure 6.5 

shows the path taken by the sheep and sheepdog during a successful trial.  The total time 

taken to compete this experiment was 3 minutes and 31 seconds.  An X marks the starting 

position of both robots.  The sheepdog path is shown in red, and the sheep path is in green.  

From these results, several interesting behaviors are noticed.  First, if the sheep is placed 

close to a wall (i.e. position (3,3)) at the outset of the experiment, the dog does not perform 

well.  When the experiment begins, the sheep will immediately notice a wall and move away 

from it.  This immediate movement seems to confuse the dog.  It appears that the dog needs 

to formulate a plan and begin to implement it before the sheep moves.  This is evident by the 

results achieved when the sheep was placed at position (2,2).  The success rate was over 80% 

as opposed to only 20% when the sheep began at position (3,3).  The dog was able to begin 

herding the sheep before the sheep made its first movement.   

 Another result was the least amount of time needed to herd the sheep into the pen 

occurred when the sheep began in between the sheepdog and the pen.  This result was 

Figure 6.5 Paths taken by sheep and sheepdog 
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expected.  However, the number of failures was not.  As it turns out, four of the failures were 

due to a decrease in battery power provided to the infrared LED array on the sheep.  As the 

voltage level drops, the strength of the infrared signal emitted from the array weakens.  This 

results in the dog miscalculating the distance to the sheep or even not being able to find the 

sheep.  When the 9V battery was replaced with a tether, there was only one failure and two 

successes. 

 An interesting statistic that resulted is the average time of success and failure.  For a 

successful experiment, the average time to herd the sheep into the pen was 2 minutes and 26 

seconds.  The average time a failed experiment lasted was 5 minutes and 2 seconds.  This 

leads to the belief that if the sheepdog is not able to herd the sheep into the pen relatively 

quickly, it will never be able to complete the mission.  This could occur for a number of 

reasons.  First of all, there is a heavy strain on the 9V battery used to power the infrared 

LEDs.  The signal emitted from the LEDs is not pulsed, resulting in the battery being used 

constantly.  After a few minutes, the battery will lose its strength, and the signal emitted from 

the array weakens.  The longer an experiment lasts, the more distance miscalculations by the 

sheepdog will occur.  However, allowing the battery to rest between experiments gives it the 

opportunity to regain some of its charge, and the experiments can continue.  Also, as the light 

sensor rotates, some error occurs when measuring the amount of rotation.  This error is due to 

the slippage of the scanning device.  The longer the experiment takes, the larger the error will 

be.  Eventually, it could reach a point where the error is so large that the sheepdog can no 

longer make accurate decisions based on the position of the light sensor.  Finally, the robots 

became stuck during some trials.  If, after a significant period of time, they were still stuck, 

the experiment was stopped. 
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Section 6.3 – Microphone Sensor Test 

 For this experiment, a microphone sensor was placed on the sheepdog.  The purpose 

of this test was to determine if communication between robots was possible.  Using the NQC 

command PlayTone(frequency, duration), the RCX can generate a tone of a specific 

frequency in Hertz for a period of hundredths of seconds.  The output of the microphone 

sensor on the sheepdog switches from logic high to logic low when a 2.8 kHz tone is 

detected.  Initially, an RCX played a tone of 2.8 kHz and when the microphone sensor 

detected it, the dog was supposed to move forward.  However, the tone played by the RCX 

was not loud enough for the microphone sensor to detect it.  This indicates that robot-to-robot 

communication using sound is not feasible using LEGO® Mindstorms™.   

 Instead, a tone was generated using a function generator.  The function generator was 

connected to a solid-state stereo amplifier, and the tone was output through a standard 

bookshelf stereo speaker.  This simulated a robot issuing a command to another robot.  

During this experiment, the 

sheepdog would attempt to 

herd the sheep into the pen.  

If the microphone sensor 

detected a tone of 2.8 kHz, 

the sheepdog was to stop 

herding the sheep and return 

to the pen.  Figure 6.6 shows 

the results of one trial.  The 

path taken by the sheepdog is 
Figure 6.6 Results of microphone sensor test

Dog was called 
to pen here 
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shown in red, and the path taken by the sheep is in green.  The starting positions of each 

robot are marked with an X.  For every trial, the sheepdog was successful in recognizing the 

tone and returning to the pen.  However, there was one problem that occurred during this 

experiment.  As the experiment progressed, the frequency that the microphone sensor would 

detect decreased.  As the batteries used to power the circuit wore down, the frequency 

decreased.  This resulted in constant recalibration of the robot, but not in system failure.   

Section 6.4 – Assisting the Sheepdog 

 The final set of experiments was conducted with all three robots in the field.  Again, 

the task of the sheepdog was to herd the sheep into the pen.  However, this time, the helper 

dog was used to assist the sheepdog if needed.  The helper dog would wander around the 

field until the microphone sensor detected a tone.  Once the tone was detected, the helper dog 

would move to a position where the sheep was between itself and the pen.  This action was 

intended to help the sheepdog funnel the sheep towards the pen.  Unfortunately, the helper 

dog only hindered the mission.  Instead of stopping when it had reached the desired position, 

it would continue to move in circles around the sheep.  Since it did not have enough sensor 

ports to have a rotating light sensor, both light sensors were fixed.  In this configuration, the 

only way the helper dog knew the sheep was between itself and the pen was to have one light 

sensor detect the pen and the other detect the sheep at the same time.  Most of the time, the 

helper dog would be in the desired position, but it would only detect the sheep and not the 

pen.   

The helper dog would also become caught on the sheepdog during the trials.  There 

was no available sensor port on the helper dog to use for detecting the sheepdog.  As it would 

move around the sheep, it would often run into the sheepdog and cause the test to fail.  
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Another problem that was encountered was that the sheepdog would sometimes get confused 

and think the helper dog was the sheep.  The light sensor on the sheepdog used to detect the 

infrared LED array on the sheep would also detect the light on the helper dog.  It would 

eventually reach a point where the light sensor could not “see” the light on the helper dog 

and would look for the sheep.  Interestingly, in one of the trials, the sheepdog managed to 

herd the sheep into the pen despite the disruptions caused by the helper dog.  Despite this 

perceived success, the helper dog did not provide any aid to the sheepdog.   

In an attempt to prevent some of the problems encountered in the previous tests, the 

sheepdog was also equipped with a microphone sensor.  If the sheepdog had problems, it was 

commanded to stop.  Next, the helper dog was called on to provide support.  Once the helper 

dog had positioned itself as desired, the sheepdog would be commanded to resume herding 

the sheep into the pen.  The addition of the microphone sensor to the sheepdog did not really 

improve the performance.  Both the sheepdog and helper dog continued to interfere with each 

other.  However, the overall amount of times the two were stuck on each other was reduced.  

In addition, the sheepdog continued to confuse the helper dog with the sheep and attempted 

to herd it into the pen.  Despite the poor performance of the robots, this experiment showed 

that communicating to the LEGO® robots with audible sound can be achieved with great 

success.   
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Chapter 7 – Conclusions and Future Research 

 Several conclusions about the feasibility of using LEGO® Mindstorms™ to develop 

autonomous robots have been developed from the research presented in previous chapters.  

The desirable aspects of this platform, as well as its deficiencies, are summarized below.  

Finally, recommendations on ways to improve the platform and future research using the 

LEGO® Mindstorms™ are offered.  

Section 7.1 – Concluding Remarks 

 An extensive investigation was conducted to determine the  possibility of using the 

LEGO® Mindstorms™ platform for mobile robot development.  This research resulted in the 

emergence of several limitations.  The biggest obstacle to overcome when using LEGO® 

Mindstorms™ is the limited number of sensor input ports.  Only three sensors can be used on 

each robot at any one time.  If more sensors are needed, a multiplexer or similar device must 

be added.  However, the use of a multiplexer does not solve the problem completely.  It just 

reduces it.  Even with a multiplexer, only three sensors can be used at once.  This research 

showed that effective communication between robots could not occur without more sensors.  

Those sensors needed to complete the task of herding the sheep into the pen used all of the 

input ports.  Without having the ability for robot-to-robot communication, having the helper 

dog provide assistance to the sheepdog is not possible. 

 Another major problem experienced was the significant reduction in battery power 

that occurred during operation.  The largest consumers of battery power are the motors.  With 

three motors (on the sheep and sheepdog) running continuously during the mission, there is a 

large strain placed on the batteries.  Additionally, all of the sensors used on each robot 
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require power to operate.  This, combined with the continuous use of the motors, resulted in 

large battery consumption causing a rapid discharge.  As the battery power decreased, the 

outputs of the light sensors would change without the light conditions changing.  Eventually, 

the sensors would output incorrect readings and the task would fail.   

 Even with these major drawbacks, LEGO® Mindstorms™ prove to serve as an 

adequate platform for developing inexpensive mobile robots.  One of the major research 

areas in the field of robotics deals with designing inexpensive mobile robots with limited 

capabilities that, when used in conjunction with other robots of the same type, can function 

the same as a single advanced robot.   The results of the experiments conducted with the 

sheep and sheepdog prove that LEGO® Mindstorms™ robots can perform fairly complex 

tasks with limited sensor capabilities.  By having the ability to use advanced programming 

languages, complex tasks can be performed using the LEGO® robots.  Also, the LEGO® 

Mindstorms™ platform allows for moderately advanced sensors, such as the microphone 

sensor, to be integrated into the system if needed.    The research showed that detecting 

sound with the microphone sensor could control the robots.  While the sheepdog was 

performing the complex task of herding the sheep into the pen, it could be instructed to stop 

and execute another task.  It could then be commanded to resume the task of herding the 

sheep.  Being able to use these types of sensors with the LEGO® robots also results in the 

possibility of completing complex tasks. 

Section 7.2 – Future Research 

 In the immediate future, two items can be changed to improve overall system 

performance.  First, the tone decoder circuit should be fixed.  To operate at the desired center 

frequency, the layout of the circuit board should be changed to the layout shown in Figure 
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5.16.  This change was not made since the sensor functioned as desired, although at a higher 

frequency.  Fixing the circuit could potentially eliminate the need for constant recalibration 

during operation.  Also, the identifying infrared LED array should be pulsed using a standard 

555-timer circuit.  This would help conserve the 9V battery used to provide power to the 

circuit. 

 In order to create a cooperative team using the LEGO® Mindstorms™, a 

communication link between the robots must be established.  At the present time, this is not 

possible.  First, a tone must be generated by one robot that can be heard by the other.  Since 

the RCX cannot produce a loud enough tone, additional hardware will have to be developed.  

Next, the limited sensory capabilities must be overcome.  If the same task of herding the 

sheep into a pen is desired, more sensors will need to be added in order for communication 

between robots to occur.  However, three sensor inputs are probably sufficient for robot-to-

robot communication, assuming the robots can generate a tone and the task required to be 

completed is much simpler.  One method that should be investigated is using multiple RCX 

units for a single robot.  This would not only increase the sensor capabilities, it would also 

double the output ports.  These could be used to power any custom hardware used.  Finally, 

instead of a simulated mother robot, an actual robot should be used.  Incorporating the 

LEGO® robots into the CRIM’s EvBot robot colony [18] [33] would allow for research in 

the area of marsupial robot colonies to be conducted.   
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Chapter 9 – Appendix 
 
 The following sections include photographs of the robot colony developed, the NQC 

source code used to control the individual robots, an explanation of how images were 

acquired during experimentation, and a comprehensive parts list. 

Section 9.1 – LEGO® Robot Colony 

 This section will offer different views of each agent that comprises the robot colony.  

Following the photographs of the robots, pictures of the field and pen will be shown. 

Section 9.1.1 – Sheepdog 

 

Figure 9.1 Front side of the sheepdog 
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Figure 9.2 Left side of the sheepdog

Figure 9.3 Backside of the sheepdog 
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Section 9.1.2 – Sheep 

Figure 9.4 Right side of the sheepdog

Figure 9.5 Front side of the sheep 
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Figure 9.6 Left side of the sheep 

Figure 9.7 Backside of the sheep 
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Section 9.1.3 – Helper Dog 

Figure 9.9 Front side of the helper dog 

Figure 9.8 Right side of the sheep 
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Figure 9.10 Left side of the helper dog 

Figure 9.11 Backside of the helper dog 
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Section 9.1.4 – Field  

 

 
Figure 9.13 The 8’ x 8’ field used to conduct experiments

Figure 9.12 Right side of the helper dog
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Section 9.2 – NQC Source Code 

 This section includes the NQC source code used to control the sheepdog, sheep, and 

the helper dog. 

Section 9.2.1 – Sheepdog NQC Source Code 

#define LEFT OUT_A  //define motor output A as LEFT motor 
#define HEAD OUT_B  //define motor output B as HEAD motor 
#define RIGHT OUT_C  //define motor output C as RIGHT motor 
#define EAR SENSOR_1  //define sensor input 1 as EYE  
#define ANGLE SENSOR_2  //define sensor input 2 as ANGLE 
#define MUX SENSOR_3  //define sensor input 3 as MUX 
 
int TURN = 7;   //LEFT and RIGHT motor power for turning 
int FWD = 7;      //LEFT and RIGHT motor power for going forward 
int PEN = 780;   //threshold for detecting the pen 
int SHEEP = 815;  //threshold for detecting the sheep from far away 
int SHEEPCLOSE = 600;  //threshold for detecting the sheep up close 
int WALL = 920;   //threshold for detecting the wall 
int LDIR = 1;    //1 = FWD MOTION of the tread; 0 = REV MOTION of the tread;  
int RDIR = 1;   //used in task trackPen if the EYE loses the pen 
int FOUND = 0;   //flag used for detecting the pen;  see function init() 
int SDIR = 0; //1 = Left; 0 = Right; flag used to determine which way to spin when looking for the sheep 
int direction;   // -1 = right; 1 = left; this flag is used for scanning purposes 
int distance;   //distance from the dawggy to the sheep 
int decapitation = 590;  //threshold for determing if the dog is too close to the pen 
int sound = 50;   //threshold for detecting sound 

Figure 9.14 The pen used for experiments 
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int HELP = 1;   //flag used to tell the sheepdog to stop and start 
int angleLast = 0;  //variable used in stuck task 
 
//This task is used to corral the sheep towards the pen.  
task corral() 
 { 
  while(1) 
   { 
    findSheep(); 
    getDistance(); 
    findPen(); 
    turn(); 
    go(); 
    Eye(); 
    Wait(30); 
   
    if (MUX <= decapitation) //If the dog is too close to the pen, 
    {    //go in reverse for one second 
     GoRev(); 
     OnFor(LEFT+RIGHT, 100); 
    } 
   } 
 } 
 
//This function will cause the dog to look for the sheep by spinning around 
//until the NOSE locates the sheep.   
void findSheep() 
 { 
  Nose(); 
  Wait(30); 
 
  while(MUX > SHEEP) 
   { 
    if (SDIR == 1)  //dog will spin left to look for the sheep 
     { 
      TurnLeft(); 
      On(LEFT + RIGHT); 
     } 
    else if (SDIR == 0)  //dog will spin right to look for the sheep 
     { 
      TurnRight(); 
      On(LEFT + RIGHT); 
     } 
   } 
  Off(LEFT+RIGHT); 
 } 
 
//This function is used for finding the pen once the sheep has been located 
//The EYE is used to look for the pen 
void findPen() 
 { 
  Eye(); 
  Wait(30); 
 
  while(!FOUND) 
  { 
   On(HEAD); 
 
   if (MUX < PEN) 
   { 
    FOUND = 1; 
    Off(HEAD); 
   } 
 
   if ((ANGLE <= -66) && (direction == -1) && (!FOUND)) 
   { 
    OnRev(HEAD); 
    direction = 1; 
   } 
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   if ((ANGLE >= 69) && (direction == 1) && (!FOUND)) 
   { 
    OnFwd(HEAD); 
    direction = -1; 
   } 
  } 
  FOUND = 0; 
 } 
 
//Determines the distance from the dog to the sheep 
void getDistance() 
 { 
  Nose(); 
  Wait(30); 
 
  if ((MUX >= 802) && (MUX < SHEEP)) 
   distance = 13; 
  else if ((MUX >= 780) && (MUX < 802)) 
   distance = 11; 
  else if ((MUX >= 760) && (MUX < 780)) 
   distance = 10; 
  else if ((MUX >= 743) && (MUX < 760)) 
   distance = 8; 
  else if ((MUX >= 735) && (MUX < 753)) 
   distance = 6;     
  else if ((MUX >= 705) && (MUX < 735)) 
   distance = 5;     
  else if ((MUX >= 687) && (MUX < 705)) 
   distance = 4;     
  else if ((MUX >= 655) && (MUX < 687)) 
   distance = 3;     
  else if ((MUX >= 580) && (MUX < 655)) 
   distance = 2;     
  else if ((MUX >= 440) && (MUX < 580)) 
   distance = 1;     
  else distance = 0; 
 } 
 
//This function turns the dog a specific direction depending on 
//its position relative to the pen before moving towards the sheep 
void turn() 
 { 
 int timeAngle = 30; 
  if (ANGLE > 5) 
   { 
    TurnLeft(); 
    OnFor(LEFT + RIGHT, timeAngle); 
    SDIR = 0; 
    } 
  else if (ANGLE < -5) 
   { 
    TurnRight(); 
    OnFor(LEFT + RIGHT, timeAngle); 
    SDIR = 1; 
   } 
 } 
 
//This function moves the sheep dog towards the sheep 
void go() 
 { 
  Nose(); 
  Wait(30); 
  GoFwd(); 
  start sheepDistance; 
  OnFor(LEFT + RIGHT, 20*distance); 
 } 
 
//This task is used to prevent the dog from running into the sheep 
//If the dog is too close to the sheep, it will stop 
task sheepDistance() 
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 { 
 while(1) 
  { 
   if (MUX <= SHEEPCLOSE) 
   {  
    Off(LEFT+RIGHT); 
    stop sheepDistance; 
   } 
  } 
 } 
 
//This function sets up the motors to turn right 
void TurnRight() 
 { 
  SetDirection(LEFT, OUT_REV); 
  SetDirection(RIGHT, OUT_FWD); 
  SetPower(LEFT + RIGHT, TURN); 
  LDIR = 1; 
  RDIR = 0; 
 } 
 
//This function sets up the motors to turn left 
void TurnLeft() 
 { 
  SetDirection(LEFT, OUT_FWD); 
  SetDirection(RIGHT, OUT_REV); 
  SetPower(LEFT + RIGHT, TURN); 
  LDIR = 0; 
  RDIR = 1; 
 } 
 
//This function sets up the motors to move forward 
void GoFwd() 
 { 
  SetDirection(RIGHT, OUT_REV);  
  SetDirection(LEFT, OUT_REV);  
  SetPower(LEFT + RIGHT, FWD); 
  LDIR = 1; 
  RDIR = 1; 
 } 
 
//This function sets up the motors to move in reverse 
void GoRev() 
 { 
  SetDirection(RIGHT, OUT_FWD);  
  SetDirection(LEFT, OUT_FWD);  
  SetPower(LEFT + RIGHT, FWD); 
  LDIR = 0; 
  RDIR = 0; 
 } 
 
//Changes the MUX to Channel 1 to detect the pen 
void Eye() 
 {  
  SetSensorType(MUX,SENSOR_TYPE_TOUCH); 
  Wait(2); 
  SetSensorType(MUX,SENSOR_TYPE_LIGHT); 
  SetSensorMode(MUX,SENSOR_MODE_RAW); 
 } 
 
//Changes the MUX to Channel 2 to detect the sheep 
void Nose() 
 {  
  SetSensorType(MUX,SENSOR_TYPE_TOUCH); 
  Wait(2); 
  SetSensorType(MUX,SENSOR_TYPE_LIGHT); 
  Wait(2); 
  SetSensorType(MUX,SENSOR_TYPE_TOUCH); 
  Wait(2); 
  SetSensorType(MUX,SENSOR_TYPE_LIGHT); 
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  SetSensorMode(MUX,SENSOR_MODE_RAW); 
 } 
 
//This task will cause the dog to back up and turn around if it gets 
//too close to a wall.  The NOSE is used to detect the wall 
task avoidWall() 
 { 
   SetPower(LEFT + RIGHT, TURN); 
   while(true) 
   { 
      while (MUX >= WALL) 
 { 
      stop corral;       
      SetDirection(LEFT + RIGHT, OUT_FWD); 
      OnFor(LEFT + RIGHT, 50); 
      SetDirection(LEFT, OUT_REV); 
      SetDirection(RIGHT, OUT_FWD); 
      OnFor(LEFT + RIGHT, 50); 
      Nose(); 
      Wait(30); 
      SDIR = 0; 
      start corral; 
 } 
   } 
 } 
 
//This task prevents the dog from getting stuck often.  If the rotation sensor does not detect movement in  
//20 seconds, the sheepdog will move in reverse 
task stuck() 
 { 
  while(true) 
  { 
   angleLast = ANGLE; 
   Wait(2000); 
   if (ANGLE == angleLast) 
   { 
    PlayTone(600,100); 
    stop corral; 
    stop avoidWall; 
    Off(LEFT + RIGHT); 
    GoRev(); 
    OnFor(LEFT + RIGHT, 200); 
    OnFor(HEAD, 10); 
 
    start corral; 
    start avoidWall; 
   } 
  } 
 } 
 
task main() 
 { 
  direction = -1; 
  SetSensor(EAR, SENSOR_LIGHT);          //Defines EAR as a light sensor 
  SetSensorMode(EAR, SENSOR_MODE_RAW);  //Sensor outputs RAW (0-1023) values 
  SetSensor(ANGLE, SENSOR_ROTATION);  //Defines ANGLE as a rotation sensor 
  SetDirection(HEAD, OUT_FWD); 
  SetPower(LEFT + RIGHT, TURN); 
 
  Wait(1000); 
 
  start corral; 
  start avoidWall; 
  start stuck; 
 
  while(true)  //corral sheep unless a sound is detected 
  { 
   if ((EAR < sound) && (HELP == 1)) //If sound is detected, stop 
   { 
    stop corral; 
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    stop stuck; 
    stop avoidWall; 
    Off(LEFT + RIGHT + HEAD); 
    HELP = 0;     
   } 
   
   if ((EAR < sound) && (HELP == 0)) //Resume corralling the sheep if a sound is detected 
   { 
    start corral; 
    start stuck; 
    start avoidWall; 
    HELP = 1; 
   } 
  } 
 } 
 

Section 9.2.2 – Sheep NQC Source Code 

#define ANGLE SENSOR_1  //Define sensor input 1 as ANGLE (rotation sensor) 
#define EAR SENSOR_2  //Define sensor input 2 as EAR (mic) 
#define EYE SENSOR_3  //Define sensor input 3 as EYE (light sensor) 
#define RIGHT OUT_C  //Define motor output C as LEFT motor 
#define HEAD OUT_B  //Define motor output B as HEAD motor 
#define LEFT OUT_A  //Define motor output A as RIGHT motor 
 
int time = 0;   //variable used in wander() 
int black = 930;   //threshold for detecting a wall 
int detect = 0;   //flag used when sheep sees either the dog or wall 
int dog =710;   //threshold for detecting the dog 
int run = 4;    //motor power for when sheep is running from the dog or wall 
int fwd = 2;   //motor power for when sheep is moving forward while grazing 
int turn = 4;   //motor power for when sheep is turning while grazing 
int sound = 50;   //threshold for detecting sound 
 
//For this task, the sheep is continuously scanning and looking for the dog or a wall. 
//When it sees either of the two, it will react accordingly. 
task scan() 
 { 
  while(true) 
  { 
   On(HEAD); 
   while((ANGLE > -68) && (ANGLE <= 0))   //scans counterclockwise for 180 degrees 
   {     
    OnFwd(HEAD); 
    if((EYE >= black) || (EYE <= dog)) 
     detect = 1; 
   } 
   Off(HEAD); 
   Wait(20); 
   while (ANGLE < 0)   //scan clockwise -- returns to zero degree position 
   { 
    OnRev(HEAD); 
    if((EYE >= black) || (EYE <= dog)) 
     detect = 1; 
   } 
   Off(HEAD); 
   Wait(20); 
   while((ANGLE > 0) && (ANGLE < 68))  //scans clockwise for 180 degrees 
   {  
    OnRev(HEAD); 
    if((EYE >= black) || (EYE <= dog)) 
     detect = 1; 
   } 
   Off(HEAD); 
   Wait(20); 
   while(ANGLE > 0)  //returns EYE to zero degree position 
   {   
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    OnFwd(HEAD); 
    if((EYE >= black) || (EYE <= dog)) 
     detect = 1; 
   } 
   Off(HEAD); 
   Wait(20); 
  } 
 } 
 
//This funciton is called when a wall detected.  The sheep will move away from the wall. 
void wall() 
 { 
  SetPower(LEFT + RIGHT, run); 
  while (EYE >= black) 
  {  
   Off(HEAD); 
   if ((ANGLE < -3) && (ANGLE >= -60))   //robot turns RIGHT 
   { 
    SetDirection(LEFT, OUT_REV); 
    SetDirection(RIGHT, OUT_FWD); 
    OnFor(LEFT + RIGHT, 75); 
    SetDirection(RIGHT, OUT_REV); 
    OnFor(LEFT + RIGHT, 50); 
   } 
   else if ((ANGLE >= -3) && (ANGLE <= 3))  //robot moves backward and spin away from wall 
   { 
    SetDirection(LEFT + RIGHT, OUT_FWD); 
    OnFor(LEFT + RIGHT, 75); 
    SetDirection(LEFT, OUT_REV); 
    SetDirection(RIGHT, OUT_FWD); 
    OnFor(LEFT + RIGHT, 75); 
   } 
   else if ((ANGLE > 3) && (ANGLE <= 60))   //robot turns LEFT 
   { 
    SetDirection(LEFT, OUT_FWD); 
    SetDirection(RIGHT, OUT_REV); 
    OnFor(LEFT + RIGHT, 75); 
    SetDirection(LEFT, OUT_REV); 
    OnFor(LEFT + RIGHT, 50); 
   } 
   else if ((ANGLE < -60) || (ANGLE > 60))  //robot moves forward 
   { 
    SetDirection(LEFT + RIGHT, OUT_REV); 
    OnFor(LEFT + RIGHT, 75); 
   } 
  } 
  start scan; 
  start wander; 
 } 
 
//This function is called when the sheep sees the dog.  The sheep will run away from the dog. 
void panic() 
 { 
  SetPower(LEFT + RIGHT, run); 
  while (EYE <= dog) 
  {  
   Off(HEAD); 
   if ((ANGLE < -10) && (ANGLE > -25))   //robot turns RIGHT 
   { 
    SetDirection(LEFT, OUT_REV); 
    SetDirection(RIGHT, OUT_FWD); 
    OnFor(LEFT + RIGHT, 80); 
    SetDirection(RIGHT, OUT_REV); 
    OnFor(LEFT + RIGHT, 60); 
   } 
   else if ((ANGLE <= -25) && (ANGLE >= -35))   //robot turns RIGHT 
   { 
    SetDirection(LEFT, OUT_REV); 
    SetDirection(RIGHT, OUT_FWD); 
    OnFor(LEFT + RIGHT, 70); 
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    SetDirection(RIGHT, OUT_REV); 
    OnFor(LEFT + RIGHT, 60); 
   } 
   else if ((ANGLE < -35) && (ANGLE >= -60))   //robot turns RIGHT 
   { 
    SetDirection(LEFT, OUT_REV); 
    SetDirection(RIGHT, OUT_FWD); 
    OnFor(LEFT + RIGHT, 50); 
    SetDirection(RIGHT, OUT_REV); 
    OnFor(LEFT + RIGHT, 60); 
   } 
   else if ((ANGLE >= -10) && (ANGLE <= 10))  //robot moves backward and spin away from dog and then runs 
   { 
    SetDirection(LEFT + RIGHT, OUT_FWD); 
    OnFor(LEFT + RIGHT, 50); 
    SetDirection(LEFT, OUT_REV); 
    SetDirection(RIGHT, OUT_FWD); 
    OnFor(LEFT + RIGHT, 100); 
    SetDirection(RIGHT, OUT_REV); 
    OnFor(LEFT + RIGHT, 60); 
   } 
   else if ((ANGLE > 10) && (ANGLE < 25))   //robot turns LEFT 
   { 
    SetDirection(LEFT, OUT_FWD); 
    SetDirection(RIGHT, OUT_REV); 
    OnFor(LEFT + RIGHT, 80); 
    SetDirection(LEFT, OUT_REV); 
    OnFor(LEFT + RIGHT, 60); 
   } 
   else if ((ANGLE >= 25) && (ANGLE <= 35))   //robot turns RIGHT 
   { 
    SetDirection(LEFT, OUT_FWD); 
    SetDirection(RIGHT, OUT_REV); 
    OnFor(LEFT + RIGHT, 70); 
    SetDirection(LEFT, OUT_REV); 
    OnFor(LEFT + RIGHT, 60); 
   } 
   else if ((ANGLE > 35) && (ANGLE <= 60))   //robot turns RIGHT 
   { 
    SetDirection(LEFT, OUT_FWD); 
    SetDirection(RIGHT, OUT_REV); 
    OnFor(LEFT + RIGHT, 50); 
    SetDirection(LEFT, OUT_REV); 
    OnFor(LEFT + RIGHT, 60); 
   } 
   else if ((ANGLE < -60) || (ANGLE > 60))  //robot moves forward 
   { 
    SetDirection(LEFT + RIGHT, OUT_REV); 
    OnFor(LEFT + RIGHT, 40); 
   } 
  } 
  Wait(100); 
  start scan; 
  start wander; 
 } 
 
//This task simulates a sheep grazing. 
task wander() 
 { 
  while(true) 
  { 
   SetDirection(LEFT + RIGHT, OUT_REV); 
   SetPower(LEFT + RIGHT, fwd); 
   On(RIGHT + LEFT); 
   time = Random(100); 
   Wait(time); 
   Off(LEFT + RIGHT); 
   time = Random(250); 
   Wait(time); 
   if((time%2) == 0) 
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   { 
     SetPower(LEFT+RIGHT,turn); 
     OnRev(LEFT); 
     OnFwd(RIGHT); 
   } 
   else 
   { 
     SetPower(LEFT+RIGHT,turn); 
     OnRev(RIGHT); 
     OnFwd(LEFT); 
   } 
   time = Random(75); 
   Wait(time); 
   Off(LEFT + RIGHT); 
   Wait(1500); 
  } 
 } 
 
task main() 
 { 
  SetSensorType(EYE, SENSOR_TYPE_LIGHT); //Defines EYE as a light sensor 
  SetSensorMode(EYE, SENSOR_MODE_RAW); 
  SetSensorType(EAR, SENSOR_TYPE_LIGHT); //Defines EAR as a light sensor 
  SetSensorMode(EAR, SENSOR_MODE_RAW); 
  SetSensor(ANGLE, SENSOR_ROTATION);  //Defines ANGLE as a rotation sensor 
  SetPower(HEAD, 1); 
 
  SetPower(LEFT, fwd); 
  SetPower(RIGHT, fwd); 
 
  Wait(1000); 
 
  while (true) 
  { 
    start scan; 
    start wander; 
 
    while(true) 
    { 
      if (detect == 1) 
      { 
       stop wander; 
       Off(LEFT + RIGHT); 
 
       if (EYE >= black) 
       { 
         PlayTone(500, 50); 
         wall(); 
       } 
       else if ( EYE <= dog) 
       { 
         stop scan; 
         Off(HEAD); 
         PlayTone(3000, 50); 
  panic(); 
       } 
      detect = 0;  
      start scan; 
      } 
     } 
   } 
 } 
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Section 9.2.3 – Helper Dog NQC Source Code 

#define PEN_EYE SENSOR_1  //Define sensor input 1 as PEN_EYE (light sensor) 
#define EAR SENSOR_2  //Define sensor input 2 as EAR (mic) 
#define EYE SENSOR_3  //Define sensor input 3 as EYE (light sensor) 
#define LEFT OUT_C  //Define motor output C as LEFT motor 
#define LIGHT OUT_B  //Define motor output B as LIGHT (used to power lightbulb) 
#define RIGHT OUT_A  //Define motor output A as RIGHT motor 
 
int black = 889;   //threshold for detecting a wall 
int detect = 0;   //flag used when helper dog sees either the sheep or wall 
int run = 6;    //motor power for when helper dog is helping the dog 
int turn = 5;   //motor power for when helper dog is turning while monitoring 
int sound = 50;   //threshold for detecting sound 
int pen = 780;   //threshold for detecting the pen 
int sheep = 815;   //threshold for detecting the sheep 
int sheepclose = 700;   //too close to sheep when under this value 
int decapitation = 590;  //too close to the pen when under this value 
 
//This funciton is called when a wall detected.  The helper dog will move away from the wall. 
task avoidWall() 
 { 
  while (EYE >= black) 
  { 
     GoRev(); 
     OnFor(LEFT + RIGHT, 100); 
     TurnRight(); 
     OnFor(LEFT + RIGHT, 100); 
   } 
 } 
 
//This function sets up the motors to turn right 
void TurnRight() 
 { 
  SetDirection(LEFT, OUT_REV); 
  SetDirection(RIGHT, OUT_FWD); 
  SetPower(LEFT + RIGHT, turn); 
 } 
 
//This function sets up the motors to turn left 
void TurnLeft() 
 { 
  SetDirection(LEFT, OUT_FWD); 
  SetDirection(RIGHT, OUT_REV); 
  SetPower(LEFT + RIGHT, turn); 
 } 
 
//This function sets up the motors to move forward 
void GoFwd() 
 { 
  SetDirection(RIGHT, OUT_REV);  
  SetDirection(LEFT, OUT_REV);  
  SetPower(LEFT + RIGHT, run); 
 } 
 
//This function sets up the motors to move in reverse 
void GoRev() 
 { 
  SetDirection(RIGHT, OUT_FWD);  
  SetDirection(LEFT, OUT_FWD);  
  SetPower(LEFT + RIGHT, run); 
 } 
 
//This function is called when the helper dog must find the sheep 
void findSheep() 
 { 
   while(EYE > sheep) 
   { 
     TurnLeft(); 
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     On(LEFT + RIGHT); 
   } 
   Off(LEFT + RIGHT); 
 } 
task main() 
 { 
  SetSensorType(EYE, SENSOR_TYPE_LIGHT); //Defines EYE as a light sensor 
  SetSensorMode(EYE, SENSOR_MODE_RAW);  //Sensor outputs RAW (0-1023) values 
  SetSensorType(PEN_EYE, SENSOR_TYPE_LIGHT); //Defines PEN_EYE as a light sensor 
  SetSensorMode(PEN_EYE, SENSOR_MODE_RAW); //Sensor outputs RAW (0-1023) values 
  SetSensorType(EAR, SENSOR_TYPE_LIGHT); //Defines EAR as a light sensor 
  SetSensorMode(EAR, SENSOR_MODE_RAW);  //Sensor outputs RAW (0-1023) values 
 
  start avoidWall; 
  
    while(true)  //Wait until a sound is heard, and then move to a position 
    {   //where the sheep is between the helper dog and the pen 
     if (EAR <= sound) 
     { 
       stop avoidWall; 
 
       while(EYE >= black) 
       { 
       GoRev(); 
       OnFor(LEFT + RIGHT, 100); 
       TurnRight(); 
       OnFor(LEFT + RIGHT, 100); 
       } 
   
       findSheep(); 
 
       while(PEN_EYE > pen) 
       { 
         start avoidWall; 
         TurnRight(); 
         OnFor(LEFT + RIGHT, 50); 
         GoFwd(); 
         OnFor(LEFT + RIGHT, 150); 
  findSheep(); 
       } 
     } 
    } 
 } 
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Section 9.3 – Experiment Image Acquisition 

 This section consists of a detailed explanation of how the images were acquired 

during the experiments.  The steps taken to process the images, as well as how these images 

were made into a movie will be discussed. 

Section 9.3.1 – Image Acquisition 

 The images taken during experimentation were obtained using a camera that is fixed 

over the mobile robot test bed located in the 

CRIM laboratory.  In order to be able to 

view the entire test bed, the camera is 

centered above the area of interest and has a 

fish-eye lens.  Figure 9.15 shows a sample 

image acquired during experimentation.  

Notice the field in the upper right quadrant 

of the picture and the pen in the upper right-

hand corner of the image.  Using 

MATLAB, the distortion in this image can 

be removed.  The processed image is shown 

in Figure 9.16.  If desired, the image can be 

cropped such that only the area of interest is 

shown.  For this application, only the field 

is shown in the final image.  Notice how the 

defished image has been flipped over the 

horizon.  This algorithm is used to correct 

Figure 9.15 Image acquired while conducting 
experiments 

Figure 9.16 Defished and cropped image 
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images of various experiments that were taken with this camera.  For a different application, 

the axes of a simulated world are oriented differently than the test bed.  When the image is 

corrected, it is flipped so the axes of the defished image and those in the simulated world are 

aligned.  Flipping the image does not serve any purpose for this application. 

 After all of the original images have been acquired, the robots used in the experiment 

can be tracked, and their individual paths can be plotted on the images (see Figure 9.17).  For 

each image, the user clicks on the 

robot with the mouse.  These points 

are stored in MATLAB and then 

connected for the sequence of 

images.  Once the robot path 

information has been created, a 

MATLAB movie can then be 

created.  When the movie is created, 

the image is flipped back to its 

original position.  If desired, the 

MATLAB movie can be converted to a format (Audio Video Interleaved or AVI) that can be 

viewed using another software application, such as Windows Media Player. 

Section 9.3.2 – MATLAB Source Code 

 In the following section, the MATLAB source code used to process the images and 

make a movie with these processed images is listed.  Andrew L. Nelson of the CRIM 

laboratory wrote all pieces of code, and each is included with his permission. 

Figure 9.17 One frame of the MATLAB movie showing 
two robots and the paths they have taken

X 

X 



 91

Section 9.3.2.1 defish_image_set.m 

 This file takes the original “fishy” image (see Figure 11.1) and removes this distortion 

(see Figure 11.2).  The user must specify a path in the MATLAB working directory where 

the images are located.  The distortion is removed from the images, and then saved into the 

same location with a different name.  In order for this segment of code to run, the function 

defish_image2.m must be included in the MATLAB working directory also.   

%defish_image_set.m        %no comments past here * 
% 
% Purpose: Generate and save a set of defished images. 
%     
% 
% Record of revisions: 
%   Date   Programmer   Changes Made 
%   ====   ==========   ============ 
%   5-30-02                     A. L. Nelson   Original Code 
% 
% Notes:    1) defish_image_set 
% 
%  2)               Slow: takes about 30 sec per image. 
% 
 
clear all 
 
%Set beginning and final image to be processed 
start_index = 5; end_index = 62;  
 
number_images = 0; 
 
%Set file name strings so MATLAB can find where the images  
%that need to be processed are located 
%Note Matlab doesn't like dots (.) in path names 
file_name_str = '3_11_03/test5'; 
 
from_file_name_string = [file_name_str '/image'];           %preprocessed image 
to_file_name_string = [file_name_str '/defished_image'];    %processed image 
 
%Processes images 
for i = start_index:end_index 
    number_images = number_images + 1; 
     
    %plot top view camera image 
    image_name_string = [from_file_name_string, num2str(i)]; 
     
    %Input file might be .jpg, .jpeg, or .bmp 
    %Use one ot the following lines of code: 
     
    %top_view_image = double(imread([image_name_string  '.bmp'])); 
    top_view_image = double(imread([image_name_string  '.jpg'])); 
    %top_view_image = double(imread([image_name_string  '.jpeg'])); 
     
    %Format image for plotting 
    %function --> defish_image2.m must be in working directory 
    top_view_image=defish_image2(top_view_image); 
     
    %Plot real world 
    subplot(1,1,1) 
    image(top_view_image/255) 
    axis xy 
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    axis square 
    pause(0.001) 
     
    %.bmp files are about 850K while .jpg files are about 30K 
    %choose the type of file that is desired to be created 
    %imwrite(top_view_image/255, [to_file_name_string, num2str(i), '.bmp']); disp(['Writing ', to_file_name_string, num2str(i), '.bmp']) 
    imwrite(top_view_image/255, [to_file_name_string, num2str(i), '.jpg']); disp(['Writing ', to_file_name_string, num2str(i), '.jpg']) 
end 

Section 9.3.2.2 – defish_image2.m 

 This function performs the procedure of removing the fish-eye distortion from the 

original image.  It also crops the image to the desired size of the user.  This function must be 

in the MATLAB working directory, along with defish_image_set.m for the image processing 

to succeed. 

%defish_image2.m 
% 
% Purpose: Version2: Remove fish-eye distortion from an over-head maze image. 
%    Image is also sized, cropped and fliped to by 540 by 540. (size is 
%    a result of the defishing process) 
%         
% Record of revisions: 
%  Date    Programmer   Changes Made 
%  ====    ==========   ============ 
%  5-20-02   A. L. Nelson  Origonal Code 
%  5-28-02   A. L. Nelson  Curve extrapolation method 
% 
% Notes 1) Called by video_get_range with defish_image2(640_by_480_image); 
% 
%  2) Only for use with 480 by 640 .bpm images from overhead winTV cam 
% 
%  3) defish_image2(white_grid_top_view_image); 
% 
%  4)                white_grid_top_view_image = double(imread(['calib_new_images/white_grid_on_maze.bmp'])); 
% 
%                                 5)                this function is now set to crop the image around the "field" located in the upper 
%                                                     right hand quadrant of the preprocessed fishy image 
 
function [unfished_image]=y(fishy_image) 
 
%Crop image so it is square 
image_width = size(fishy_image, 2); 
image_height = size(fishy_image, 1); 
 
%Crop image x dimention = cols. (y is already 480) 
% size should be 480 by 480 
center_error = 16; 
fishy_image = fishy_image(:, 81+center_error:560+center_error, :); 
 
%size(fishy_image) %debug 
 
%Flip image over hoizon so axes match those of the simulated world (origin in lower left) 
% Note: flipud requires a 2D matrix... 
fishy_image(:,:,1) = flipud(fishy_image(:,:,1)); 
fishy_image(:,:,2) = flipud(fishy_image(:,:,2)); 
fishy_image(:,:,3) = flipud(fishy_image(:,:,3)); 
 
max_offset = 100; 
 
%pad array 
for i = 1:3 
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    col_padded_fishy_image(:,:,i) = [zeros(image_height,max_offset) fishy_image(:,:,i) zeros(image_height,max_offset)]; 
end 
 
new_image_width = size(col_padded_fishy_image, 2); 
 
for i = 1:3 
    padded_fishy_image(:,:,i) = [zeros(max_offset,new_image_width); col_padded_fishy_image(:,:,i); 
zeros(max_offset,new_image_width)]; 
end 
 
new_image_height = size(padded_fishy_image, 1); 
 
center_index = round(new_image_height/2);  
 
%  The index of is the radial distance of the point 
%i.e. new 67 reads its element from 60... 
shift_points = [1 2 
    60 67 
    115 134 
    160 201 
    196 269 
    225 335 
    275 480]; 
shift_points(:,1) = shift_points(:,1)*1.2; 
 
max_radius = (2^0.5)*(center_index)+1; 
 
shift_vector = []; %This is one of the few times where you must init a matrix var 
 
%This loop creats a vector of linear extraplation points from shift_points 
for count = 2:size(shift_points,1) 
    start_ind = shift_points(count,2); 
    prev_start_ind = shift_points(count-1,2); 
    max_shift = shift_points(count,2) - shift_points(count,1); 
    prev_max_shift = shift_points(count-1,2) - shift_points(count-1,1); 
    new_elems = prev_max_shift:(max_shift-prev_max_shift)/(start_ind-prev_start_ind):max_shift; 
    shift_vector = [shift_vector, new_elems]; 
end 
 
%fill out any undefined elements in the linear extraplation shift curve vector 
shift_vector(length(shift_vector):round(max_radius)) = 0; 
 
x_dim = size(padded_fishy_image,2); %Columns 
y_dim = size(padded_fishy_image,1); %Rows 
 
for quad_count = 1:4 
    %Select a quadrant of the image. Note that there is a row-column to Cartesian coord change  
    switch quad_count 
    case 1 
        padded_fishy_image_quad(:,:,1:3) = padded_fishy_image(ceil(y_dim/2)+1:y_dim,ceil(x_dim/2)+1:x_dim,1:3); 
         
    case 2 
        padded_fishy_image_quad(:,:,1:3) = padded_fishy_image(ceil(y_dim/2)+1:y_dim,1:ceil(x_dim/2),1:3); 
        padded_fishy_image_quad(:,:,1) = fliplr(padded_fishy_image_quad(:,:,1)); 
        padded_fishy_image_quad(:,:,2) = fliplr(padded_fishy_image_quad(:,:,2)); 
        padded_fishy_image_quad(:,:,3) = fliplr(padded_fishy_image_quad(:,:,3)); 
         
    case 3 
        padded_fishy_image_quad(:,:,1:3) = padded_fishy_image(1:ceil(y_dim/2),1:ceil(x_dim/2),1:3); 
        padded_fishy_image_quad(:,:,1) = flipud(fliplr(padded_fishy_image_quad(:,:,1))); 
        padded_fishy_image_quad(:,:,2) = flipud(fliplr(padded_fishy_image_quad(:,:,2))); 
        padded_fishy_image_quad(:,:,3) = flipud(fliplr(padded_fishy_image_quad(:,:,3))); 
         
    case 4 
        padded_fishy_image_quad(:,:,1:3) = padded_fishy_image(1:ceil(y_dim/2),ceil(x_dim/2)+1:x_dim,1:3); 
        padded_fishy_image_quad(:,:,1) = flipud(padded_fishy_image_quad(:,:,1)); 
        padded_fishy_image_quad(:,:,2) = flipud(padded_fishy_image_quad(:,:,2)); 
        padded_fishy_image_quad(:,:,3) = flipud(padded_fishy_image_quad(:,:,3)); 
         
    end %case quad_count 
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    for x_index = 1:center_index 
        for y_index = 1:center_index  
            radial_dist = (x_index^2 + y_index^2)^.5; 
             
            if radial_dist < 1 %remove devide by zero errors 
                radial_dist = 1; 
            end 
             
            cos_theta = x_index/radial_dist; 
            sin_theta = y_index/radial_dist; 
             
            x_offset = cos_theta*shift_vector(ceil(radial_dist)); 
            x_offset = round(x_offset); 
             
            y_offset = sin_theta*shift_vector(ceil(radial_dist)); 
            y_offset = round(y_offset); 
             
             
            x_read_from_index = x_index-x_offset; 
            if x_read_from_index < 1 %remove zero index errors 
                x_read_from_index = 1; 
            end 
            y_read_from_index = y_index-y_offset; 
            if y_read_from_index < 1 %remove zero index errors 
                y_read_from_index = 1; 
            end  
            new_image_matrix_quad(x_index, y_index,:) = padded_fishy_image_quad(x_read_from_index, y_read_from_index,:); 
        end %for y_index 
    end %for x_index 
     
    %Un-flip and set resulting quadrant sub-matrixes 
    switch quad_count 
    case 1 
        sub_image_quad1 = new_image_matrix_quad; 
    case 2 
        new_image_matrix_quad(:,:,1) = fliplr(new_image_matrix_quad(:,:,1)); 
        new_image_matrix_quad(:,:,2) = fliplr(new_image_matrix_quad(:,:,2)); 
        new_image_matrix_quad(:,:,3) = fliplr(new_image_matrix_quad(:,:,3)); 
        sub_image_quad2 = new_image_matrix_quad; 
         
    case 3 
        new_image_matrix_quad(:,:,1) = flipud(fliplr(new_image_matrix_quad(:,:,1))); 
        new_image_matrix_quad(:,:,2) = flipud(fliplr(new_image_matrix_quad(:,:,2))); 
        new_image_matrix_quad(:,:,3) = flipud(fliplr(new_image_matrix_quad(:,:,3))); 
        sub_image_quad3 = new_image_matrix_quad; 
         
    case 4 
        new_image_matrix_quad(:,:,1) = flipud(new_image_matrix_quad(:,:,1)); 
        new_image_matrix_quad(:,:,2) = flipud(new_image_matrix_quad(:,:,2)); 
        new_image_matrix_quad(:,:,3) = flipud(new_image_matrix_quad(:,:,3)); 
        sub_image_quad4 = new_image_matrix_quad; 
         
    end %case quad_count 
end %for quad_count 
 
%combine sub-images 
uncroped_unfished_image = [sub_image_quad3 sub_image_quad4; sub_image_quad2 sub_image_quad1]; 
 
%Crop the image to only include the field (upper right-hand quadrent) 
% Std is 480 by 480. 
% Origonal was 640 by 480 
crop_error = -5; 
unfished_image(:,:,1:3)  = uncroped_unfished_image(81+crop_error:620+crop_error,81+crop_error:620+crop_error,1:3); 
cropped_image(:,:,1:3)  = unfished_image(220:540,210:520,:); 
unfished_image = cropped_image; 
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Section 9.3.2.3 – make_real_robot_paths.m 

 This segment of code is used to plot a robot path over a sequence of images.  The user 

defines a sequence of images to use, and is then prompted to enter the position of the robot 

on the image by using the mouse. 

%make_real_robot_paths.m 
% 
% Purpose: Show a sequence of images and collect a corresponding set of 
%  robot path points generated from user input via the mouse... 
%         
% Record of revisions: 
%  Date             Programmer  Changes Made 
%  ====                 ==========  ============ 
%  8-8-2001           A. L. Nelson  Origonal Code 
%  2-28-2002         A. L. Nelson  Modified for multiple robots 
%                   2-19-2003         A. L. Nelson  Altered to make movie info for version 4 games 
%    
% Notes 1) Order of path following: red green red green. 
 
clear robot_path; 
 
axis on 
 
%Set the file name strings so MATLAB can find the images to use 
file_name_str = '3_11_03/test5'; 
%frame_prefix_string = [file_name_str, '/image'];           %use fish-eye images 
frame_prefix_string = [file_name_str, '/defished_image'];   %use Defished images 
 
%Set start and end image numbers 
start_image_fraim_number = 5; end_image_fraim_number = 62; 
 
%Use one or the other of these lines depending on file type 
file_type_str = '.jpg'; 
%file_type_str = '.jpeg'; 
%file_type_str = '.bmp';   %big. try not to use 
 
incr_intreval = 1; 
 
%set number of robots that are used 
number_of_robots = 2; 
 
%are numbers padded or not... 
padded = 0; %1 for winTV, 0 for server 
pad_level = 4 
 
for i = 1:pad_level 
   pad_str(i) = '0'; 
end 
 
disp('Order of path following: red green.'); 
 
%Collect path vectors  
for robot_count = 1:number_of_robots 
   path_index = 0; 
   evalc(['clear robot', num2str(robot_count), '_path']); 
   for wii = start_image_fraim_number:incr_intreval:end_image_fraim_number 
       
      if padded 
       count_str = pad_str; 
         count_str(length(pad_str) - length(num2str(wii))+1:length(pad_str)) = num2str(wii) 
      else 
         count_str = wii; 
      end 
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      path_index = path_index + 1;       
   disp(['frame number' '  ' num2str(wii)]); 
      image(imread([frame_prefix_string num2str(count_str) file_type_str])); 
       
      if path_index ~= 1 
       evalc(['line(robot', num2str(robot_count), '_path(:,1), robot', num2str(robot_count), '_path(:,2))']); 
      end 
       
      switch robot_count 
         case 1 
            disp('click on RED robot #1 center') 
         case 2 
            disp('click on GREEN robot #2 center') 
      end 
          
      evalc(['robot', num2str(robot_count), '_path(path_index, :) = GINPUT(1);']); 
     
   end 
   disp(['Done with robot'  num2str(robot_count), ' path: hit any key to continue']) 
   pause 
end 
 
%Display last image with path lines 
image(imread([frame_prefix_string num2str(count_str) file_type_str])); 
 
%Set colors of the various paths that will be plotted 
color_array(1,:) = [.7 0 0]; 
color_array(2,:) = [0 .7 0]; 
 
for robot_count = 1:number_of_robots 
 evalc(['Hndl = line(robot', num2str(robot_count), '_path(:,1), robot', num2str(robot_count), '_path(:,2))']); 
   set(Hndl, 'LineStyle', '--', 'Color', color_array(robot_count,:), 'LineWidth', 2.5); 
end 
 
%Save path data for figures and movies 
%  Note Matlab doesn't like dots (.) in path names 
save([file_name_str '/path_and_movie_data'],  'robot1_path', 'robot2_path', 'start_image_fraim_number', 'end_image_fraim_number', 
'file_type_str', 'frame_prefix_string', 'padded'); 
 
Section 9.3.2.4 – robot_movie_maker_ver4.m 

 Using the sequence of images and the robot paths created for the images by 

make_real_robot_paths.m, a MATLAB movie is created.  In order for a movie to be made, 

the file path_and_movie_data.m that was created when the robot paths were defined must be 

in the same location as the images that are being used to create the movie.  Once a MATLAB 

movie has been created, it can be played using MATLAB or converted to AVI movie using 

the MATLAB function movie2avi.  Once in AVI format, the movie can be played using 

Windows Media Player or another application. 

%robot_movie_maker_ver4.m 
% 
% Purpose: Show a sequence of images and collect a corresponding set of 
%    robot path points generated from make_real_robot_paths.m 
%     
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%     
% Record of revisions: 
%  Date   Programmer  Changes Made 
%  ====   ==========  ============ 
%  8-8-2001   A. L. Nelson  Origonal Code 
%  2-28-2002                     A. L. Nelson  Modified for multiple robots 
%  6-3-2002   A. L. Nelson  Modified to play movies 
%                                 2-20-2003                                     A. L. Nelson                   Modified for Version 4 movies 
%    
% Notes 1) Call with robot_movie_player_ver4 
% 
%           2)  A file '/path_and_movie_data' must exist at file_name_str,  
%               generated by make_real_robot_paths.m 
 
clear robot_path; 
 
axis on 
draw_paths = 1 
 
%Set the file name string so MATLAB can find the images and the path information to use 
file_name_str = '3_11_03/test5'; 
load([file_name_str, '/path_and_movie_data']) 
 
%These variables are all now set by loading /path_and_movie_data (all saved from path tracking) 
%frame_prefix_string =  
%path_data_string =  
%start_image_fraim_number =   
%end_image_fraim_number =  
%file_type_str =  
%padded =  
 
%Sets color of robot paths 
color_array(1,:) = [.7 0 0]; 
color_array(2,:) = [0 .7 0]; 
 
incr_intreval = 1 
number_of_robots = 2 
pad_level = 4 
 
for i = 1:pad_level 
   pad_str(i) = '0'; 
end 
 
   path_index = 0; 
   for wii = start_image_fraim_number:incr_intreval:end_image_fraim_number 
       
      if padded 
       count_str = pad_str; 
         count_str(length(pad_str) - length(num2str(wii))+1:length(pad_str)) = num2str(wii) 
      else 
         count_str = wii; 
      end 
       
      path_index = path_index + 1;   
      disp(['Making frame number' '  ' num2str(wii)]);       
      image(imread([frame_prefix_string num2str(count_str) file_type_str])); 
      title(['frame number' '  ' num2str(wii)])       
       
      if draw_paths 
       for robot_count = 1:number_of_robots 
      evalc(['Hndl = line(robot', num2str(robot_count), '_path(1:', num2str(path_index), ',1), robot', num2str(robot_count),    
'_path(1:', num2str(path_index), ',2))']); 
         set(Hndl, 'LineStyle', '--', 'Color', color_array(robot_count,:), 'LineWidth', 1.5); 
         end 
      end 
       
      axis xy 
      pause(.01) 
      movie_frames(path_index) = getframe;         
   end 
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clf   
frames_per_second = 1;  
times_to_play = 2; 
disp(['Done making movie.  The movie will play ', num2str(times_to_play), ' times at ', num2str(frames_per_second), ' frames per second']); 
 
movie(movie_frames,times_to_play,frames_per_second); 
 
save new_movie movie_frames 
 
movie(movie_frames);   %plays MATLAB movie 
 
break 
 
%Display last image with path lines 
image(imread([frame_prefix_string num2str(count_str) file_type_str])); 
 
color_array(1,:) = [.7 0 0]; 
color_array(2,:) = [0 .7 0]; 
 
for robot_count = 1:number_of_robots 
   evalc(['Hndl = line(robot', num2str(robot_count), '_path(:,1), robot', num2str(robot_count), '_path(:,2))']); 
   set(Hndl, 'LineStyle', '--', 'Color', color_array(robot_count,:), 'LineWidth', 2.5); 
end 
title(['frame number' '  ' num2str(wii)]) 
 
axis equal 
axis tight 
axis off 
axis xy 
 
Section 9.4 – Parts List 

 An extensive parts list and datasheets for several major components used in the 

microphone sensor are included in this section.  Specifications of the LEGO® multiplexer 

used on the sheepdog are also included. 

Section 9.4.1 – Microphone Sensor Parts 

 Listed below are the components used to make one microphone sensor.  Resistors and 

capacitors were chosen based on their value and size, not ratings.  For example, the 10000 pF 

capacitor used for the tone decoder board is rated at 100V.  This high voltage rating is not 

needed for this application, but the capacitor was used because it was in stock and it met the 

size and value requirements.  All components were purchased from Digikey Corporation, and 

the part numbers listed are the Digikey part numbers. 
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Section 9.4.1.1 – Component List 

 
Microphone Circuit Board Components (see Figure 5.16) 

Quantity Part Description Digikey Part Number 

1 Panasonic Omnidirectional Electret Condenser 
Microphone Cartridge (WM-52B) P9970-ND 

1 680 Ω Resistor (⅛ W, 1%, 0805 SMD) 311-680CCT-ND 
1 3.3 µF Capacitor (6.3V ceramic X5R 0805) PCC1925CT-ND 

 

Amplifier Circuit Board Components (see Figure 5.16) 
Quantity Part Description Digikey Part Number 

1 µA741 General Purpose Operational 
Amplifier (8-SOIC) 296-11106-5-ND 

2 1 kΩ Resistor (⅛ W, 1%, 0805 SMD) 311-1.00KCCT-ND 
1 100 Ω Resistor (⅛ W, 1%, 0805 SMD) 311-100CCT-ND 
1 10 kΩ Resistor (⅛ W, 1%, 0805 SMD) 311-10.0KCCT-ND 
1 10 µF Capacitor (6.3V ceramic X5R 0805) PCC2225CT-ND 

 

Tone Decoder Circuit Board Components (see Figure 5.16) 
Quantity Part Description Digikey Part Number 

1 FSK Demodulator/Tone Decoder (SO14) NJM2211M 
2 0.1 µF Capacitor (25V ceramic X7R 0805) PCC1828CT-ND 
1 0.47 µF Capacitor (16V ceramic X7R 0805) PCC1818CT-ND 
1 56000 pF Capacitor (16V ceramic X7R 0805) PCC1809CT-ND 
1 10000 pF Capacitor (100V ceramic X7R 0805) 399-1159-1-ND 
1 5 kΩ Potentiometer CT20P502-ND 
1 470 kΩ Resistor (⅛ W, 1%, 0805 SMD) 311-470KCCT-ND 
1 10 kΩ Resistor (⅛ W, 1%, 0805 SMD) 311-10.0KCCT-ND 
1 1 MΩ Resistor (⅛ W, 1%, 0805 SMD) 311-1.00MCCT-ND 

1 XXX Ω Resistor used to set center frequency 
(⅛ W, 1%, 0805 SMD) TBD 

 

Table 9.1 Components used for the microphone circuit board 

Table 9.2 Components used for the amplifier circuit board 

Table 9.3 Components used for the tone detector circuit board 
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Section 9.4.1.2 – Component Datasheets 

 Portions of the datasheets for the major components used in the microphone sensor 

are included below.   

Section 9.4.1.2.1 – Panasonic Microphone [39] 
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Section 9.4.1.2.2 – Texas Instruments Op-Amp [48] 
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Section 9.4.1.2.3 – New Japan Radio Tone Decoder [38] 
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Section 9.4.2 – LEGO® Multiplexer 

 The multiplexer used on the sheepdog was purchased from Mindsensors Robotics [1].  

This three-channel active multiplexer allows for up to three LEGO® sensors to be plugged 

into a single input port on the RCX.  The circuit diagram of the multiplexer is shown in 

Figure 9.18.  There are some limitations to using this multiplexer.  Only sensors that require 

power can be connected to the multiplexer.  For example, a light sensor or angle sensor can 

be used with the multiplexer, but a touch sensor cannot.  Also, if the multiplexer is not 

connected to the RCX in the correct polarity, it will not work.  When power the RCX is 

turned on, only CH1 should receive power.  Take the following steps to check for correct 

polarity [“Active”]: 

1. Connect the multiplexer to the RCX 
2. Connect a light sensor to CH2 
3. Switch on the RCX 
4. If the light sensor is ON (red LED will be on), reverse the polarity of the RCX 

connection by rotating it 180º 
 
The technical specifications of the multiplexer are included in Table 9.4. 

 

 

Figure 9.18 Circuit diagram of the 3-channel active multiplexer [1] 



 113

 

Total power consumption 4 mW (< 3% of total power available) 
Current consumption  

(with no sensor connected) 500 mA 

Voltage drop 
(with Light sensor connected) 50 mV 

Channel selection time 75 ms 
Channel access logic Random access to any channel 

Size (W x L x H) 2 by 8 by 2 plate with 2 by 4 block with plate at 
b

Connector Standard Mindstorms electric connector plate on top of 
a 2 by 8 for sensor connection 

Devices used High reliability solid state SMT and low power 
microcontroller 

 

 

Table 9.4 Technical specifications of the three-channel multiplexer [1] 


