
Abstract

FORREST JR., CHARLES EDWARD. A Neural Network Control System for the Segway Robotic
Mobility Platform. (Under the direction of Edward Grant).

 An Artificial Neural Network (ANN) is a network of simple processing elements

that emulate neurons in the brain. The behavior of such a network is characterized by the

synaptic connections between the input data and the processing elements. Here, an ANN

was generated and used as part of a control system for a Segway Robotic Mobility

Platform (RMP) being trained in obstacle avoidance behavior. The single sensor input to

the control system is a SICK laser, a range-finding sensor; the control output is Pulse

Width Modulation commands to the RMP’s motors. The Segway RMP, neural network

maps input sensor data directly to appropriate motor output commands for obstacle

avoidance.

 Obstacle avoidance training was accomplished in a simulated LabView world

using supervised reinforcement learning and practices from evolutionary robotics.

Synaptic connection strengths were stored in an array called the artificial “chromosome”.

The chromosome was randomly modified, and the response of the network was compared

to a pre-defined desired output. The goal of the genetic algorithm training was to

minimize the error between the desired and actual outputs, yet to ensure that local

minima were avoided. Once the ANN was trained in simulation, it was transferred to an

actual RMP for obstacle avoidance testing in the real world

. The benefits of training ANN’s for obstacle avoidance tasks in simulation are

demonstrated here. In the simulated world, training and testing can be done in virtual

environments: offering greater control over environment complexity, testing the

robustness of the controllers generated, and filtering the training data set. All of the

foregoing reduces the cost of training and lead to the development of an optimized ANN

controller for RMP obstacle avoidance. The ANN provided input pattern generalization

for smooth motion, improved computational speeds, and added to the body of knowledge

for RMP controller development.

A Neural Network Control System for the Segway Robotic

Mobility Platform

By

Charles E. Forrest Jr.

A thesis submitted to the Graduate Faculty of North Carolina State University in partial
fulfillment of the requirements for the degree Master of Science

Computer Science

Raleigh

July 14, 2006

APPROVED BY:

________________________________ _________________________________

David J. Thuente John Muth

Co-chair of Advisory Committee Co-chair of Advisory Committee

Edward Grant

Co-chair of Advisory Committee

 ii

Biography

 Charles Edward Forrest Jr. is a graduate student at North Carolina State

University in Raleigh, NC. Born in Greensboro, NC and raised in Charlotte, North

Carolina. Charles Jr. is the son of Charles and Marilyn Forrest. He is a graduate of Myers

Park H.S. in Charlotte, NC and a graduate of NC Central University in Durham, NC.

 Through Charles’ seven-year academic matriculation, he has become a scientist, a

developer, a technician, and an engineer. His ability to think, compose, analyze, and

solve problems has become unquestionable. Charles has received the highest praises for

his contribution to the websites at North Carolina State University NC Central University

alike.

 He has proven himself an effective leader and coordinator as project manager in

the IBM I-mentor-u program. He has served as a tutor and mentor for the university and

in the community through the Durham-based Project Excellence program and the Raleigh

Boys and Girls Club. Above all, Charles is a spirit filled and spirit led person, attributing

all of his achievements and successes as services to God and humanity.

 iii

Table of Contents

List of Figures ... v

List of Equations... vii

I Introduction.. 1

II Literature Review .. 4

III Platform .. 8
Balance Sensor Assembly .. 8
Controller Boards .. 8
Control Processor... 9
Communication .. 9
SICK Laser ... 10

1. ROBOTIC SYSTEMS MODELING.. 11

1.1 Virtual World ... 11

1.2 Virtual Sensor... 13

1.3 Adjustable Sensor Resolution ... 17

2. CONTROLLER OPERATION .. 22

2.1 Rule Based Controller.. 22

2.2 Neural Network.. 25

2.3 System Performance .. 27

2.4 Training Worlds... 28

3. NEURAL NETWORK TRAINING ... 31

3.1 Organization.. 31

3.2 Training .. 33
Time-Step Independent Training ... 34
Time-Step Dependent Training... 34

3.3 Genetic Algorithm.. 36

4. TESTING AND RESULTS .. 38

4.1 Practice Worlds .. 38
System/Network Performance .. 41

4.2 Performance of Neural Network Training... 42

 iv

4.3 REAL-WORLD TESTING ... 44

5. CONCLUSION... 47

5.1 Closing Remarks .. 47

5.2 Future Research ... 48

6. BIBLIOGRAPHY .. 49

APPENDICES... 51

A.1: Actuator Assembly ... 54

A.2 Math .. 56

A.3 Neural Network.. 57

A.4 Rule-Based Control System... 58

A.5 Miscellaneous Tools ... 59

A.6 Training .. 61

A.7 Virtual Sensor System.. 66

A.8 Available World Segments .. 69

 v

List of Figures

Figure 1: Seattle Robothon for a Balancing Robot Symposium... 6

Figure 2: Two-Dimensional Virtual World - UCF Frame .. 12

Figure 3: The Robot Coordinate Frame .. 15

Figure 4: Obstacle Position Beam... 16

Figure 5: Single Segment VLMS Range Fan ... 17

Figure 6: Adjustable Sensor Resolution (in meters) ... 18

Figure 7: Virtual Actuator Geometry.. 19

Figure 8: Corner Avoidance Pseudo Code.. 23

Figure 9: Rule-Based Controller Geometry.. 24

Figure 10: Single-Layer Neural Network ... 25

Figure 11: Graph of Sigmoid Activation Function – Equation 12.................................... 26

Figure 12: Example Training Worlds ... 29

Figure 13: Chromosome Evolution: After 2 mutations, After 145 mutations 34

Figure 14: Local Minima .. 35

Figure 15: Genetic Algorithm - Chromosome Breeding Process 36

Figure 16: Genetic Algorithm – Resulting Gene Distribution.. 37

Figure 17: No Obstacle Cartoon Clip ... 38

Figure 18: Single Segment – Testing Deceleration .. 39

Figure 19: Single Segment - Concurrent Motor Speeds ... 40

Figure 20: Box Enclosure and Cone Left Open Practice Worlds 41

Figure 21: Training Performance over time.. 42

Figure 22: Cones Training .. 43

 vi

Figure 23: Segway Real-World Testing Environment.. 45

Figure 24: SICK LMS Range Fan .. 46

Figure 25: RMP Reaction to obstacle within Forward Distance Threshold 46

 vii

List of Equations

Equation 1: Total Distance Travelled ... 20

Equation 2: Resulting Change in Orientation ... 20

Equation 3: Width of Robot Wheel Base.. 20

Equation 4: Direction of Travel .. 20

Equation 5: Radius of Circular Path Traveled .. 20

Equation 6: Chord – Absolute Distance Traveled .. 22

Equation 7 Left and Right Motor Velocities... 22

Equation 8: LMS/VLMS Angular Distance and Angular Displacement.......................... 23

Equation 9: LMS/VLMS Current Input Angle ... 24

Equation 10: Advanced Rule-Based Controller: Forward and Side Distance 24

Equation 11: Motor Output from Neural Network .. 25

Equation 12: Neuron Activation Function ... 26

Equation 13: Chromosome Size.. 31

Equation 14: Chromosome Update .. 33

Equation 15: Performance Cost in Number of Transformations 42

 1

I Introduction

 Autonomous robots, like the Segway Robotic Mobility Platform (RMP), are

equipped with sensing devices that provide information about the world in which the

RMP is operating. The control system is the software that processes that sensor

information to make decisions concerning the robot’s locomotion. The software

developed for controlling the RMP is described further in section III: Platform. Our

control system is reactive, meaning the output is a function of the sensor inputs only; it is

open loop, because obstacle avoidance requires no information about past actions or the

state of the robot. We describe sensor input as the smallest unit of independent

information retrieved from a sensor – e.g., a single distance measurement retrieved from

a radar system. Input data can be obtained from numerous sensing devices individually,

or it can be the integration of the data sensed from many devices. Each input may have

varying degrees of confidence, or importance, and may be independent of the sensing

device from which the data was retrieved. The control system considers all inputs and

provides a predictable response for the robot.

 Two types of control system were designed and tested: a rule-based system, and

a neural network. A well-written rule-based system performs effectively if it is given

detailed information as its input. However, to derive a rule-based system that would be

effective for all combinations of sensor inputs would be infinitely complex. At minimum,

the resulting decision table would be computationally intensive. The objective was to

introduce the neural network to a minimum set of input patterns and have it generalize an

appropriate control action. Ideally, this behavior would replicate the response from the

rule-based system under the same conditions. Then, we let the neural network replicate

 2

this behavior in cases outside the training set. By doing so, we substitute the

computationally intensive rule-based system for a neural network whose independent

processing elements are inherently parallelizable. [15]

In 2002, a similar approach to developing a robot control system was researched

at North Carolina State University (NC State) [1]. Our objective was to replicate the

EvBot research approach at NC State for use on the Segway RMP. As both robots are

two-wheeled and rely on skid steering, it was a logical starting point for the design of the

RMP control system.

The neural network was trained using supervised learning [2]. In this process, a

performance metric determines how well the training of the neural network imitates a

path following task. The desired path could be retrieved from another algorithm written

for the task, one that was entered manually into the system, or even retrieved from the

joystick control actions of a human pilot.

The control system rules were derived to be:

1. IF the sensor detects no obstacle in view, THEN the robot must move

forward at a user defined maximum speed.

2. IF in the presence of an obstacle, THEN the robot must slow down and

turn to avoid the obstacle.

3. IF the robot must pass between objects, THEN the robot must remain

centered between the objects.

Two rule-based control systems were developed to comply with the above

requirements, and these were used to train the ANN. The two algorithms differ in their

ability to avoid small obstacles and in their ability to train the ANN. These issues are

 3

discussed further in Chapter 2: Controller Operation.

A variety of training methods were used to minimize the difference in

performance between the rule-based algorithms and the ANN response. Generally, the

training process involved gradually modifying the parameters that describe the ANN until

a desired performance criterion was met. In doing so, the robots cognitive responses are

manipulated incrementally until they match a desired behavioral pattern. Here, the ANN

was being trained for obstacle avoidance. The training method is detailed in Chapter 3:

Neural Network Organization and Training.

Once trained, the mature neural network was tested in simulation to determine if it

performed similarly to the rule-based control system that was the basis of its design.

These experiments confirmed that the neural network was generalizing unseen

environments into familiar patterns from the training set. The control system was tested

in a number of virtual practice worlds. The resulting motor speeds as a function of time

where continuous, revealing smooth motor responses. More detail on the construction of

these worlds and the performance of the neural network can be found in Chapter 4:

Testing and Results.

 4

II Literature Review

 The Segway Robotic Mobility Platform (RMP) is a balancing robot, successor to

the Segway Human Transport vehicle. The first RMP’s were developed and demonstrated

by Segway at the MARS program review meeting in San Diego, CA in April of 2003.

The Army Research Laboratory, along with other research institution across the country,

acquired the Segway RMP on loan from the Defense Advanced Research Projects

Agency (DARPA) to research feasible solutions for ground transport applications.

Before our research began, the Segway RMP at ARL was controlled via human-

in-the-loop process involving input from a joystick, so the user was directly involved in

the control loop. The system was not autonomous. Hence, the first objective was that of

creating a simple rule-based system for autonomous control of the robot. Later, a decision

was made to substitute any rule-based system developed with a trained neural network

controller.

A performance evaluation at the University of Pennsylvania assessed the RMP’s

stability in motion. They identified a 0.4-second delay in appropriate motor activity due

to the interference of the dynamic stabilization process. The longest delays, and the

biggest risk to stabilization, occurred when the RMP was descending from an obstacle

and operating on a low-friction surface [11]. The test platform used in this work was

indoor-controlled; it minimizes the work of the dynamic stabilization process thereby

increasing response time.

The artificial neural network, applied in this research as a control system for the

RMP, is the brainchild of Warren Mculloch and Walter Pitts. They conceived of a

network of weighted inputs whose sum would need to reach a particular threshold to

 5

‘activate’ a switch [12]. The changing weight on the input connections, or synapses,

emulates the reinforcement learning done in the brain. The switch mechanism is provided

by an activation function – typically of sigmoid shape.

Research done by Minsky and Papert in 1969 revealed the limitation of a single-

layer neural network (perceptron) to linearly separable patterns of input. Their research

implies that a single-layer neural network should be capable of learning object avoidance

behavior if and only if it can be described as a series of linearly separable arguments. By

linearly separable, they meant that the input/output function must be one to one. Input

patterns with similar outputs should not be separated.

A linear function can map the sum of distance measurement inputs to velocity to

control acceleration in the presence of an obstacle. Two linear functions were used to

control the acceleration of two motors independently; which gave a rudimentary obstacle

avoidance behavior.

Corner avoidance behavior was achieved using a non-linear one-to-one function;

this affects one motor only at a given input threshold. This makes it linearly separable.

High input sums correspond to a negligible effect on the left motor output. Lower sums

produce a negative output to reduce the speed of one motor.

In the course of our research, a more sophisticated rule-based system was

developed to prevent collision with small objects. Through similar reasoning, behavior

can be tokenized into a number of linearly separable patterns that are equal to the number

of inputs plus one. Each input has a threshold where it influences the change of a single

particular motor command. The extra token is used to move the Segway relative to the

sum of all the inputs.

 6

A neural network-based obstacle avoidance routine was designed by Andrew

Nelson for the EV-bot at North Carolina State University in 2002. In this system, the

input devices were tactile sensors evenly displace like whiskers in front of the robot.

Although it is not a balancing robot, the EV-Bot has a similar two-wheeled design. It was

also trained from a rule-based system like the simple one described in Section 2.1: Rule-

Based Controller [1].

The Segway RMP is a balancing robot that utilizes a proprietary balancing

algorithm called dynamic stabilization. There are many types of balancing robots, for

example the Legway, nBot, Gyrobot, Isis, and Bender shown in Figure 1.

Figure 1: Seattle Robothon for a Balancing Robot Symposium
From left to right: Legway, nBot, Gyrobot, Isis, and Bender.

In 1989, Grant and Zhang created a balancing system that used ANN’s for

control. They designed a three-hidden layer perceptron capable of balancing a pole over a

movable cart in two-dimensions. In this case, the training algorithm was developed using

a simulator and manual joystick manipulation. This approach allowed a rule-based

algorithm to be derived, because the simulator could be slowed down to compensate for

slow human responses. A control law, or rule based control system was written by

 7

observing and interpreting the user’s interaction. This was compared to the behavior

elicited from the user by the neural network. The two were shown to be similar [13].

Prior research on balancing robots using neural networks for obstacle avoidance

tasks is described in [3]. The objective of this research is to apply similar concepts to

develop an ANN-based control system for balancing a Segway RMP that is capable of

obstacle avoidance. The research focuses on the necessary training interfaces and virtual

environments.

 8

III Platform

 The Segway Robotic Mobility Platform (RMP 200) is a two-wheeled robot

designed to transport heavy materials in tight spaces. The RMP has two five horsepower

motors powered by one to four 52-volt batteries. It is has a payload capacity of 200lb, and

utilizes skid steering to attain a zero turn radius [3].

Balance Sensor Assembly

The robot’s Balance Sensor Assembly is a complex system of gyroscopes that

provide data on the RMP’s current pitch and pitch rate. When the RMP is tilted forward,

the stabilizing algorithm drives the wheels forward with an appropriate acceleration to

keep the RMP balanced. Segway designers coined the balancing algorithms “dynamic

stabilization” [4]. The details of this process are beyond the scope of this research. It is

important to remember that the fundamental movements: i.e., drive forward, drive

reverse, and stop, all rely on this balancing system. To drive forward, the RMP tips

forward at a specified angle for a specific duration, relying on the balancing algorithm to

adjust the wheels speeds gradually accelerating so that balance is restored after traveling

some specific distance. When the RMP reaches its maximum speed, it controls its angle

of tilt by exerting a force in the opposite direction to its current motion.

Controller Boards

The RMP is equipped with dual redundant controller boards for safety and

dependability. Both boards have digital signal processors responsible for monitoring the

complete system for faults. The control board scans for an interrupt every ten

milliseconds. At the same frequency, the controller polls the Balance Sensor Assembly to

calculate the necessary motor speed adjustments to balance the robot. Motor adjustments

 9

are made every millisecond to insure a smooth handling response [5].

Control Processor

The Segway RMP is a powerful, highly maneuverable, self-balancing hand truck.

It is successor to Segway’s human transport model (HT). The Segway HT is a user

controlled balancing scooter. The RMP model, however, can function as an autonomous

robot. The point of difference between the HT and the RMP is the RMP’s control

processor. The object of the control processor is to issue speed and steering commands

that can be interpreted by the RMP’s onboard controller and translated into the motor

commands. These commands move the robot while maintaining its upright balance. The

control system of choice for the RMP was an IBM Think Pad, which was strapped to the

RMP’s top plate.

Communication

The controller connects to the RMP via Controller Area Network (CAN) bus.

Communication is configured to 100 Hz and messages are sent via two channels. Each

channel can send only one message at a time, and that message is duplicated on the

second channel for safety. If communication is not redundant, the RMP stops and

balances. The message protocols break down the CAN messages into seven fields:

Source, Destination, Header, Velocity, Turn-Rate, Status, and Status Parameters. The

Status and Status Parameters were never used during the course of the research. Those

fields deal with setting maximum velocity and other such default behaviors that were

non-essential for direct motor control [6].

 This is important because the neural controller issues speed commands for the

individual motors. Later these instructions are translated to absolute velocity and turn-

 10

rate. Essentially, skid or differential steering instructions are translated into a motion

vector. Velocity and Turn-Rate calculations are discussed further in Chapter 1: Robotics

Systems Modeling.

SICK Laser

Along with the control system, a laser measurement tool called the SICK LMS

200 was mounted to the front of the RMP robot. The LMS is an optical measurement tool

with a range of 80 meters for surfaces with high reflectivity. Our environment was indoor

uncontrolled, so the LMS was expected to visualize a variety of surfaces, e.g., plastic

cones, sheet metal from the garage, polished wood from the desks, even clothes as

humans often moved objects in the RMP world during experiments. The documentation

suggests the LMS range deteriorates to 10 meters for objects with low reflectivity. To

accommodate for these surfaces, the control system only responds to a viewing radius of

8 meters. The maximum velocity of the Segway RMP is 8miles/hour or 3.6

meters/second. The LMS has a response time of 53ms, so theoretically the RMP will

recognize inanimate objects from a distance of 7.81 meters. We did not have to account

for dust, fog, or other outdoor conditions [6] [7].

The LMS operates by transmitting a pulsed laser beam. The beam is reflected

with a .25 angular displacement over a 180-degree span. High resolution is difficult to

process. The neural-network takes much longer to train with 720 inputs. Typically the

train was cut down to 39 evenly displaced input measurements, which meant that at a

maximum range of 8 meters the resolution would detect straight objects of 0.6 meters in

length. At the forward distance threshold of one meter, the LMS will detect objects less

than 8 centimeters in size [7].

 11

1. Robotic Systems Modeling

The Segway RMP has three main systems. The SICK Laser Measurement Sensor

receives distance measurements from the environment. The control processor is the

hardware that houses the control system and computes motor commands relevant to some

appropriate behavior. Finally, the hardware controller boards (actuator) instruct the

motors to spin the wheels at the appropriate rate.

It is not necessary that the sensor and actuator systems be modeled in simulation

for the training of the controller to be successful. A reasonable alternative would be to

retrieve actual input data from the LMS and drive the RMP itself using the rule-based

control system. However, there are significant advantages in doing so because the sensor

system can be positioned virtually, in fixed or random positions, with respect to

obstacles. Consequently, specific patterns can be identified and used as input training

patterns for the system. Also at this stage, duplicate patterns can be filtered out thereby to

improving training performance. By rotating the virtual sensor perspective, specific input

patterns can be obtained allowing the user more control over the training process.

After motor commands are supplied by the control system, a virtual actuator

calculates a new position in a fraction of the time required to move the actual robot. This

system requires the translation of skid steering instructions to a motion vector. The

motion vector is applied to the current position to calculate the new position. The process

of determining the motion vector is shared. It is also required to communicate with the

RMP’s motor controllers. (See Section III: Platform).

1.1 Virtual World

 The SICK LMS input device works in two-dimensions to detect obstacles ranging

 12

90 degrees in each direction from the center of the device. Naturally, our virtual world

model is also in two-dimensions. The robot along with all other objects is represented in a

single Cartesian plane.

 The view is a two-dimensional aerial perspective of the world. A graphical user

interface displays the world by drawing object coordinates. In Figure 2, the width and

length of the RMP, the scan area of our input device, and other obstacles in the virtual

world are shown. Motion and direction of the robot and its interaction with the obstacles

can be seen. Through observation, it can be determined if the virtual robot is learning a

desired behavior.

Figure 2: Two-Dimensional Virtual World - UCF Frame

 By simulating the Robot in two-dimensions only, it should be noted that

information about the height of objects in the world is missing. To make this an

acceptable handicap, it was insured that the objects in the robot’s world were visualized

at the height of our LMS, which is approximately 1 meter from the ground. The robot

was not tested to navigate slopes or uneven terrain. Generally, it was assumed that the

control system should not need to know about changes in elevation, wobble, or tilt to

 13

make decisions. Dynamic Stabilization makes this a difficult. Often the RMP will tilt

slightly during operation causing the LMS to see over the cone testing obstacles. This

causes the control system to provide widely disparate motor speeds from one interval to

the next.

Obstacles in the virtual world were represented as concatenated line segments.

Virtual worlds were described using a 2MX2 matrix of segment points - where M is the

number of segments. Each point is stored sequentially in a text file and read into an array

before being drawn. The segments themselves are not delimited, so adjacent segments

cannot be represented by three points. Each segment has two entries a start and a

destination.

 The advantage of describing the world in this fashion is the ability to model

virtual, high resolution, complex worlds. The disadvantage is that a significant amount of

information is needed to describe simple objects. Circular objects could require an

inexhaustible amount of computation to represent with precision. This disadvantage was

overcome by creating simple training worlds with a few simple objects. Further detail on

training worlds can be found in Chapter 2: Controller Operation.

1.2 Virtual Sensor

 The SICK LMS was replaced with a virtual range finding component. This

virtual LMS (VLMS) software emulates the SICK by calculating distance inputs

trigonometrically. The number of inputs is entered by the user, and the system calculates

the distance from the sensor location to whichever obstacles are within range (8 meters)

of the sensor. Otherwise, the maximum range is returned.

 Obstacles in the environment are represented as line segments. Information about

 14

the slope, intersect, magnitude, and position of each line is calculated to determine if any

objects are in view of the sensor. In our distance-measuring algorithm, every obstacle

segment is translated twice – first with respect to the robot, then with respect to the input

trajectory. This was done in three steps:

1. Translate each object from the Universal Coordinate Frame to the Beam Frame.

2. Determine the X-axis intercept by deducing the line from the line segment end-

points.

3. Determine the object with the shortest distance from the robot.

 In the beam frame, the robot and obstacle segments are transposed and revolved with

respect to the some directional input. The value of this input is the calculated length of

the line-segment between the sensor and any obstacle in the input direction.

Consequently, if any obstacle segment has an X-intercept, which lies in the viewing

range of the VLMS, then our object is within detectable distance. Furthermore, if the

object is detectable, the X-intercept is the distance from the VLMS to the object.

 The sensor calculations and the rendering of the segments take place

simultaneously for performance reasons. Since we need to manipulate the segment

positions graphically, we save a step, go ahead and determine the sensor values.

 15

Figure 3: The Robot Coordinate Frame

In the introduction to this section, objects are seen by the user in a single frame

termed the Universal Coordinate Frame. In this frame, information about the location of

objects and the robot is maintained. The viewing range of the VLMS can also be

visualized by representing each beam as an object on the UCF coordinate plane. The

sensor itself is not visible in the user interface. The general location can be perceived by

viewing the beam origin. The orientation can be perceived by looking at the sensor range

fan shown in Figure 2. In the real world, the sensor is attached to the body of the robot.

Sensor location is adjustable, but it is static parameter recorded with respect to the robot.

The VLMS is adjustable on the simulated robot just as in the real situation. Input from

the LMS is then translated to UCF using robot position information.

Geometric transformations are used to translate objects from UCF to frame views

with respect to the robot and vice versa. In the robot frame shown in Figure 3, the robot

becomes the center of our world and each object is translated accordingly. The robot icon

is a circle with a line drawn from the center to the perimeter. The line indicates the front

of the robot. The LMS sensor sits there by default.

 16

Figure 4: Obstacle Position Beam

 To make the simulation more robust, it is not assumed that the virtual sensor will

be mounted to the front of the robot. Another transformation is performed to image the

robot and the obstacles with respect to the sensor inputs. The sensor has a range of input

originating from the same location, but projecting at various angles. The world is rotated

with respect to every input in the sensor system. In Figure 4, the robot and obstacles are

transformed with respect to the single input beam. From this view, it is easy to determine

the distance between the VLMS and the obstacle by finding the x-intercept of the

obstacle segment. There are a few exceptions. Since we are dealing with line-segments

rather than lines, we have to determine if the line-segment ever crosses the X-axis to

begin with. As well, vertical line-segments that are not functions have to be

approximated. As the slope approaches infinity, the value of X is the X intercept we are

looking for.

 The LMS can technically be mounted to any portion of the robot, and in any

direction. In fact, the VLMS has built in flexibility to allow testing in that faculty. The

 17

LMS was mounted on the front of the top-plate on our Segway RMP. This was a

convenient location allowing room for the control processor to be mounted on the rear of

the top-plate. Similarly, the VLMS was mounted to the front of the virtual robot.

 Figure 5: Single Segment VLMS Range Fan
 The LMS has a 180-degree field of vision, with a half-degree resolution, and a

maximum viewing range of 8 meters. Therefore, the LMS eye spans a two dimensional

space with an area of 32 pi. The virtual sensor implemented in this work emulates the

LMS mounted to the Segway RMP

1.3 Adjustable Sensor Resolution

The VLMS is capable of reducing the number of input measurements calculated.

We may do this to reduce performance cost, or to improve the performance of the neural

network. From the simulation interface, the user is asked to provide the number of inputs.

The number of inputs to the VLMS is limitless; however having more than 360 would be

a waste of processing performance. The SICK LMS that we are modeling has a

maximum resolution of 360 inputs. When fewer inputs are requested, the input stream on

the SICK is filtered to show only the requested quantity of input range values evenly

 18

distributed over the view space. Consider Figure 6 below. It is quite conceivable that a

lower resolution can be just as effective as the higher resolution depending on the size of

the obstacles in our environment.

Figure 6: Adjustable Sensor Resolution (in meters)
Input Resolution [100 inputs, 25 s, 10 Beams]

1.4 The Actuator Group

At each simulation time step, the following actions are performed:

1. The virtual sensor readings are updated.

2. The rule-based controller and/or neural network determine the appropriate

wheel speed for each motor on the RMP.

3. The robot’s next position is calculated as a function of its current position,

orientation, the time step size, and the current wheel motor rates

 This is nearly the same process used by Nelson [1], excluding a fourth step –

validation. Validation prevents a collision using information the robot could not know. A

crash incident is recorded and the network is retrained accordingly. In a real scenario, it is

quite possible for a mal-functioning control system to drive the RMP into an invalid

region. If that region is a wall or obstacle, the robot will crash. If validation is required,

the neural network is producing erroneous values that cannot be validated in a real

 19

scenario anyway. If the crash occurs during training, performance error should be high.

Otherwise, the training algorithm is ineffective for the training set. The rule-based system

is crashing too. If the crash occurs after training, the neural network is immature and

needs to be retrained. Either way, let it crash. In simulation, it can only help to see the

robot crash and burn. Insight may be acquired through how it crashes into the obstacle.

 The 'Robot Vector' is a data structure that holds information concerning the

current position and orientation of the robot at any point in our simulation. As the motors

are powered in our virtual world, we calculate the distance and direction traveled by the

robot geometrically. From this information, we can determine the distance traveled by

our robot at a given time-step.

Figure 7: Virtual Actuator Geometry
The actuator group translates motor instructions into a translation vector. The

translation vector contains information about the magnitude and direction of travel over

the relevant time interval. We have to use that to relocate the virtual robot as described in

Figure 7: Virtual Actuator Geometry. We calculate the total distance traveled by

 20

averaging the two motor speeds and multiplying by the change in time.

Equation 1

RMV stands for Right Motor Velocity and LMV stands for the Left Motor

Velocity. If the RMV is not equal to the LMV, the robot will move in an arc with a

constant turn rate. The derivative of turn rate would be the total change in orientation

with respect to the time interval.

Equation 2

With a linear turn-rate, the robot will either follow a circular path or spiral path.

Generally, we determine that our path is circular if and only if the width of the wheelbase

can be derived from the wheel travel distances and the change in robot orientation using

the following formulae:

Equation 3

A spiral path is like a circular path whose radius changes over time. If the radius

gets smaller, you have an inward spiral. If the radius gets larger, you have an outward

spiral. The angle of orientation is small for a given time step, so the change in radius is

very small. For simplicity, we can conclude that the radii are the same and the robot

follows some circular path during the time-step. Making this assumption, the direction of

our robot's movement is calculated as half the change in orientation.

Equation 4

Equation 5

Distance = (RMV/LMV)*dt

 Delta Orient = Abs (RMV*dt - LMV*dt)/ WB

Width = (Outer Arc Length – Inner Arc Length) /Delta
Orient

Direction = 90 – (90 – (Delta Orient/2)) = Delta Orient/2

Path Radius = Arc Length / Delta Orient

 21

 Equation 6

The magnitude of the translation vector is the distance between the start and destination

position. We use the Arc Length and the Orientation Angle to find it. The vector V is the

motion vector whose magnitude is the length of the Chord.

Chord = 2cos (DeltaOrient/2)* Path Radius

 22

2. Controller Operation

2.1 Rule Based Controller

A rule-based control (RBC) system determines desired wheel speeds by applying

a set of rules or predefined transformation functions to the inputs. The sensor system

provides the RBC with data about the environment, and a desired maximum speed is built

into the program. The maximum speed can be set by the user up to the maximum speed

of the robot. By default, the maximum speed is set to 2 m/s. As the sum of the inputs

approaches the maximum range of the virtual sensor (8 meters), the motor outputs

proportionately reach the maximum speed.

Basic obstacle avoidance can be accomplished by adhering to two rules. Consider

that the LMS provides symmetric distance information in a 180-degree span as shown in

image 4. First, separate the inputs values into two equal segments. Then set the motor

velocities proportional to the sum of the inputs on the opposite side [1].

Equation 7

LMV and RMV are the left and right motor velocities; LSR and RSR are the left

and right sensor readings respectively. This is very basic obstacle avoidance. It works

well to avoid walls and other obstacles.

 A control system built on this rule alone is insufficient when the sum of the

inputs on each side is equivalent and decreasing. This can happen if, for example, the

robot is a heading into a corner. In this situation, the controller is likely to continue

straight forward and slow to a stop. The second rule was implemented to counter this

problem. If the total of the sensor readings is less than some threshold, turn around [1].

LMV = (RSR/ Max (RSR))*2
RMV = (LSR/ Max (LSR))*2

 23

Figure 8: Corner Avoidance Pseudo Code

A system based solely on these two rules was effective to train obstacle avoidance

with many obstacles. Still, the training scenarios were insufficient to create a basis for the

problem space. The above method does not account for the width of the robot. If the

robot sees an opening, it will attempt to pass through it whether it is too big or not.

Suppose for example, our RMP decides to navigate between cones. The rule-based

system would not be able to determine if it could fit between the cones, or if they should

be avoided. A third rule we created using a bit of geometry to replace the second. We

simply determine if any obstacle is too close to the robot front or side as information is

provided from the sensors.

 First, we determine the angular distance between the sensor input beams. There

can be a number of inputs from 2 - 360 representing 90 degrees to a half-degree

resolution. Since we know that the input is evenly spaced, the angular difference can be

determined using the number of elements in our input vector. The LMS viewing area is (-

90 degrees, 90 degrees) with respect to the robot. The displacement is the angle of the

very first input. It is equal to (-90) degrees plus half of the angular distance. Let an mX1

vector S of angles represent filtered input readings from the LMS. Where 2<m<360

Equation 8

Once we have the displacement angle, we iterate through the inputs and determine the

angular distance from the front of the robot to each input. From right to left the beam

angles are a scalar multiple of the Angular Distance added to the angular displacement.

AngleDist = 180 / m

AngleDisp = (AngleDist) / 2 - 90

If (LSR+RSR<Threshold)
 RMV = -LMV;

 24

Equation 9

After calculating the Input angle, the input value can be used to determine the distance of

the object from the center of the LMS. Trigonometry tells us that the forward and side

distance from the sensor to the robot can be determined by the following functions:

Equation 10

Figure 9: Rule-Based Controller Geometry

‘SD’ is the side distance from the sensor to the object in question. ‘FD’ is the

forward distance from the sensor to the object in question. If the forward distance

becomes less than our predetermined threshold, we are approaching an obstacle. We may

or may not need to turn around. Only if the side distance is also less than half the robot's

width can we conclude that our robot will not pass adjacent to the obstacle. If this is true,

the robot applies the negative of the left speed command to the right motor. This turns the

robot around without slowing down. The virtual system can comply simply enough, but

without applying some principles of acceleration, the RMP may be unable to comply, or

may respond erratically. We assume that such an action takes place at slow speeds;

otherwise, inertia could be a problem.

InputAngle[n] = S[n] * AngleDist + AngleDisp || n = {0,1,2...m-1}

FD[n] = cos(InputAngle[n])*Range

SD[n] = cos(InputAngle[n])*Range

 25

2.2 Neural Network

The focus of our research was the implementation of a single-layer neural network as the

control system for our Segway RMP. A mature neural network should behave similarly to

the rule-based control system when presented with similar input patterns.

 The network structure has five components:

1. Sensor Inputs

2. Synaptic Connections

3. Summing Junctions

4. Neuron Activation Functions

(Neurons)

5. Motor/Actuator Outputs

 Figure 10: Single-Layer Neural Network
Sensor inputs are processed by a class we call the Neural Core. It provides the input-

output mapping between the Sensor Inputs and the Motor Outputs. The network output

can be described as a composite function of inputs.

Equation 11

Motor output is the result of applying a linear activation function to the weighted output

of the neuron activation function. The neuron activation function is a sigmoid that

normalizes the weighted input from each of the sensors to a value between zero and one.

The input values are combined with varying confidence by the summing junctions as they

M.O. = F (Inputs) = Sum (NAF (SUM (Inputs)))

 26

enter the virtual neurons. The neuron activation function is a sigmoid described by the

formula:

 Equation 12

Figure 11: Graph of Sigmoid Activation Function – Equation 12

‘I’ represents the Inputs and ‘W’ represents the synaptic weight values. It is not necessary

that the activation function be of sigmoid shape, but it does offer unique flexibility. If the

synaptic connection weights applied to inputs before entering the summing junctions are

low, the sigmoid will have small points of reflection and behave similar to a linear

function. However, if the output of the summing junction is high, the points of reflection

will be distinct; the sigmoid will appear as a step function having only two outputs zero

or one. When the summing junction has a sufficiently high output to produce a one value

from the neuron activation function, we say that our neuron ‘fired’. The combination of

firing neurons then becomes the domain for our motor output function.

 Synaptic connection weights are the weights applied to the inputs before being

summed in the summing junctions. There are two sets of synaptic connections in a single-

layer neural network. The first set connects the sensor inputs to the summing junctions

whose output is the domain of the neuron activation functions. The second set of synaptic

NAV(W,I) = 1/(1+ e^(SUM(W*I))

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

Input

O
ut

pu
t

 27

connections describes the weight values applied to the neuron output. Refer to equation

11. All are real valued scalars, modified at random by the network.

2.3 System Performance

 The power in a neural network comes from its ability to use a small training set to

learn a behavior that can also be applied outside the range of the data used for training.

Virtual worlds were described in a system of line segments. Processing range information

is simple for a world with a single or a few objects. However, training with a world of

objects becomes very costly very fast in terms of computing performance. The overall

training time can vary greatly depending on the quality of the simulation.

 The number of training cycles per training session depends primarily on how

quickly the neural network can converge to a local minimum error or the error threshold.

Other factors are the size of the network. How many inputs, neurons, and motors are in

the system? The number of neurons can be dependant on the number of sessions if the

user chooses dynamic growth. Multiple training sessions can help push the performance

error out of a local minimum, allowing the neural network to continue its training. How

many sessions is either user defined or determined by the error threshold.

The Virtual LMS Time complexity is third order. The number of operations is a

function of the VLMS resolution, obstacles segments, and training examples. The inner

loop contains one product operation and two trigonometry functions.

The Rule-Based Controller time complexity is second order. The number of

operations is a function of the VLMS resolution, and the number of training examples.

The inner loop contains five products, two sums, and two trigonometry functions.

The neural network has a fifth order training time complexity. The number of

 28

operations is a function of the number of sessions, the average number of training cycles

per session, the number of training examples, the resolution of the VLMS, and the sum of

the number of neurons. The inner loop contains one sum and one product.

 The simulation performance for a trained neural network is third order. The

number of operations is a function of the number of training steps, the number of

neurons, and the resolution of the inputs. The inner loop contains one sum and one

product. An additional cost is involved in running the VLMS...

2.4 Training Worlds

 To curb some of the training performance costs, special training worlds were built

starting with a single segment and moving towards a more complex multi-part segment.

A filter system was included to eliminate duplicate training samples.

The training worlds exist to give the neural network some obstacles to view sufficient to

represent a basis for all possible inputs. Training worlds are composed of just a few

obstacles revolved to create a sample set of input values for training the neural network.

The rules-based algorithm provides desired output speeds for this set of input values. The

problem with using a single or too few obstacles is a learning deficiency in behaviors that

relate multiple objects. The worlds made are as follows:

 29

Figure 12: Example Training Worlds
noObstacle

 This is an empty world with no obstacles. This is good for training the maximum

speed. Training should be a very fast. There is little to learn.

singleSegment

 This training world, shown in Figure 2 and Figure 12, contains a single 6-meter

long segment. The segment is horizontal across the origin. By orienting the robot in fixed

positions around the segment, various input patters can be observed. That makes this

training world effective at obstacle avoidance. It applies to worlds with long solid

obstacles or walls.

 30

conesTrainer

 Shown at the end of Figure 12, this world contains small objects spaced unevenly.

This training world is useful for extracting behavioral responses to large and narrow

passages. It is composed of three in-line segments. Two of the segments are .2 meters

apart. Between the second and the third is a full meter gap. The width of our virtual robot

is a half meter, so the robot should have no problem passing through the large opening,

but should avoid the small one.

 31

3. Neural Network Training

Training the neural network involves modifying the synaptic connection weights

until the motor outputs of the neural network match closely to that of the rule-based

system. We call the weight values genes, and store them in a single dimensional array we

call the chromosome. The size of the chromosome is dependant on the number of inputs,

the number of neurons, and the number of motors. This is calculated using the following

formula:

Equation 13

 The variable ‘I’ is the number of inputs to the neural network. ‘N’ represents the

number of neurons, or combinations of inputs. ‘M’ is the number of motors. There are

(I*N) synaptic link weight values that determine the confidence of a particular input

stream as it enters the neurons. The neurons fire if the sum of the weighted inputs is high

enough to reach the neuron activation energy.

 The other N*M entries describe the effect of each neuron activation on each of the

motors. An input that has no effect on a neuron is one whose joining synaptic weight

value is zero. Similarly, neuron activation may have no effect on a particular motor. In

this case, the weight value of the synapse connecting the two should converge to zero.

3.1 Organization

Training is accomplished through a process of supervised learning. Training data

is gathered by applying the rule-based control system to various sensor input patterns,

and recording the resulting motor response. The responses of a rule-based control system

are our desired behaviors used to train the neural network.

SizeOfChromosome = I*N+N*M

 32

Network training is highly dependant on the mature algorithm being used, and the

training input data set. The algorithm determines how the neural network should behave,

but without care, the network may detect behaviors outside of our objectives [2]. For

example, the rule-based system may incorporate a series of forward, and then reverse

motor commands in obstacle avoidance. This stutter step action we would like to be

ignored by the neural network.

The training input data set determines the scope of the training. The training data

serves as a basis for all possible input patterns. A training sample set with too few entries

may train well, but not have the experience to resolve classes of input to the desired

motor response. Ultimately, the training process should resolve a neural network that

performs nearly identically to rule-based system for the training data provided. It must

also perform reasonably for input patterns outside the training set. What is reasonable is

qualitative in that the behavior must be observed.

Training is initialized by creating a chromosome array of the appropriate

dimension given the current number of neurons, inputs, and motors. This chromosome is

modified by an abstracted training process that produces: (1) an updated chromosome,

and (2) a performance evaluation. In the training process, it was not expected that an

initial chromosome would be transformed into a mature chromosome during a single

session. This possibility existed, but the probability of occurrence was considered highly

unlikely. The only expectation was that a local minimum of performance error would

eventually be reached.

 When the performance evaluation is poor and the user wishes to continue training,

the mutated chromosome is passed back for re-training. Training the same chromosome

 33

repeatedly is the same as extending the previous training session. This is helpful if the

local minimum for performance was not reached in the previous training session.

Typically, systems stuck in a local minimum must be somehow propelled from this

condition. One solution is to train multiple initial chromosomes and accept the best of the

set. Another is to pass hybrid chromosome of multiple optimized chromosomes. Another

solution may be to increase the size of the chromosome and pass the larger chromosome

for training.

 Training organization can be described by the following composite function:

Equation 14
The resulting chromosome we call the mature chromosome.

3.2 Training

 Motor output is the control system’s response to input data presented by the

sensor system at any given moment in time. For this reason, a single input/output pair

provided by the rule-based system is regarded as taking one time-step. In the real world,

adjacent time-steps are expected. In simulation, a time-step may be completely

independent of its neighbors, or it can be acquired randomly. A typical training cycle

consists of three tasks:

1. Apply an input pattern to the neural network described by the current chromosome.

2. Calculate the performance error in the motor output response of the neural network

3. Mutate the existing chromosome as necessary relative to the performance error.

 We calculate error as the root-mean-square difference between the desired speeds

as reported by the rule-based system and the motor output of our neural network. If the

Updated Chromosome =S (Initial Chromosome, Inputs, Desired Speeds, Time steps)

Mature Chromosome =T (Updated Chromosome, Addition of Neurons, Breed Chromosomes)

 34

error improves with the new chromosome, we keep it. Otherwise, we discard it and

mutate the chromosome again. This systematic adjustment of the synaptic connection

weights defines the current behavior of the chromosome in training.

Figure 13: Chromosome Evolution: After 2 mutations, After 145 mutations

Time-Step Independent Training

 Three variations to this process were tested. In the first method, we solved for the

chromosome that works well for the first time step and used it as the Initial chromosome

for subsequent time steps. This is the training process described in [1]. Finding a

chromosome that works for a single input output pair is similar to finding the line of best

fit given only one point. Such a trivial situation always results in an exact solution.

However, when you apply the so-called mature chromosome to subsequent time steps,

the chromosome is highly ineffective and requires complete mutation. The error

convergence is neither uniform nor predictable.

Time-Step Dependent Training

 The second method works the same as the first except we calculate the error for a

given chromosome over all time steps. This method typically converges to a chromosome

with a higher error than the allowed threshold. It finds the local minimum of error

requiring a very loosely defined expectation.

 35

Figure 14: Local Minima

 Figure 14 is a visualization of how convergence to a local minimum may

not produce the best results in the network. Small modifications to the chromosome

produce greater errors; they are therefore discarded. Large changes are required at this

point to displace the network so training can continue.

 Determining when a local minimum has been reached is non-trivial. As a result,

determining an appropriate training duration is equally difficult. An arbitrary number of

training cycles tends often to be too many, or too few to bring the network into an

appropriate error tolerance. The result was either an immature chromosome or an

unneeded loss in performance.

 Since we could not predict the number of training cycles, we used change-in-

error to determine the best time to stop. After 50 training cycles that did not show

improvement, the training session ended.

 The chromosome is a composition of two sets of synaptic connection weights.

The first set describes the weight values of inputs as they enter the first summing

junctions. The second is the weight values of the activation functions before they entered

the summing junctions. In yet another test, we tried to isolate parts of the chromosome to

reduce our error. First, we allowed the chromosome to change only the first set of values

for improvement. Then, after modifying that set, we turn to the second set and modify the

 36

weights there. Mutation is toggled from first to second when the breakpoint has been

reached and no further mutation in the current set has improved the performance of the

network for arbitrary number of training cycles.

3.3 Genetic Algorithm

 The third training method increased the efficacy of neural network training

sessions with genetic algorithms (GA’s). Genetic Algorithms are algorithms that exploit

concepts of natural selection [8]. In nature, survival of the fittest suggests that the most

fitting species will mate to produce even better offspring. The less fit species will pass

away. The process continues repeatedly to refining the gene pool. Here, multiple initial

chromosomes populate the gene pool. These chromosomes were refined and transformed

into updated chromosome using training method two. The two best performing

chromosomes were selected to breed and form new chromosomes. The gene pool was

then repopulated with multiple instances of the four. The chromosome breeding process

is shown in Figure 15 and Figure 16.

Figure 15: Genetic Algorithm - Chromosome Breeding Process

1. Decompose(Best Chromosome) - - > [Set1A Weights, Set2A Weights]

2. Decompose(Second Best Chromosome) - - > [Set1B Weights, Set2B Weights]

3. Compose(Set1A, Set2B) - - > New Chromosome 1

4. Compose (Set1B, Set2A) - - > New Chromosome 2

 37

Figure 16: Genetic Algorithm – Resulting Gene Distribution

 Eventually this process converges to a pool of chromosomes all having the same

gene values. At this point of convergence, we say our pool is exhausted. If we have not

yet achieved our desired error tolerance, we can replace the last three chromosomes with

random chromosomes to refresh the pool. The best chromosome is kept for the next cycle

of training.

 38

4. Testing and Results

4.1 Practice Worlds

 Recall from the introduction that the neural network controller was expected to

exhibit three basic behaviors: forward motion at a constant velocity of two meters/sec,

obstacle avoidance, and centering between multiple obstacles. The ANN training data

was retrieved by positioning the robot in various positions about the training world and

retrieving the desired response form the rule-based system. Practice worlds were

designed to see how a mature neural network control system would respond in a complete

virtual environment. Controller evaluation is qualitative. It was expected that the ANN

might eventually behave similarly to the rule-based control system, but that the response

of the two systems would not be identical. During testing, both control systems were run

side-by-side to see if the appropriate behavioral response had been trained.

 The default practice world was an open world with no obstacles. The rule-based

system will drive the robot forward at a speed of 2 m/s in our virtual environment. In this

case, the training environment and the testing environment is the same. Therefore, there

is very little difference in the motor response of the two controllers. (See Figure 17)

Figure 17: No Obstacle Cartoon Clip
 Our first test case involving obstacle interaction was with a single segment practice

world. The objective was to show that obstacle interaction could be trained with a single-

 39

layer neural network. The robot sensor information was filtered to include only one

distance measurement directly in front of the robot. The network was given a single

neuron for the control of both motors. With one neuron activation function, stereo control

of the RMP motors is impossible. Both motor output responses are defined by the same

function. The result is a neural network that performs well at decelerating and stopping

on the approach of an obstacle.

Figure 18: Single Segment – Testing Deceleration

 Then we tested for obstacle avoidance with a single input and two neurons. One

neuron processes the deceleration; the other modifies the motor speeds once the forward

distance threshold had been reached. With one input and two neurons, training was

successful. The motor speeds of the neural network closely matched those of rule-based

control system in the single segments practice world.

 40

Figure 19: Single Segment - Concurrent Motor Speeds
 An observation of the concurrent motor trends in

Figure 19 suggests that the ANN controller has generalized the elicited behavior from the

neural network and smoothed its own motor responses. The jitter we see in the rule-based

sensor is not nearly as obvious with the neural network.

 Obstacle Avoidance and centering were tested using the test worlds depicted in

Figure 20. The first image is a closed box shape. The robot is set in the center of the

coordinate plane at some random angle. The edges of the box are line segments:

(-5,5),(5,5) ; (5,5),(5,-5) ; (5,-5),(-5,-5) ; (-5,-5),(-5,5). The door-less scenario is a

straightforward method to burn-in test obstacle avoidance. This scenario was run over

1000 time-steps to verify that the robot would not escape the enclosure. It did not,

suggesting that obstacle avoidance may have been trained successfully.

 41

Figure 20: Box Enclosure and Cone Left Open Practice Worlds

 Determining if the correct behavior has been adopted through training is

challenging. Many times, the control system responds well for some sample scenarios

and poorly in others. For example, consider using the box scenario in Figure 20, i.e.,

training for obstacle avoidance. An untrained controller that does not move, moves in a

tight circular path, or turns in place might seem to operate correctly.

By offering an outlet, we can determine if the robot is interpreting the input and

responding with the appropriate behavior. By changing the aperture size of the escape

route, we can determine if the centering behavior has been trained as well.

System/Network Performance

 The performance cost of rendering the practice worlds can be very high, but

acceptable without the high order training costs. It is also quite possible to load the

trained chromosome directly on the Segway RMP to avoid world rendering costs. The

largest world we created has 48 segments. Simulating the LMS with a high-resolution

virtual sensor (360 inputs) and over a 1000 time-steps requires a significant number of

point transformations.

 42

Equation 15

4.2 Performance of Neural Network Training

Figure 21: Training Performance over time.

 The first graph, Figure 21, shows how training error is reduced as we converge to

a better performing chromosome. It is a scaled visual of the current error over the 145

training cycles. The second graph shows how much the chromosome was modified over a

complete session. The modification is directly proportionate to the current error.

However, if the error is higher than 0.2 meters/second (200 @ X1000), the perturbation

rate is constant at .85% of the chromosome size. The third display allows us to watch the

chromosome values as they mutate. There is no pattern to the mutation, nor was there any

observable trend in its change in shape. The last display shows the error of the current

chromosome over time. The errors were very high for some time steps and the errors

Number of Transformations = 360*1000*48*2 = 34.5 million

 43

were very low for others. The neural network may follow the rule-based controller

behavior for the most part, but there are a few times where the behavior of the two is

largely different. In attempt to lower the error uniformly, we use the maximum error

reported at any time-step as the error of the whole chromosome. Training was done using

a weakest link mentality.

Figure 22: Cones Training

 Tested in a world very similar to the box enclosure, the neural network was able

to detect and avoid cone shaped obstacles in simulation. The key difference in this world

is that openings allow the robot to see through the walls of the enclosure. To avoid

obstacles the robot needs to detect and avoid openings that it cannot pass through. The

rule-based trainer was given knowledge of the robot size and geometrically determined

the distance of the object from the front and side of the robot. In simulation, the neural

network was effective at learning this behavior. The results of the burn-in obstacle

avoidance test are shown in Figure 22. Unfortunately, do to time constraints

implementation of this controller on the RMP must be the subject of future research.

 44

4.3 Real-World Testing

 In Chapter 1: Robotics Systems Modeling, the Segway RMP is described

having three main systems. The SICK Laser Measurement Sensor receives distance

measurements from the environment. The control processor is the hardware that houses

the control system and computes motor commands relevant to some appropriate behavior.

Finally, the hardware controller boards instruct the motors to spin the wheels at the

appropriate rate.

Until now, the sensor and actuator systems have been substituted by virtual

systems. The sensor provides direction inputs to the control processor, which in turn

passes motor commands to be executed by the actuator system. The RMP control

processor manages each of these systems.

First, we initialize of the SICK LMS. We turn on the Segway RMP and put it into

balance mode. In balance mode, the dynamic stabilization process maintains the

Segway’s upright position while the motor controllers accept commands for speed and

direction of desired travel.

 In the control loop, we retrieve the current input data from the LMS, which tells

us about our environment. Then we pass that input to the neural core of the control

processor mounted to the RMP. The behavior of an artificial neural network is stored in

the synaptic connection weights. The array of weights we call the chromosome is

transferred via text file from the controller used in simulation to the control processor

mounted to the RMP. Just as before, the neural network produces the appropriate motor

responses for the input data provided by the sensor. A scale factor on the output of the

controller was used to reduce the motor speeds to a safe testing speed.

 45

 The real testing environment built was only about 150 sq feet in area. The speed

of the RMP does deteriorate in the presence of an obstacle, but the turn radius in the skid

steering would cause sporadic motion except that we scaled down the motor commands

of the network. As stated previously, the RMP motor controllers do not accept skid motor

instructions, so a routine was designed to translate the individual motor commands to a

speed and motion vector. Then, the information was communicated across both channels

to the RMP as described in introductory section IV: Platform. This process was repeated

closed loop for a predefined time unless the halt exception was thrown from the user-

controlled mouse.

Figure 23: Segway Real-World Testing Environment

 The inputs retrieved from the LMS are directional range values. Three hundred

and sixty real-valued ranges are associated with each angle starting from the right most to

the left most sensor reading. These range values were connected graphically as point

vectors. The sensor input fan is shown in Figure 24.

 46

Figure 24: SICK LMS Range Fan

 We found during testing that the RMP would avoid obstacle in front of it, travel in

the center of the testing world, and react to obstacles within its forward distance threshold

by turning in place. Figure 25, shows holding an obstacle being held in front of the LMS

well within the FDT to observe this action.

Figure 25: RMP Reaction to obstacle within Forward Distance Threshold

 47

5. Conclusion

5.1 Closing Remarks

 The design and development of a control system for the Segway RMP was

successful. The RMP was tested using high and low resolution input data from the SICK

LMS. The ANN performed comparably to the rule-based system used for training it. The

ANN proved to be a highly adaptive alternative to rule-based controller development.

 The RMP is a highly maneuverable transport vehicle, but the usefulness of this

research is not confined to this particular robot. This research serves as a testimony of the

effectiveness of the single-layer neural network to observe input patterns from a distance-

measuring device.

 A virtual world is a well-designed learning tool for the production of a mature

chromosome that can be exported to the robot. The adaptable virtual sensor design allows

for some flexibility in the type of sensor information retrieved. It would be easy enough

to shorten input range of the sensor and decrease the number of inputs in order to

simulate the tactile sensors on the Ev-Bot used in [1]. In building a useful virtual world

for an RMP robot, the following had to be addressed: the RMP actuator system, the

VLMS, and the object representation. The actuator system is responsible for updating the

robot’s position vector once the desired instantaneous wheel velocities have been

received from the control system. The VLMS used a series of object transformations to

determine the distance of objects in multiple directions from the sensor location. These

objects, including the robot itself were recorded as a series of line segments drawn with

respect to the current robot position.

 48

 Testing proved the neural network did successfully elicit the behavior of the rule-

based controller algorithms. Obstacle avoidance behaviors were observed from the

mature neural network in simulation and on the RMP. Multiple practice worlds were

designed for the virtual robot to explore. Only two were designed for the RMP.

When the rule-based and ANN controllers were ported onto the real RMP, and tested, the

real robot performed as it had been trained to do in the virtual world. Figure 23 shows a

real training world similar to the box test enclosure in section 4.1: Practice Words.

5.2 Future Research

 As stated at the end of Chapter 4, the RMP was never tested with small cone-

shaped obstacles as was done in simulation. This was primarily due to time constraints at

toward the end of the testing process. A controller effectively trained and tested in

simulation should be effective at small obstacle avoidance on the RMP as well. This

statement should soon be verified.

 Another progressive step in this research would be to train behaviors that cannot

be easily written into a rule-based control system. The supervised learning method we

used during this research can be duplicated with training data retrieved from a joystick. In

this manner, we may be able to elicit behaviors such like wall hugging or other behaviors

not so easily defined by rules.

 This can be accomplished by taking samples of input and associated motor

response retrieved from a joystick or other human-in-the-loop input device. This training

data can then be fed into the training scenarios in place of the current rule-based methods.

If the user’s behavior can be elicited successfully, it may be very useful for industrial or

military applications.

 49

6. Bibliography

1. Nelson A.L, Grant E., Lee G., “"paper_archive_nelson/nelson-caine-2002.pdf",”
in Proceedings of the ISCA 15th International Conference: Computer Applications in
Industry and Engineering (CAINE-2002), San Diego CA, Nov. 7-9, 2002, pp. 92-97,
ISBN: 1-880843-45-5.

2. Haykin, Simon. Neural Networks: a Comprehensive Foundation. Prentice Hall,
New Jersey, 2nd edition, 1999.

3. The Science Behind the Technology. Segway Inc 2006
URL:http://www.segway.com/segway/how_it_works.html

4. Segway Robotic Mobility Platform. 2006. Corporate Website. Segway Inc. URL:

http://www.segway.com/products/rmp

5. Component Details of the Segway HT. Segway Inc. 2006. URL:
http://www.segway.com/segway/component_details.html.

6. Segway Robotic Mobility Platform User Guide. Version 1.3. 2006. Segway Inc.
Manchester,NH

7. Laser Measurement System, Technical Description, SICK AG, Germany, June
2003.

8. Institute of Research in Information Science in Toulouse. URL:
http://www.irit.fr/COSI/glossary/fulllist.php?letter=Genetic_Algorithms

9. Nelson, Andrew L., “Competitive Relative Performance and Fitness Selection for
Evolutionary Robotics,” Doctoral Dissertation, North Carolina State University, Raleigh,
North Carolina, May 2000.

10. Metric Conversion Tool, http://www.metric-conversions.org/length/meters-to-
miles.htm

11. University of Pennsylvania, Segway RMP Research at the GRASP Lab at the
University of Pennsylvania, URL:
http://www.cis.upenn.edu/marsteams/Segway/Report.pdf

12. McCulloch, W. S. and Pitts, W. H. (1943). A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133.

13. Grant, E.; Zhang, B. A neural-net approach to supervised learning of pole
balancing
Intelligent Control, 1989. Proceedings., IEEE International Symposium on Volume ,

http://www.segway.com/segway/how_it_works.html
http://www.segway.com/products/rmp
http://www.segway.com/segway/component_details.html
http://www.irit.fr/COSI/glossary/fulllist.php?letter=Genetic_Algorithms
http://www.metric-conversions.org/length/meters-to-
http://www.cis.upenn.edu/marsteams/Segway/Report.pdf

 50

Issue , 25-26 Sep 1989 Page(s):123 - 129

14. Larson, Ted. Balancing Robot Project. 2004 URL:
http://www.tedlarson.com/robots/balancingbot.htm

15. Morchen, Fabien. Analysis of Speedup as Function of Block Size
and Cluster Size for Parallel Feed-Forward Neural Networks on a Beowulf Cluster. IEEE
Transactions on Neural Networks, VOL. 15, NO. 2, March 2004

http://www.tedlarson.com/robots/balancingbot.htm

 51

Appendices

 52

The following is an organized list of program data designed to help the reader understand

the development of the virtual training world. The program modules are broken up into

eight categories. Module information includes the class title for code reference, a

connector pane for component abstraction, a list of dependant program modules, and a

short description of components function. The following diagram can be used to

reference each module’s relative position in the program hierarchy.

 53

Virtual Training Environment - Program Component Hierarchy

 54

A.1: Actuator Assembly

robotVector.vi
The Robot Vector holds information concerning the position and orientation of the Robot
at any given time. This class is responsible for updating the robot vector after each
instance of motion in the virtual world. The input motor speeds are used to calculate the
change in position required to update the Robot Vector.

Connector Pane

List of SubVIs

deltaPosition2.vi

deg2rad2deg.vi

deltaPosition2.vi
This class is responsible for translating skid steering instruction to a motion vector. It
calculates the robot’s change in position, so the Robot Vector can be updated. This is
useful to the RMP controller boards and the virtual actuator system.

Connector Pane

List of SubVIs

deg2rad2deg.vi

fixdRV2.vi
This class is responsible for positioning the robot in specific locations without regard to
the motor commands or current position of the robot. This is relevant to training in the
virtual world only.

Connector Pane

 55

randRV.vi
This class is responsible for positioning the robot in random locations without regard to
the motor commands or current position of the robot. This is relevant to training in the
virtual world only.

Connector Pane

 56

A.2 Math

pow(x,y).vi
This is an exponential operator: x to the y power.

Connector Pane

deg2rad2deg.vi
This translates radian angles to degrees and vice-versa.
Connector Pane

 57

A.3 Neural Network

nueralCore.vi
This is the neural network as described in section 2.2. The neural network program model
has 3 abstracted components. The first system splits the chromosome into two arrays of
synaptic connection weights. The first group is processed at the summing junction in
“neuralnetsig” sub function. The second group is processed at the summing junction in
“neuralnetlin” sub function.

Connector Pane

List of SubVIs

neuranetsig.vi

neuranetlin.vi

splitChromo.v
i

neuranetsig.vi
This calculates the output of the primary summing junction and sigmoid neuron
activation function in the neural network.

Connector Pane

neuranetlin.vi
This calculates the output of the secondary summing junctions and in turn, the resulting
motor speeds.

Connector Pane

 58

A.4 Rule-Based Control System

rbcontrol.vi (simple)
This class houses the rule-based training algorithm for basic obstacle avoidance. It
suffices for large monolithic obstacles. System details are described in chapter 2.1. The
sensor inputs are retrieved in an array whose size implies the sensor resolution. The
maximum range and wheel speed values are necessary to create the proportional
relationship between the input values and the desired motor speed.

Connector Pane

rbcontrol2.vi
This class houses the rule-based training algorithm for small obstacle avoidance. It is the
improved Rule-based system described in chapter 2.1. The Forward and Side Distance
Thresholds in conjunction with the size of the robot are used to determine whether the
robot can pass between obstacles.

Connector Pane

List of SubVIs

deg2rad2deg.v
i

 59

A.5 Miscellaneous Tools

chromosome.vi
Class combines two arrays of synaptic weights into single array called the
“chromosome”.

Connector Pane

elimidup.vi
For performance reduction, this class eliminates duplicate patterns from the training data.
Duplicate entries are erased.

Connector Pane

xygraph.vi
This class is used to draw the world of obstacle segments. The UCF segment points are
entered and drawn to a graph in the training and testing user interface.

Connector Pane

MergeChromo.vi
This class is responsible for the breeding of chromosomes in the genetic algorithm
described in chapter 3.3.

Connector Pane

List of SubVIs

splitChromo.vi

chromosome.vi

 60

sortarray.vi

RandomChromosome.
vi

Reducegrid.vi
This class eliminates duplicate patterns from the training data. It assembles the input
output pairs, removes the duplicates, then passes
Connector Pane

List of SubVIs

elimidup.vi

splitChromo.vi
This class separates chromosome into 2 synaptic weight arrays.
Connector Pane

 61

A.6 Training

startTraining1-1.vi
This class is responsible for training the neural network as described in chapter 3.2: time-
step independent training.

Connector Pane

List of SubVIs

RandomChromosome.vi

TrainedSession.vi

trainingneuralnet1.vi

mapping.vi

trainingneuralnet1.vi
This class is responsible for training the neural network as described in chapter 3.2: time-
step independent training.

Connector Pane

List of SubVIs

speedError.vi

nueralCore.vi

randGeneIndex.vi

 62

Pnumber.vi

chromoexpansion.vi

geneEvolution.vi

trainingneuralnet2.vi
This class is responsible for training the neural network as described in chapter 3.2: time-
step dependent training.

Connector Pane

List of SubVIs

speedError.vi

nueralCore.vi

randGeneIndex.vi

Pnumber.vi

chromoexpansion.vi

geneEvolution.vi

 63

Pnumber.vi
This class is responsible for calculating the number of chromosome mutations necessary
in the training cycle. The number of mutations is relative to the current error.

Connector Pane

randGeneIndex.vi
This class is responsible for selecting a gene at random from the chromosome. Once
isolated, the gene may be altered slightly during training.

Connector Pane

startTraining3-2.vi
This class is responsible for training the neural network as described in chapter 3.2: time-
step independent training.

Connector Pane

List of SubVIs

RandomChromosome.vi

TrainedSession.vi

Read From Spreadsheet
File.vi

mapping.vi

trainingneuralnet2.vi

sythObstacle.vi

MergeChromo.vi

 64

chromoexpansion.vi
This enables the size of the chromosome to be changed during training. Rebuilding the
chromosome maintains the existing neurons with existing synaptic connections.
However, there is no evidence that chromo expansion is more useful than initializing a
new chromosome to be trained.

Connector Pane

List of SubVIs

RandomChromosome.vi

geneEvolution.vi
This class modifies the value of a gene slightly.
Connector Pane

GrowNeurons.vi
This class is an adder. It adds neurons to the neural network when a switch is thrown.

Connector Pane

mapping.vi

Connector Pane

List of SubVIs

robotVector.vi

randRV.vi

 65

Sensor.vi

Reducegrid.vi

fixdRV2.vi

rbcontrol2.vi

RandomChromosome.vi
This class initializes a chromosome of the designated size with small random weight
values. These value are to be modified through training.

Connector Pane

List of SubVIs

chromosome.vi

speedError.vi
This class determines the mean-squared difference in the motor response of the neural
network and that of the rule-based control system. The resulting error calculation is used
as the only quantitative performance metric to our system.

Connector Pane

 66

A.7 Virtual Sensor System

drawRobot.vi
This class is responsible for determining the robot image coordinates for the virtual
world.

Connector Pane

List of SubVIs

deg2rad2deg.vi

Sensor1.vi
Provided the position of the robot and all obstacles segments, this class produces the
range data that would be retrieved from a range-finding device like the LMS

Connector Pane

List of SubVIs

InputSimulator.vi

rotate.vi
This class rotates the image coordinates in our virtual world.

Connector Pane

rotationMatrix.vi
This class rotates the image coordinates in our virtual world. It supports the rotate class.

Connector Pane

List of SubVIs

 67

XYReverseTx.vi
This class rotates and translates a pair of coordinates with respect to a provided position
and direction.

Connector Pane

List of SubVIs

rotate.vi

rotationMatrix.vi

XYTransformation.vi

Object segments were translated from UCF to determine their location with respect to
other objects in the virtual environment. By providing this system with a point and
orientation of an obstacle as it exists currently, we can rotate and translate each object in
the world with respect to the provided object such that the provided object is at the origin
facing the X-axis. All other objects are oriented around it as they were in the original
view.

Connector Pane

List of SubVIs

rotate.vi

rotationMatrix.vi

RangeFinderAxis.vi
This class finds the range of an obstacle from the sensor by finding the X-intercept of the
obstacle. (See Chapter 1.2)

Connector Pane

 68

SimMini.vi
This program determines the distance(within 8 meters) from the VLMS sensor to the any
obstacle that lies in some specific direction.

Connector Pane

List of SubVIs

deg2rad2deg.vi

rangeFinderAxis.vi

XYTransformation.vi

synthObstacle.vi
This class draws the static virtual world from the obstacle segments retrieved from the
world files listed in Appendix 8.8.

Connector Pane

List of SubVIs

GraphXY.vi
C:\Documents and
Settings\Charles\Desktop\Segway\Master\SharedTools\GraphXY.vi

 69

A.8 Available World Segments

The following segments points comprise the test and training worlds used in the

simulations. Every two points represent the endpoints to line-segments in the virtual

world.

Big Doorless

-15 15
15 15
15 15
15 -15
15 -15
-15 -15
-15 -15
-15 15

Cone Left Open

-5 1
10 5
10 5
10 -5
10 -5
-5 -1

Cones Trainer

0 -1
0 0
0 1
0 2
0 5
0 6

Doorless

-5 5
5 5
5 5
5 -5
5 -5
-5 -5
-5 -5
-5 5

Doorway Left Open

-5 5
10 5
10 5
10 -5
10 -5
-5 -5
-5 -5
-5 2

Single Segment Trainer

0 -3
0 3

Door Left Open

-5 5
10 5
10 5
10 -5
10 -5
-5 -5

Concave

-5 5
5 5
5 5
5 -5
5 -5
-5 -5
-5 -5
0 0
0 0
-5 5

 70

Long Tunnel

-5 3
20 3
20 3
20 -3
20 -3
-5 -3

No Obstacle

100000 100000
100001 100001

Cones

-5 -5
-5 -4
-5 -3
-5 -2
-5 -1
-5 0
5 -5
5 -4
5 -3
5 -2
5 -1
5 0
-5 5
-5 4
-5 3
-5 2
-5 1
-5 0
5 5
5 4
5 3
5 2
5 1
5 0

-0 5
-1 5
-2 5
-3 5
-4 5
-5 5
-0 -5
-1 -5
-2 -5
-3 -5
-4 -5
-5 -5
0 5
1 5
2 5
3 5
4 5
5 5
0 -5
1 -5
2 -5
3 -5
4 -5
5 -5

