
Abstract 

FORREST JR., CHARLES EDWARD. A Neural Network Control System for the Segway Robotic 
Mobility Platform. (Under the direction of Edward Grant).   

 An Artificial Neural Network (ANN) is a network of simple processing elements 

that emulate neurons in the brain. The behavior of such a network is characterized by the 

synaptic connections between the input data and the processing elements. Here, an ANN 

was generated and used as part of a control system for a Segway Robotic Mobility 

Platform (RMP) being trained in obstacle avoidance behavior. The single sensor input to 

the control system is a SICK laser, a range-finding sensor; the control output is Pulse 

Width Modulation commands to the RMP’s motors. The Segway RMP, neural network 

maps input sensor data directly to appropriate motor output commands for obstacle 

avoidance.  

 Obstacle avoidance training was accomplished in a simulated LabView world 

using supervised reinforcement learning and practices from evolutionary robotics. 

Synaptic connection strengths were stored in an array called the artificial “chromosome”. 

The chromosome was randomly modified, and the response of the network was compared 

to a pre-defined desired output. The goal of the genetic algorithm training was to 

minimize the error between the desired and actual outputs, yet to ensure that local 

minima were avoided. Once the ANN was trained in simulation, it was transferred to an 

actual RMP for obstacle avoidance testing in the real world 

. The benefits of training ANN’s for obstacle avoidance tasks in simulation are 

demonstrated here. In the simulated world, training and testing can be done in virtual 

environments: offering greater control over environment complexity, testing the 

robustness of the controllers generated, and filtering the training data set. All of the 

foregoing reduces the cost of training and lead to the development of an optimized ANN 

controller for RMP obstacle avoidance. The ANN provided input pattern generalization 

for smooth motion, improved computational speeds, and added to the body of knowledge 

for RMP controller development.
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I Introduction  

 Autonomous robots, like the Segway Robotic Mobility Platform (RMP), are 

equipped with sensing devices that provide information about the world in which the 

RMP is operating. The control system is the software that processes that sensor 

information to make decisions concerning the robot’s locomotion. The software 

developed for controlling the RMP is described further in section III: Platform. Our 

control system is reactive, meaning the output is a function of the sensor inputs only; it is 

open loop, because obstacle avoidance requires no information about past actions or the 

state of the robot. We describe sensor input as the smallest unit of independent 

information retrieved from a sensor – e.g., a single distance measurement retrieved from 

a radar system. Input data can be obtained from numerous sensing devices individually, 

or it can be the integration of the data sensed from many devices. Each input may have 

varying degrees of confidence, or importance, and may be independent of the sensing 

device from which the data was retrieved. The control system considers all inputs and 

provides a predictable response for the robot. 

  Two types of control system were designed and tested: a rule-based system, and 

a neural network. A well-written rule-based system performs effectively if it is given 

detailed information as its input. However, to derive a rule-based system that would be 

effective for all combinations of sensor inputs would be infinitely complex. At minimum, 

the resulting decision table would be computationally intensive. The objective was to 

introduce the neural network to a minimum set of input patterns and have it generalize an 

appropriate control action. Ideally, this behavior would replicate the response from the 

rule-based system under the same conditions. Then, we let the neural network replicate 
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this behavior in cases outside the training set. By doing so, we substitute the 

computationally intensive rule-based system for a neural network whose independent 

processing elements are inherently parallelizable. [15]  

In 2002, a similar approach to developing a robot control system was researched 

at North Carolina State University (NC State) [1]. Our objective was to replicate the 

EvBot research approach at NC State for use on the Segway RMP. As both robots are 

two-wheeled and rely on skid steering, it was a logical starting point for the design of the 

RMP control system.  

The neural network was trained using supervised learning [2]. In this process, a 

performance metric determines how well the training of the neural network imitates a 

path following task. The desired path could be retrieved from another algorithm written 

for the task, one that was entered manually into the system, or even retrieved from the 

joystick control actions of a human pilot. 

The control system rules were derived to be:  

1. IF the sensor detects no obstacle in view, THEN the robot must move 

forward at a user defined maximum speed.  

2. IF in the presence of an obstacle, THEN the robot must slow down and 

turn to avoid the obstacle.  

3. IF the robot must pass between objects, THEN the robot must remain 

centered between the objects.  

Two rule-based control systems were developed to comply with the above 

requirements, and these were used to train the ANN. The two algorithms differ in their 

ability to avoid small obstacles and in their ability to train the ANN. These issues are 
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discussed further in Chapter 2: Controller Operation. 

A variety of training methods were used to minimize the difference in 

performance between the rule-based algorithms and the ANN response. Generally, the 

training process involved gradually modifying the parameters that describe the ANN until 

a desired performance criterion was met. In doing so, the robots cognitive responses are 

manipulated incrementally until they match a desired behavioral pattern. Here, the ANN 

was being trained for obstacle avoidance. The training method is detailed in Chapter 3: 

Neural Network Organization and Training.  

Once trained, the mature neural network was tested in simulation to determine if it 

performed similarly to the rule-based control system that was the basis of its design. 

These experiments confirmed that the neural network was generalizing unseen 

environments into familiar patterns from the training set. The control system was tested 

in a number of virtual practice worlds. The resulting motor speeds as a function of time 

where continuous, revealing smooth motor responses. More detail on the construction of 

these worlds and the performance of the neural network can be found in Chapter 4: 

Testing and Results.      
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II Literature Review  

 The Segway Robotic Mobility Platform (RMP) is a balancing robot, successor to 

the Segway Human Transport vehicle. The first RMP’s were developed and demonstrated 

by Segway at the MARS program review meeting in San Diego, CA in April of 2003. 

The Army Research Laboratory, along with other research institution across the country, 

acquired the Segway RMP on loan from the Defense Advanced Research Projects 

Agency (DARPA) to research feasible solutions for ground transport applications.  

Before our research began, the Segway RMP at ARL was controlled via human-

in-the-loop process involving input from a joystick, so the user was directly involved in 

the control loop. The system was not autonomous. Hence, the first objective was that of 

creating a simple rule-based system for autonomous control of the robot. Later, a decision 

was made to substitute any rule-based system developed with a trained neural network 

controller. 

A performance evaluation at the University of Pennsylvania assessed the RMP’s 

stability in motion. They identified a 0.4-second delay in appropriate motor activity due 

to the interference of the dynamic stabilization process. The longest delays, and the 

biggest risk to stabilization, occurred when the RMP was descending from an obstacle 

and operating on a low-friction surface [11]. The test platform used in this work was 

indoor-controlled; it minimizes the work of the dynamic stabilization process thereby 

increasing response time. 

The artificial neural network, applied in this research as a control system for the 

RMP, is the brainchild of Warren Mculloch and Walter Pitts. They conceived of a 

network of weighted inputs whose sum would need to reach a particular threshold to 
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‘activate’ a switch [12]. The changing weight on the input connections, or synapses, 

emulates the reinforcement learning done in the brain. The switch mechanism is provided 

by an activation function – typically of sigmoid shape.    

Research done by Minsky and Papert in 1969 revealed the limitation of a single-

layer neural network (perceptron) to linearly separable patterns of input. Their research 

implies that a single-layer neural network should be capable of learning object avoidance 

behavior if and only if it can be described as a series of linearly separable arguments. By 

linearly separable, they meant that the input/output function must be one to one. Input 

patterns with similar outputs should not be separated. 

A linear function can map the sum of distance measurement inputs to velocity to 

control acceleration in the presence of an obstacle. Two linear functions were used to 

control the acceleration of two motors independently; which gave a rudimentary obstacle 

avoidance behavior.  

Corner avoidance behavior was achieved using a non-linear one-to-one function; 

this affects one motor only at a given input threshold. This makes it linearly separable. 

High input sums correspond to a negligible effect on the left motor output. Lower sums 

produce a negative output to reduce the speed of one motor.  

In the course of our research, a more sophisticated rule-based system was 

developed to prevent collision with small objects. Through similar reasoning, behavior 

can be tokenized into a number of linearly separable patterns that are equal to the number 

of inputs plus one. Each input has a threshold where it influences the change of a single 

particular motor command. The extra token is used to move the Segway relative to the 

sum of all the inputs.  
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A neural network-based obstacle avoidance routine was designed by Andrew 

Nelson for the EV-bot at North Carolina State University in 2002. In this system, the 

input devices were tactile sensors evenly displace like whiskers in front of the robot. 

Although it is not a balancing robot, the EV-Bot has a similar two-wheeled design. It was 

also trained from a rule-based system like the simple one described in Section 2.1: Rule-

Based Controller [1]. 

The Segway RMP is a balancing robot that utilizes a proprietary balancing 

algorithm called dynamic stabilization. There are many types of balancing robots, for 

example the Legway, nBot, Gyrobot, Isis, and Bender shown in Figure 1.  

 

Figure 1: Seattle Robothon for a Balancing Robot Symposium 
From left to right: Legway, nBot, Gyrobot, Isis, and Bender. 

 
In 1989, Grant and Zhang created a balancing system that used ANN’s for 

control. They designed a three-hidden layer perceptron capable of balancing a pole over a 

movable cart in two-dimensions. In this case, the training algorithm was developed using 

a simulator and manual joystick manipulation. This approach allowed a rule-based 

algorithm to be derived, because the simulator could be slowed down to compensate for 

slow human responses. A control law, or rule based control system was written by 
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observing and interpreting the user’s interaction. This was compared to the behavior 

elicited from the user by the neural network. The two were shown to be similar [13].  

Prior research on balancing robots using neural networks for obstacle avoidance 

tasks is described in [3]. The objective of this research is to apply similar concepts to 

develop an ANN-based control system for balancing a Segway RMP that is capable of 

obstacle avoidance. The research focuses on the necessary training interfaces and virtual 

environments.  
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III Platform 

 The Segway Robotic Mobility Platform (RMP 200) is a two-wheeled robot 

designed to transport heavy materials in tight spaces. The RMP has two five horsepower 

motors powered by one to four 52-volt batteries. It is has a payload capacity of 200lb, and 

utilizes skid steering to attain a zero turn radius [3]. 

Balance Sensor Assembly 

The robot’s Balance Sensor Assembly is a complex system of gyroscopes that 

provide data on the RMP’s current pitch and pitch rate. When the RMP is tilted forward, 

the stabilizing algorithm drives the wheels forward with an appropriate acceleration to 

keep the RMP balanced. Segway designers coined the balancing algorithms “dynamic 

stabilization” [4]. The details of this process are beyond the scope of this research. It is 

important to remember that the fundamental movements: i.e., drive forward, drive 

reverse, and stop, all rely on this balancing system. To drive forward, the RMP tips 

forward at a specified angle for a specific duration, relying on the balancing algorithm to 

adjust the wheels speeds gradually accelerating so that balance is restored after traveling 

some specific distance. When the RMP reaches its maximum speed, it controls its angle 

of tilt by exerting a force in the opposite direction to its current motion.  

Controller Boards  

The RMP is equipped with dual redundant controller boards for safety and 

dependability. Both boards have digital signal processors responsible for monitoring the 

complete system for faults. The control board scans for an interrupt every ten 

milliseconds. At the same frequency, the controller polls the Balance Sensor Assembly to 

calculate the necessary motor speed adjustments to balance the robot. Motor adjustments 
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are made every millisecond to insure a smooth handling response [5]. 

Control Processor 

The Segway RMP is a powerful, highly maneuverable, self-balancing hand truck. 

It is successor to Segway’s human transport model (HT). The Segway HT is a user 

controlled balancing scooter. The RMP model, however, can function as an autonomous 

robot. The point of difference between the HT and the RMP is the RMP’s control 

processor. The object of the control processor is to issue speed and steering commands 

that can be interpreted by the RMP’s onboard controller and translated into the motor 

commands. These commands move the robot while maintaining its upright balance. The 

control system of choice for the RMP was an IBM Think Pad, which was strapped to the 

RMP’s top plate.  

Communication  

The controller connects to the RMP via Controller Area Network (CAN) bus. 

Communication is configured to 100 Hz and messages are sent via two channels. Each 

channel can send only one message at a time, and that message is duplicated on the 

second channel for safety. If communication is not redundant, the RMP stops and 

balances. The message protocols break down the CAN messages into seven fields: 

Source, Destination, Header, Velocity, Turn-Rate, Status, and Status Parameters. The 

Status and Status Parameters were never used during the course of the research. Those 

fields deal with setting maximum velocity and other such default behaviors that were 

non-essential for direct motor control [6]. 

 This is important because the neural controller issues speed commands for the 

individual motors. Later these instructions are translated to absolute velocity and turn-
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rate. Essentially, skid or differential steering instructions are translated into a motion 

vector. Velocity and Turn-Rate calculations are discussed further in Chapter 1: Robotics 

Systems Modeling.  

SICK Laser 

Along with the control system, a laser measurement tool called the SICK LMS 

200 was mounted to the front of the RMP robot. The LMS is an optical measurement tool 

with a range of 80 meters for surfaces with high reflectivity. Our environment was indoor 

uncontrolled, so the LMS was expected to visualize a variety of surfaces, e.g., plastic 

cones, sheet metal from the garage, polished wood from the desks, even clothes as 

humans often moved objects in the RMP world during experiments. The documentation 

suggests the LMS range deteriorates to 10 meters for objects with low reflectivity. To 

accommodate for these surfaces, the control system only responds to a viewing radius of 

8 meters. The maximum velocity of the Segway RMP is 8miles/hour or 3.6 

meters/second. The LMS has a response time of 53ms, so theoretically the RMP will 

recognize inanimate objects from a distance of 7.81 meters. We did not have to account 

for dust, fog, or other outdoor conditions [6] [7]. 

The LMS operates by transmitting a pulsed laser beam. The beam is reflected 

with a .25 angular displacement over a 180-degree span. High resolution is difficult to 

process. The neural-network takes much longer to train with 720 inputs. Typically the 

train was cut down to 39 evenly displaced input measurements, which meant that at a 

maximum range of 8 meters the resolution would detect straight objects of 0.6 meters in 

length. At the forward distance threshold of one meter, the LMS will detect objects less 

than 8 centimeters in size [7].    
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1. Robotic Systems Modeling 

The Segway RMP has three main systems. The SICK Laser Measurement Sensor 

receives distance measurements from the environment. The control processor is the 

hardware that houses the control system and computes motor commands relevant to some 

appropriate behavior. Finally, the hardware controller boards (actuator) instruct the 

motors to spin the wheels at the appropriate rate.  

It is not necessary that the sensor and actuator systems be modeled in simulation 

for the training of the controller to be successful. A reasonable alternative would be to 

retrieve actual input data from the LMS and drive the RMP itself using the rule-based 

control system. However, there are significant advantages in doing so because the sensor 

system can be positioned virtually, in fixed or random positions, with respect to 

obstacles. Consequently, specific patterns can be identified and used as input training 

patterns for the system. Also at this stage, duplicate patterns can be filtered out thereby to 

improving training performance. By rotating the virtual sensor perspective, specific input 

patterns can be obtained allowing the user more control over the training process.  

After motor commands are supplied by the control system, a virtual actuator 

calculates a new position in a fraction of the time required to move the actual robot. This 

system requires the translation of skid steering instructions to a motion vector. The 

motion vector is applied to the current position to calculate the new position. The process 

of determining the motion vector is shared. It is also required to communicate with the 

RMP’s motor controllers. (See Section III: Platform).  

 
1.1  Virtual World  

 The SICK LMS input device works in two-dimensions to detect obstacles ranging 
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90 degrees in each direction from the center of the device. Naturally, our virtual world 

model is also in two-dimensions. The robot along with all other objects is represented in a 

single Cartesian plane.   

 The view is a two-dimensional aerial perspective of the world. A graphical user 

interface displays the world by drawing object coordinates. In Figure 2, the width and 

length of the RMP, the scan area of our input device, and other obstacles in the virtual 

world are shown. Motion and direction of the robot and its interaction with the obstacles 

can be seen. Through observation, it can be determined if the virtual robot is learning a 

desired behavior. 

 

Figure 2: Two-Dimensional Virtual World - UCF Frame 
 

 By simulating the Robot in two-dimensions only, it should be noted that 

information about the height of objects in the world is missing. To make this an 

acceptable handicap, it was insured that the objects in the robot’s world were visualized 

at the height of our LMS, which is approximately 1 meter from the ground. The robot 

was not tested to navigate slopes or uneven terrain. Generally, it was assumed that the 

control system should not need to know about changes in elevation, wobble, or tilt to 
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make decisions. Dynamic Stabilization makes this a difficult. Often the RMP will tilt 

slightly during operation causing the LMS to see over the cone testing obstacles. This 

causes the control system to provide widely disparate motor speeds from one interval to 

the next.  

Obstacles in the virtual world were represented as concatenated line segments. 

Virtual worlds were described using a 2MX2 matrix of segment points - where M is the 

number of segments. Each point is stored sequentially in a text file and read into an array 

before being drawn. The segments themselves are not delimited, so adjacent segments 

cannot be represented by three points. Each segment has two entries a start and a 

destination.  

 The advantage of describing the world in this fashion is the ability to model 

virtual, high resolution, complex worlds. The disadvantage is that a significant amount of 

information is needed to describe simple objects. Circular objects could require an 

inexhaustible amount of computation to represent with precision. This disadvantage was 

overcome by creating simple training worlds with a few simple objects. Further detail on 

training worlds can be found in Chapter 2: Controller Operation. 

1.2  Virtual Sensor 

 The SICK LMS was replaced with a virtual range finding component. This 

virtual LMS (VLMS) software emulates the SICK by calculating distance inputs 

trigonometrically. The number of inputs is entered by the user, and the system calculates 

the distance from the sensor location to whichever obstacles are within range (8 meters) 

of the sensor. Otherwise, the maximum range is returned. 

 Obstacles in the environment are represented as line segments. Information about 
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the slope, intersect, magnitude, and position of each line is calculated to determine if any 

objects are in view of the sensor. In our distance-measuring algorithm, every obstacle 

segment is translated twice – first with respect to the robot, then with respect to the input 

trajectory. This was done in three steps: 

1. Translate each object from the Universal Coordinate Frame to the Beam Frame. 

2. Determine the X-axis intercept by deducing the line from the line segment end-

points. 

3. Determine the object with the shortest distance from the robot. 

 In the beam frame, the robot and obstacle segments are transposed and revolved with 

respect to the some directional input. The value of this input is the calculated length of 

the line-segment between the sensor and any obstacle in the input direction. 

Consequently, if any obstacle segment has an X-intercept, which lies in the viewing 

range of the VLMS, then our object is within detectable distance. Furthermore, if the 

object is detectable, the X-intercept is the distance from the VLMS to the object.  

 The sensor calculations and the rendering of the segments take place 

simultaneously for performance reasons. Since we need to manipulate the segment 

positions graphically, we save a step, go ahead and determine the sensor values. 
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Figure 3: The Robot Coordinate Frame 
 

In the introduction to this section, objects are seen by the user in a single frame 

termed the Universal Coordinate Frame. In this frame, information about the location of 

objects and the robot is maintained. The viewing range of the VLMS can also be 

visualized by representing each beam as an object on the UCF coordinate plane. The 

sensor itself is not visible in the user interface. The general location can be perceived by 

viewing the beam origin. The orientation can be perceived by looking at the sensor range 

fan shown in Figure 2. In the real world, the sensor is attached to the body of the robot. 

Sensor location is adjustable, but it is static parameter recorded with respect to the robot. 

The VLMS is adjustable on the simulated robot just as in the real situation. Input from 

the LMS is then translated to UCF using robot position information.  

Geometric transformations are used to translate objects from UCF to frame views 

with respect to the robot and vice versa. In the robot frame shown in Figure 3, the robot 

becomes the center of our world and each object is translated accordingly. The robot icon 

is a circle with a line drawn from the center to the perimeter. The line indicates the front 

of the robot. The LMS sensor sits there by default. 
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Figure 4: Obstacle Position Beam 
 
 To make the simulation more robust, it is not assumed that the virtual sensor will 

be mounted to the front of the robot. Another transformation is performed to image the 

robot and the obstacles with respect to the sensor inputs. The sensor has a range of input 

originating from the same location, but projecting at various angles. The world is rotated 

with respect to every input in the sensor system. In Figure 4, the robot and obstacles are 

transformed with respect to the single input beam. From this view, it is easy to determine 

the distance between the VLMS and the obstacle by finding the x-intercept of the 

obstacle segment. There are a few exceptions. Since we are dealing with line-segments 

rather than lines, we have to determine if the line-segment ever crosses the X-axis to 

begin with. As well, vertical line-segments that are not functions have to be 

approximated. As the slope approaches infinity, the value of X is the X intercept we are 

looking for.  

 The LMS can technically be mounted to any portion of the robot, and in any 

direction. In fact, the VLMS has built in flexibility to allow testing in that faculty. The 
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LMS was mounted on the front of the top-plate on our Segway RMP. This was a 

convenient location allowing room for the control processor to be mounted on the rear of 

the top-plate. Similarly, the VLMS was mounted to the front of the virtual robot.  

 

 

 

 

 

 
 
 
 
   Figure 5: Single Segment VLMS Range Fan 
 The LMS has a 180-degree field of vision, with a half-degree resolution, and a 

maximum viewing range of 8 meters. Therefore, the LMS eye spans a two dimensional 

space with an area of 32 pi. The virtual sensor implemented in this work emulates the 

LMS mounted to the Segway RMP 

1.3 Adjustable Sensor Resolution 

The VLMS is capable of reducing the number of input measurements calculated. 

We may do this to reduce performance cost, or to improve the performance of the neural 

network. From the simulation interface, the user is asked to provide the number of inputs. 

The number of inputs to the VLMS is limitless; however having more than 360 would be 

a waste of processing performance. The SICK LMS that we are modeling has a 

maximum resolution of 360 inputs. When fewer inputs are requested, the input stream on 

the SICK is filtered to show only the requested quantity of input range values evenly 
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distributed over the view space. Consider Figure 6 below. It is quite conceivable that a 

lower resolution can be just as effective as the higher resolution depending on the size of 

the obstacles in our environment. 

 

 
Figure 6: Adjustable Sensor Resolution (in meters) 
Input Resolution [100 inputs, 25 s, 10 Beams] 

1.4 The Actuator Group 

At each simulation time step, the following actions are performed:  

1. The virtual sensor readings are updated.  

2. The rule-based controller and/or neural network determine the appropriate 

wheel speed for each motor on the RMP. 

3. The robot’s next position is calculated as a function of its current position, 

orientation, the time step size, and the current wheel motor rates  

 This is nearly the same process used by Nelson [1], excluding a fourth step – 

validation. Validation prevents a collision using information the robot could not know. A 

crash incident is recorded and the network is retrained accordingly. In a real scenario, it is 

quite possible for a mal-functioning control system to drive the RMP into an invalid 

region. If that region is a wall or obstacle, the robot will crash. If validation is required, 

the neural network is producing erroneous values that cannot be validated in a real 
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scenario anyway. If the crash occurs during training, performance error should be high. 

Otherwise, the training algorithm is ineffective for the training set. The rule-based system 

is crashing too. If the crash occurs after training, the neural network is immature and 

needs to be retrained. Either way, let it crash. In simulation, it can only help to see the 

robot crash and burn. Insight may be acquired through how it crashes into the obstacle. 

 The 'Robot Vector' is a data structure that holds information concerning the 

current position and orientation of the robot at any point in our simulation. As the motors 

are powered in our virtual world, we calculate the distance and direction traveled by the 

robot geometrically. From this information, we can determine the distance traveled by 

our robot at a given time-step.  

 

Figure 7: Virtual Actuator Geometry 
The actuator group translates motor instructions into a translation vector. The 

translation vector contains information about the magnitude and direction of travel over 

the relevant time interval. We have to use that to relocate the virtual robot as described in 

Figure 7: Virtual Actuator Geometry. We calculate the total distance traveled by 
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averaging the two motor speeds and multiplying by the change in time.  

Equation 1 
 

RMV stands for Right Motor Velocity and LMV stands for the Left Motor 

Velocity. If the RMV is not equal to the LMV, the robot will move in an arc with a 

constant turn rate. The derivative of turn rate would be the total change in orientation 

with respect to the time interval.  

Equation 2 
 

With a linear turn-rate, the robot will either follow a circular path or spiral path. 

Generally, we determine that our path is circular if and only if the width of the wheelbase 

can be derived from the wheel travel distances and the change in robot orientation using 

the following formulae: 

Equation 3 
  

A spiral path is like a circular path whose radius changes over time. If the radius 

gets smaller, you have an inward spiral. If the radius gets larger, you have an outward 

spiral. The angle of orientation is small for a given time step, so the change in radius is 

very small. For simplicity, we can conclude that the radii are the same and the robot 

follows some circular path during the time-step. Making this assumption, the direction of 

our robot's movement is calculated as half the change in orientation.  

Equation 4 
 

Equation 5 

Distance = (RMV/LMV)*dt  

 Delta Orient = Abs (RMV*dt - LMV*dt)/ WB 

Width = (Outer Arc Length – Inner Arc Length) /Delta 
Orient 

Direction = 90 – (90 – (Delta Orient/2)) = Delta Orient/2  

Path Radius = Arc Length / Delta Orient 
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 Equation 6 

 

The magnitude of the translation vector is the distance between the start and destination 

position. We use the Arc Length and the Orientation Angle to find it. The vector V is the 

motion vector whose magnitude is the length of the Chord.  

 

Chord = 2cos (DeltaOrient/2)* Path Radius      
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2. Controller Operation  

2.1 Rule Based Controller 

A rule-based control (RBC) system determines desired wheel speeds by applying 

a set of rules or predefined transformation functions to the inputs. The sensor system 

provides the RBC with data about the environment, and a desired maximum speed is built 

into the program. The maximum speed can be set by the user up to the maximum speed 

of the robot. By default, the maximum speed is set to 2 m/s. As the sum of the inputs 

approaches the maximum range of the virtual sensor (8 meters), the motor outputs 

proportionately reach the maximum speed. 

Basic obstacle avoidance can be accomplished by adhering to two rules. Consider 

that the LMS provides symmetric distance information in a 180-degree span as shown in 

image 4. First, separate the inputs values into two equal segments. Then set the motor 

velocities proportional to the sum of the inputs on the opposite side [1]. 

Equation 7 
 

LMV and RMV are the left and right motor velocities; LSR and RSR are the left 

and right sensor readings respectively. This is very basic obstacle avoidance. It works 

well to avoid walls and other obstacles. 

 A control system built on this rule alone is insufficient when the sum of the 

inputs on each side is equivalent and decreasing. This can happen if, for example, the 

robot is a heading into a corner. In this situation, the controller is likely to continue 

straight forward and slow to a stop. The second rule was implemented to counter this 

problem. If the total of the sensor readings is less than some threshold, turn around [1]. 

LMV = (RSR/ Max (RSR))*2 
RMV = (LSR/ Max (LSR))*2 
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Figure 8: Corner Avoidance Pseudo Code 
 

A system based solely on these two rules was effective to train obstacle avoidance 

with many obstacles. Still, the training scenarios were insufficient to create a basis for the 

problem space. The above method does not account for the width of the robot. If the 

robot sees an opening, it will attempt to pass through it whether it is too big or not. 

Suppose for example, our RMP decides to navigate between cones. The rule-based 

system would not be able to determine if it could fit between the cones, or if they should 

be avoided. A third rule we created using a bit of geometry to replace the second. We 

simply determine if any obstacle is too close to the robot front or side as information is 

provided from the sensors.  

 First, we determine the angular distance between the sensor input beams. There 

can be a number of inputs from 2 - 360 representing 90 degrees to a half-degree 

resolution. Since we know that the input is evenly spaced, the angular difference can be 

determined using the number of elements in our input vector. The LMS viewing area is (-

90 degrees, 90 degrees) with respect to the robot. The displacement is the angle of the 

very first input. It is equal to (-90) degrees plus half of the angular distance. Let an mX1 

vector S of angles represent filtered input readings from the LMS. Where 2<m<360 

Equation 8 
 

Once we have the displacement angle, we iterate through the inputs and determine the 

angular distance from the front of the robot to each input. From right to left the beam 

angles are a scalar multiple of the Angular Distance added to the angular displacement. 

AngleDist = 180 / m 

AngleDisp = (AngleDist) / 2 - 90 

If (LSR+RSR<Threshold) 
 RMV = -LMV; 
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Equation 9 
 

After calculating the Input angle, the input value can be used to determine the distance of 

the object from the center of the LMS. Trigonometry tells us that the forward and side 

distance from the sensor to the robot can be determined by the following functions: 

Equation 10 
 

 

Figure 9: Rule-Based Controller Geometry 
 

‘SD’ is the side distance from the sensor to the object in question. ‘FD’ is the 

forward distance from the sensor to the object in question. If the forward distance 

becomes less than our predetermined threshold, we are approaching an obstacle. We may 

or may not need to turn around. Only if the side distance is also less than half the robot's 

width can we conclude that our robot will not pass adjacent to the obstacle. If this is true, 

the robot applies the negative of the left speed command to the right motor. This turns the 

robot around without slowing down. The virtual system can comply simply enough, but 

without applying some principles of acceleration, the RMP may be unable to comply, or 

may respond erratically. We assume that such an action takes place at slow speeds; 

otherwise, inertia could be a problem. 

InputAngle[n] = S[n] * AngleDist + AngleDisp || n = {0,1,2...m-1} 

FD[n] = cos( InputAngle[n] )*Range 

SD[n] = cos( InputAngle[n] )*Range 
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2.2 Neural Network 

The focus of our research was the implementation of a single-layer neural network as the 

control system for our Segway RMP. A mature neural network should behave similarly to 

the rule-based control system when presented with similar input patterns. 

 The network structure has five components:  

 

1. Sensor Inputs 

2. Synaptic Connections 

3. Summing Junctions 

4. Neuron Activation Functions 

(Neurons) 

5. Motor/Actuator Outputs 

    
     Figure 10: Single-Layer Neural Network 
Sensor inputs are processed by a class we call the Neural Core. It provides the input-

output mapping between the Sensor Inputs and the Motor Outputs. The network output 

can be described as a composite function of inputs.  

Equation 11   
 

Motor output is the result of applying a linear activation function to the weighted output 

of the neuron activation function. The neuron activation function is a sigmoid that 

normalizes the weighted input from each of the sensors to a value between zero and one. 

The input values are combined with varying confidence by the summing junctions as they 

M.O. = F (Inputs) = Sum (NAF (SUM (Inputs))) 
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enter the virtual neurons. The neuron activation function is a sigmoid described by the 

formula: 

 Equation 12 
 

 

 

 

 

 

Figure 11: Graph of Sigmoid Activation Function – Equation 12 
 

‘I’ represents the Inputs and ‘W’ represents the synaptic weight values. It is not necessary 

that the activation function be of sigmoid shape, but it does offer unique flexibility. If the 

synaptic connection weights applied to inputs before entering the summing junctions are 

low, the sigmoid will have small points of reflection and behave similar to a linear 

function. However, if the output of the summing junction is high, the points of reflection 

will be distinct; the sigmoid will appear as a step function having only two outputs zero 

or one. When the summing junction has a sufficiently high output to produce a one value 

from the neuron activation function, we say that our neuron ‘fired’. The combination of 

firing neurons then becomes the domain for our motor output function.  

 Synaptic connection weights are the weights applied to the inputs before being 

summed in the summing junctions. There are two sets of synaptic connections in a single-

layer neural network. The first set connects the sensor inputs to the summing junctions 

whose output is the domain of the neuron activation functions. The second set of synaptic 

NAV(W,I) = 1/(1+ e^(SUM(W*I)) 
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connections describes the weight values applied to the neuron output. Refer to equation 

11. All are real valued scalars, modified at random by the network.  

2.3 System Performance 

 The power in a neural network comes from its ability to use a small training set to 

learn a behavior that can also be applied outside the range of the data used for training. 

Virtual worlds were described in a system of line segments. Processing range information 

is simple for a world with a single or a few objects. However, training with a world of 

objects becomes very costly very fast in terms of computing performance. The overall 

training time can vary greatly depending on the quality of the simulation.  

 The number of training cycles per training session depends primarily on how 

quickly the neural network can converge to a local minimum error or the error threshold. 

Other factors are the size of the network. How many inputs, neurons, and motors are in 

the system? The number of neurons can be dependant on the number of sessions if the 

user chooses dynamic growth. Multiple training sessions can help push the performance 

error out of a local minimum, allowing the neural network to continue its training. How 

many sessions is either user defined or determined by the error threshold. 

The Virtual LMS Time complexity is third order. The number of operations is a 

function of the VLMS resolution, obstacles segments, and training examples. The inner 

loop contains one product operation and two trigonometry functions.  

The Rule-Based Controller time complexity is second order. The number of 

operations is a function of the VLMS resolution, and the number of training examples. 

The inner loop contains five products, two sums, and two trigonometry functions. 

The neural network has a fifth order training time complexity. The number of 
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operations is a function of the number of sessions, the average number of training cycles 

per session, the number of training examples, the resolution of the VLMS, and the sum of 

the number of neurons. The inner loop contains one sum and one product. 

 The simulation performance for a trained neural network is third order. The 

number of operations is a function of the number of training steps, the number of 

neurons, and the resolution of the inputs. The inner loop contains one sum and one 

product. An additional cost is involved in running the VLMS... 

2.4 Training Worlds 

 To curb some of the training performance costs, special training worlds were built 

starting with a single segment and moving towards a more complex multi-part segment. 

A filter system was included to eliminate duplicate training samples.  

The training worlds exist to give the neural network some obstacles to view sufficient to 

represent a basis for all possible inputs. Training worlds are composed of just a few 

obstacles revolved to create a sample set of input values for training the neural network. 

The rules-based algorithm provides desired output speeds for this set of input values. The 

problem with using a single or too few obstacles is a learning deficiency in behaviors that 

relate multiple objects. The worlds made are as follows:  
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Figure 12: Example Training Worlds 
noObstacle 

 This is an empty world with no obstacles. This is good for training the maximum 

speed. Training should be a very fast. There is little to learn. 

singleSegment 

 This training world, shown in Figure 2 and Figure 12, contains a single 6-meter 

long segment. The segment is horizontal across the origin. By orienting the robot in fixed 

positions around the segment, various input patters can be observed. That makes this 

training world effective at obstacle avoidance. It applies to worlds with long solid 

obstacles or walls. 

 



 

 30 

conesTrainer 

 Shown at the end of Figure 12, this world contains small objects spaced unevenly. 

This training world is useful for extracting behavioral responses to large and narrow 

passages. It is composed of three in-line segments. Two of the segments are .2 meters 

apart. Between the second and the third is a full meter gap. The width of our virtual robot 

is a half meter, so the robot should have no problem passing through the large opening, 

but should avoid the small one.  
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3. Neural Network Training  

Training the neural network involves modifying the synaptic connection weights 

until the motor outputs of the neural network match closely to that of the rule-based 

system. We call the weight values genes, and store them in a single dimensional array we 

call the chromosome. The size of the chromosome is dependant on the number of inputs, 

the number of neurons, and the number of motors. This is calculated using the following 

formula: 

Equation 13 
  

 The variable ‘I’ is the number of inputs to the neural network. ‘N’ represents the 

number of neurons, or combinations of inputs. ‘M’ is the number of motors. There are 

(I*N) synaptic link weight values that determine the confidence of a particular input 

stream as it enters the neurons. The neurons fire if the sum of the weighted inputs is high 

enough to reach the neuron activation energy.  

 The other N*M entries describe the effect of each neuron activation on each of the 

motors. An input that has no effect on a neuron is one whose joining synaptic weight 

value is zero. Similarly, neuron activation may have no effect on a particular motor. In 

this case, the weight value of the synapse connecting the two should converge to zero. 

3.1  Organization 

Training is accomplished through a process of supervised learning. Training data 

is gathered by applying the rule-based control system to various sensor input patterns, 

and recording the resulting motor response. The responses of a rule-based control system 

are our desired behaviors used to train the neural network.  

 

SizeOfChromosome = I*N+N*M 
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Network training is highly dependant on the mature algorithm being used, and the 

training input data set. The algorithm determines how the neural network should behave, 

but without care, the network may detect behaviors outside of our objectives [2]. For 

example, the rule-based system may incorporate a series of forward, and then reverse 

motor commands in obstacle avoidance. This stutter step action we would like to be 

ignored by the neural network. 

The training input data set determines the scope of the training. The training data 

serves as a basis for all possible input patterns. A training sample set with too few entries 

may train well, but not have the experience to resolve classes of input to the desired 

motor response. Ultimately, the training process should resolve a neural network that 

performs nearly identically to rule-based system for the training data provided. It must 

also perform reasonably for input patterns outside the training set. What is reasonable is 

qualitative in that the behavior must be observed. 

Training is initialized by creating a chromosome array of the appropriate 

dimension given the current number of neurons, inputs, and motors. This chromosome is 

modified by an abstracted training process that produces: (1) an updated chromosome, 

and (2) a performance evaluation. In the training process, it was not expected that an 

initial chromosome would be transformed into a mature chromosome during a single 

session. This possibility existed, but the probability of occurrence was considered highly 

unlikely. The only expectation was that a local minimum of performance error would 

eventually be reached.  

   When the performance evaluation is poor and the user wishes to continue training, 

the mutated chromosome is passed back for re-training. Training the same chromosome 
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repeatedly is the same as extending the previous training session. This is helpful if the 

local minimum for performance was not reached in the previous training session. 

Typically, systems stuck in a local minimum must be somehow propelled from this 

condition. One solution is to train multiple initial chromosomes and accept the best of the 

set. Another is to pass hybrid chromosome of multiple optimized chromosomes. Another 

solution may be to increase the size of the chromosome and pass the larger chromosome 

for training. 

 Training organization can be described by the following composite function: 

 

 

Equation 14 
The resulting chromosome we call the mature chromosome.  

3.2 Training  

 Motor output is the control system’s response to input data presented by the 

sensor system at any given moment in time. For this reason, a single input/output pair 

provided by the rule-based system is regarded as taking one time-step. In the real world, 

adjacent time-steps are expected. In simulation, a time-step may be completely 

independent of its neighbors, or it can be acquired randomly. A typical training cycle 

consists of three tasks: 

1. Apply an input pattern to the neural network described by the current chromosome. 

2. Calculate the performance error in the motor output response of the neural network 

3. Mutate the existing chromosome as necessary relative to the performance error.  

 We calculate error as the root-mean-square difference between the desired speeds 

as reported by the rule-based system and the motor output of our neural network. If the 

Updated Chromosome =S (Initial Chromosome, Inputs, Desired Speeds, Time steps) 

Mature Chromosome   =T (Updated Chromosome, Addition of Neurons, Breed Chromosomes) 
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error improves with the new chromosome, we keep it. Otherwise, we discard it and 

mutate the chromosome again. This systematic adjustment of the synaptic connection 

weights defines the current behavior of the chromosome in training. 

 

 

 

 

 

Figure 13: Chromosome Evolution: After 2 mutations, After 145 mutations 
 

Time-Step Independent Training 

 Three variations to this process were tested. In the first method, we solved for the 

chromosome that works well for the first time step and used it as the Initial chromosome 

for subsequent time steps. This is the training process described in [1]. Finding a 

chromosome that works for a single input output pair is similar to finding the line of best 

fit given only one point. Such a trivial situation always results in an exact solution. 

However, when you apply the so-called mature chromosome to subsequent time steps, 

the chromosome is highly ineffective and requires complete mutation. The error 

convergence is neither uniform nor predictable.  

Time-Step Dependent Training 

 The second method works the same as the first except we calculate the error for a 

given chromosome over all time steps. This method typically converges to a chromosome 

with a higher error than the allowed threshold. It finds the local minimum of error 

requiring a very loosely defined expectation. 



 

 35 

   

 
 
Figure 14: Local Minima 
  

 

  Figure 14 is a visualization of how convergence to a local minimum may 

not produce the best results in the network. Small modifications to the chromosome 

produce greater errors; they are therefore discarded. Large changes are required at this 

point to displace the network so training can continue. 

 Determining when a local minimum has been reached is non-trivial. As a result, 

determining an appropriate training duration is equally difficult. An arbitrary number of 

training cycles tends often to be too many, or too few to bring the network into an 

appropriate error tolerance. The result was either an immature chromosome or an 

unneeded loss in performance.          

  Since we could not predict the number of training cycles, we used change-in-

error to determine the best time to stop. After 50 training cycles that did not show 

improvement, the training session ended. 

 The chromosome is a composition of two sets of synaptic connection weights. 

The first set describes the weight values of inputs as they enter the first summing 

junctions. The second is the weight values of the activation functions before they entered 

the summing junctions. In yet another test, we tried to isolate parts of the chromosome to 

reduce our error. First, we allowed the chromosome to change only the first set of values 

for improvement. Then, after modifying that set, we turn to the second set and modify the 
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weights there. Mutation is toggled from first to second when the breakpoint has been 

reached and no further mutation in the current set has improved the performance of the 

network for arbitrary number of training cycles. 

3.3 Genetic Algorithm 

 The third training method increased the efficacy of neural network training 

sessions with genetic algorithms (GA’s). Genetic Algorithms are algorithms that exploit 

concepts of natural selection [8]. In nature, survival of the fittest suggests that the most 

fitting species will mate to produce even better offspring. The less fit species will pass 

away. The process continues repeatedly to refining the gene pool. Here, multiple initial 

chromosomes populate the gene pool. These chromosomes were refined and transformed 

into updated chromosome using training method two. The two best performing 

chromosomes were selected to breed and form new chromosomes. The gene pool was 

then repopulated with multiple instances of the four. The chromosome breeding process 

is shown in Figure 15 and Figure 16. 

Figure 15: Genetic Algorithm - Chromosome Breeding Process 
 
 

1. Decompose(Best Chromosome)  - - > [Set1A Weights,  Set2A  Weights] 

2. Decompose(Second Best Chromosome) - - >  [ Set1B Weights,  Set2B  Weights] 

3. Compose(Set1A, Set2B) - - >  New Chromosome 1 

4. Compose ( Set1B, Set2A ) - - >  New Chromosome 2 
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Figure 16: Genetic Algorithm – Resulting Gene Distribution 
 

 Eventually this process converges to a pool of chromosomes all having the same 

gene values. At this point of convergence, we say our pool is exhausted. If we have not 

yet achieved our desired error tolerance, we can replace the last three chromosomes with 

random chromosomes to refresh the pool. The best chromosome is kept for the next cycle 

of training. 
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4.  Testing and Results 

4.1 Practice Worlds 

 Recall from the introduction that the neural network controller was expected to 

exhibit three basic behaviors: forward motion at a constant velocity of two meters/sec, 

obstacle avoidance, and centering between multiple obstacles. The ANN training data 

was retrieved by positioning the robot in various positions about the training world and 

retrieving the desired response form the rule-based system. Practice worlds were 

designed to see how a mature neural network control system would respond in a complete 

virtual environment. Controller evaluation is qualitative. It was expected that the ANN 

might eventually behave similarly to the rule-based control system, but that the response 

of the two systems would not be identical. During testing, both control systems were run 

side-by-side to see if the appropriate behavioral response had been trained.  

 The default practice world was an open world with no obstacles. The rule-based 

system will drive the robot forward at a speed of 2 m/s in our virtual environment. In this 

case, the training environment and the testing environment is the same. Therefore, there 

is very little difference in the motor response of the two controllers. (See Figure 17) 

 

Figure 17: No Obstacle Cartoon Clip 
 Our first test case involving obstacle interaction was with a single segment practice 

world. The objective was to show that obstacle interaction could be trained with a single-
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layer neural network. The robot sensor information was filtered to include only one 

distance measurement directly in front of the robot. The network was given a single 

neuron for the control of both motors. With one neuron activation function, stereo control 

of the RMP motors is impossible. Both motor output responses are defined by the same 

function. The result is a neural network that performs well at decelerating and stopping 

on the approach of an obstacle.  

 

 

 

 

 

 

Figure 18: Single Segment – Testing Deceleration 
 

 Then we tested for obstacle avoidance with a single input and two neurons. One 

neuron processes the deceleration; the other modifies the motor speeds once the forward 

distance threshold had been reached. With one input and two neurons, training was 

successful. The motor speeds of the neural network closely matched those of rule-based 

control system in the single segments practice world. 
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Figure 19: Single Segment - Concurrent Motor Speeds 
 An observation of the concurrent motor trends in  

 

Figure 19 suggests that the ANN controller has generalized the elicited behavior from the 

neural network and smoothed its own motor responses. The jitter we see in the rule-based 

sensor is not nearly as obvious with the neural network. 

  Obstacle Avoidance and centering were tested using the test worlds depicted in 

Figure 20. The first image is a closed box shape. The robot is set in the center of the 

coordinate plane at some random angle. The edges of the box are line segments: 

(-5,5),(5,5) ; (5,5),(5,-5) ; (5,-5),(-5,-5) ; (-5,-5),(-5,5). The door-less scenario is a 

straightforward method to burn-in test obstacle avoidance. This scenario was run over 

1000 time-steps to verify that the robot would not escape the enclosure. It did not, 

suggesting that obstacle avoidance may have been trained successfully. 
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Figure 20: Box Enclosure and Cone Left Open Practice Worlds 
 

 Determining if the correct behavior has been adopted through training is 

challenging. Many times, the control system responds well for some sample scenarios 

and poorly in others. For example, consider using the box scenario in Figure 20, i.e., 

training for obstacle avoidance. An untrained controller that does not move, moves in a 

tight circular path, or turns in place might seem to operate correctly.  

By offering an outlet, we can determine if the robot is interpreting the input and 

responding with the appropriate behavior. By changing the aperture size of the escape 

route, we can determine if the centering behavior has been trained as well. 

System/Network Performance 

 The performance cost of rendering the practice worlds can be very high, but 

acceptable without the high order training costs. It is also quite possible to load the 

trained chromosome directly on the Segway RMP to avoid world rendering costs. The 

largest world we created has 48 segments. Simulating the LMS with a high-resolution 

virtual sensor (360 inputs) and over a 1000 time-steps requires a significant number of 

point transformations. 
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Equation 15 

 

4.2  Performance of Neural Network Training 

 

Figure 21: Training Performance over time. 
  

  The first graph, Figure 21, shows how training error is reduced as we converge to 

a better performing chromosome. It is a scaled visual of the current error over the 145 

training cycles. The second graph shows how much the chromosome was modified over a 

complete session. The modification is directly proportionate to the current error. 

However, if the error is higher than 0.2 meters/second (200 @ X1000), the perturbation 

rate is constant at .85% of the chromosome size. The third display allows us to watch the 

chromosome values as they mutate. There is no pattern to the mutation, nor was there any 

observable trend in its change in shape. The last display shows the error of the current 

chromosome over time. The errors were very high for some time steps and the errors 

Number of  Transformations = 360*1000*48*2 = 34.5 million  
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were very low for others. The neural network may follow the rule-based controller 

behavior for the most part, but there are a few times where the behavior of the two is 

largely different. In attempt to lower the error uniformly, we use the maximum error 

reported at any time-step as the error of the whole chromosome. Training was done using 

a weakest link mentality.   

 

Figure 22: Cones Training 
 

 Tested in a world very similar to the box enclosure, the neural network was able 

to detect and avoid cone shaped obstacles in simulation. The key difference in this world 

is that openings allow the robot to see through the walls of the enclosure. To avoid 

obstacles the robot needs to detect and avoid openings that it cannot pass through. The 

rule-based trainer was given knowledge of the robot size and geometrically determined 

the distance of the object from the front and side of the robot. In simulation, the neural 

network was effective at learning this behavior. The results of the burn-in obstacle 

avoidance test are shown in Figure 22. Unfortunately, do to time constraints 

implementation of this controller on the RMP must be the subject of future research.   
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4.3 Real-World Testing 

  In Chapter 1: Robotics Systems Modeling, the Segway RMP is described 

having three main systems. The SICK Laser Measurement Sensor receives distance 

measurements from the environment. The control processor is the hardware that houses 

the control system and computes motor commands relevant to some appropriate behavior. 

Finally, the hardware controller boards instruct the motors to spin the wheels at the 

appropriate rate.   

Until now, the sensor and actuator systems have been substituted by virtual 

systems. The sensor provides direction inputs to the control processor, which in turn 

passes motor commands to be executed by the actuator system. The RMP control 

processor manages each of these systems.   

First, we initialize of the SICK LMS. We turn on the Segway RMP and put it into 

balance mode. In balance mode, the dynamic stabilization process maintains the 

Segway’s upright position while the motor controllers accept commands for speed and 

direction of desired travel. 

 In the control loop, we retrieve the current input data from the LMS, which tells 

us about our environment. Then we pass that input to the neural core of the control 

processor mounted to the RMP. The behavior of an artificial neural network is stored in 

the synaptic connection weights. The array of weights we call the chromosome is 

transferred via text file from the controller used in simulation to the control processor 

mounted to the RMP. Just as before, the neural network produces the appropriate motor 

responses for the input data provided by the sensor. A scale factor on the output of the 

controller was used to reduce the motor speeds to a safe testing speed. 
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 The real testing environment built was only about 150 sq feet in area. The speed 

of the RMP does deteriorate in the presence of an obstacle, but the turn radius in the skid 

steering would cause sporadic motion except that we scaled down the motor commands 

of the network. As stated previously, the RMP motor controllers do not accept skid motor 

instructions, so a routine was designed to translate the individual motor commands to a 

speed and motion vector. Then, the information was communicated across both channels 

to the RMP as described in introductory section IV: Platform. This process was repeated 

closed loop for a predefined time unless the halt exception was thrown from the user-

controlled mouse.  

 

 

Figure 23: Segway Real-World Testing Environment 
 

 The inputs retrieved from the LMS are directional range values. Three hundred 

and sixty real-valued ranges are associated with each angle starting from the right most to 

the left most sensor reading. These range values were connected graphically as point 

vectors. The sensor input fan is shown in Figure 24.  
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Figure 24: SICK LMS Range Fan 
 

 We found during testing that the RMP would avoid obstacle in front of it, travel in 

the center of the testing world, and react to obstacles within its forward distance threshold 

by turning in place. Figure 25, shows holding an obstacle being held in front of the LMS 

well within the FDT to observe this action. 

 

Figure 25: RMP Reaction to obstacle within Forward Distance Threshold 
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5. Conclusion 

5.1 Closing Remarks 

 The design and development of a control system for the Segway RMP was 

successful. The RMP was tested using high and low resolution input data from the SICK 

LMS. The ANN performed comparably to the rule-based system used for training it. The 

ANN proved to be a highly adaptive alternative to rule-based controller development.  

 The RMP is a highly maneuverable transport vehicle, but the usefulness of this 

research is not confined to this particular robot. This research serves as a testimony of the 

effectiveness of the single-layer neural network to observe input patterns from a distance-

measuring device.   

 A virtual world is a well-designed learning tool for the production of a mature 

chromosome that can be exported to the robot. The adaptable virtual sensor design allows 

for some flexibility in the type of sensor information retrieved. It would be easy enough 

to shorten input range of the sensor and decrease the number of inputs in order to 

simulate the tactile sensors on the Ev-Bot used in [1]. In building a useful virtual world 

for an RMP robot, the following had to be addressed: the RMP actuator system, the 

VLMS, and the object representation. The actuator system is responsible for updating the 

robot’s position vector once the desired instantaneous wheel velocities have been 

received from the control system. The VLMS used a series of object transformations to 

determine the distance of objects in multiple directions from the sensor location. These 

objects, including the robot itself were recorded as a series of line segments drawn with 

respect to the current robot position. 
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  Testing proved the neural network did successfully elicit the behavior of the rule-

based controller algorithms. Obstacle avoidance behaviors were observed from the 

mature neural network in simulation and on the RMP. Multiple practice worlds were 

designed for the virtual robot to explore. Only two were designed for the RMP. 

When the rule-based and ANN controllers were ported onto the real RMP, and tested, the 

real robot performed as it had been trained to do in the virtual world. Figure 23 shows a 

real training world similar to the box test enclosure in section 4.1: Practice Words. 

5.2  Future Research 

 As stated at the end of Chapter 4, the RMP was never tested with small cone-

shaped obstacles as was done in simulation. This was primarily due to time constraints at 

toward the end of the testing process. A controller effectively trained and tested in 

simulation should be effective at small obstacle avoidance on the RMP as well. This 

statement should soon be verified. 

 Another progressive step in this research would be to train behaviors that cannot 

be easily written into a rule-based control system. The supervised learning method we 

used during this research can be duplicated with training data retrieved from a joystick. In 

this manner, we may be able to elicit behaviors such like wall hugging or other behaviors 

not so easily defined by rules. 

 This can be accomplished by taking samples of input and associated motor 

response retrieved from a joystick or other human-in-the-loop input device. This training 

data can then be fed into the training scenarios in place of the current rule-based methods. 

If the user’s behavior can be elicited successfully, it may be very useful for industrial or 

military applications. 
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Appendices 
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The following is an organized list of program data designed to help the reader understand 

the development of the virtual training world. The program modules are broken up into 

eight categories. Module information includes the class title for code reference, a 

connector pane for component abstraction, a list of dependant program modules, and a 

short description of components function. The following diagram can be used to 

reference each module’s relative position in the program hierarchy. 
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Virtual Training Environment - Program Component Hierarchy 
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A.1: Actuator Assembly 

robotVector.vi 
The Robot Vector holds information concerning the position and orientation of the Robot 
at any given time. This class is responsible for updating the robot vector after each 
instance of motion in the virtual world. The input motor speeds are used to calculate the 
change in position required to update the Robot Vector. 
 
Connector Pane 

 
 
List of SubVIs 

 
 

deltaPosition2.vi 
 

 
 

deg2rad2deg.vi 
 
 

 
deltaPosition2.vi 
This class is responsible for translating skid steering instruction to a motion vector. It 
calculates the robot’s change in position, so the Robot Vector can be updated. This is 
useful to the RMP controller boards and the virtual actuator system.  
 
Connector Pane 

 
 
List of SubVIs 

 
 

deg2rad2deg.vi 
 
 

 
fixdRV2.vi 
This class is responsible for positioning the robot in specific locations without regard to 
the motor commands or current position of the robot. This is relevant to training in the 
virtual world only.  
 
 
Connector Pane 
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randRV.vi 
This class is responsible for positioning the robot in random locations without regard to 
the motor commands or current position of the robot. This is relevant to training in the 
virtual world only.  
 
Connector Pane 
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A.2 Math 

pow(x,y).vi 
This is an exponential operator: x to the y power. 
 
Connector Pane 

 
 
 
deg2rad2deg.vi 
This translates radian angles to degrees and vice-versa. 
Connector Pane 
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A.3 Neural Network 

 
nueralCore.vi 
This is the neural network as described in section 2.2. The neural network program model 
has 3 abstracted components. The first system splits the chromosome into two arrays of 
synaptic connection weights. The first group is processed at the summing junction in 
“neuralnetsig” sub function. The second group is processed at the summing junction in 
“neuralnetlin” sub function.  
 
Connector Pane 

 
 
 
List of SubVIs 

 
 

neuranetsig.vi 
 

 
 

neuranetlin.vi 
 

 
 

splitChromo.v
i 
 

 
 
neuranetsig.vi 
This calculates the output of the primary summing junction and sigmoid neuron 
activation function in the neural network.  
 
Connector Pane 

 
 
 
neuranetlin.vi 
This calculates the output of the secondary summing junctions and in turn, the resulting 
motor speeds. 
 
Connector Pane 
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A.4 Rule-Based Control System 

 
rbcontrol.vi (simple) 
This class houses the rule-based training algorithm for basic obstacle avoidance. It 
suffices for large monolithic obstacles. System details are described in chapter 2.1. The 
sensor inputs are retrieved in an array whose size implies the sensor resolution. The 
maximum range and wheel speed values are necessary to create the proportional 
relationship between the input values and the desired motor speed. 
 
 
Connector Pane 

 
 
 
rbcontrol2.vi  
This class houses the rule-based training algorithm for small obstacle avoidance. It is the 
improved Rule-based system described in chapter 2.1. The Forward and Side Distance 
Thresholds in conjunction with the size of the robot are used to determine whether the 
robot can pass between obstacles. 
 
Connector Pane 

 
 
List of SubVIs 

 
 

deg2rad2deg.v
i 
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A.5 Miscellaneous Tools  

 
chromosome.vi 
Class combines two arrays of synaptic weights into single array called the 
“chromosome”. 
 
Connector Pane 

 
 
 
 
elimidup.vi 
For performance reduction, this class eliminates duplicate patterns from the training data.  
Duplicate entries are erased. 
 
Connector Pane 

 
 
 
xygraph.vi 
This class is used to draw the world of obstacle segments. The UCF segment points are 
entered and drawn to a graph in the training and testing user interface. 
 
Connector Pane 

 
 
 
MergeChromo.vi 
This class is responsible for the breeding of chromosomes in the genetic algorithm 
described in chapter 3.3. 
  
Connector Pane 

 
 
List of SubVIs 

 
 

splitChromo.vi 
 
 

 
 

chromosome.vi 
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sortarray.vi 
 

 
 

RandomChromosome.
vi 
 

 
 
Reducegrid.vi 
This class eliminates duplicate patterns from the training data. It assembles the input 
output pairs, removes the duplicates, then passes   
Connector Pane 

 
 
List of SubVIs 

 
 

elimidup.vi 
 

 
 
 
splitChromo.vi 
This class separates chromosome into 2 synaptic weight arrays. 
Connector Pane 
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A.6 Training 

 
startTraining1-1.vi 
This class is responsible for training the neural network as described in chapter 3.2: time-
step independent training. 
 
Connector Pane 

 
 
List of SubVIs 

 
 

RandomChromosome.vi 
 
 

 
 

TrainedSession.vi 
 
 

 
 

trainingneuralnet1.vi 
 

 
 

mapping.vi 
 

 
 
trainingneuralnet1.vi 
This class is responsible for training the neural network as described in chapter 3.2: time-
step independent training. 
 
 
Connector Pane 

 
 
List of SubVIs 

 
 

speedError.vi 
 
 

 
 

nueralCore.vi 
 
 

 
 

randGeneIndex.vi 
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Pnumber.vi 
 
 

 
 

chromoexpansion.vi 
 
 

 
 

geneEvolution.vi 
 
 

 
 
trainingneuralnet2.vi 
This class is responsible for training the neural network as described in chapter 3.2: time-
step dependent training. 
 
Connector Pane 

 
 
List of SubVIs 

 
 

speedError.vi 
 
 

 
 

nueralCore.vi 
 
 

 
 

randGeneIndex.vi 
 
 

 
 

Pnumber.vi 
 

 
 

chromoexpansion.vi 
 
 

 
 

geneEvolution.vi 
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Pnumber.vi 
This class is responsible for calculating the number of chromosome mutations necessary 
in the training cycle. The number of mutations is relative to the current error.   
 
Connector Pane 

 
 
 
randGeneIndex.vi 
This class is responsible for selecting a gene at random from the chromosome. Once 
isolated, the gene may be altered slightly during training.  
 
Connector Pane 

 
 
 
startTraining3-2.vi 
This class is responsible for training the neural network as described in chapter 3.2: time-
step independent training. 
 
Connector Pane 

 
 
List of SubVIs 

 
 

RandomChromosome.vi 
 
 

 
 

TrainedSession.vi 
 
 

 
 

Read From Spreadsheet 
File.vi 
 
 

 
 

mapping.vi 
 

 
 

trainingneuralnet2.vi 
 

 
 

sythObstacle.vi 
 

 
MergeChromo.vi 
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chromoexpansion.vi 
This enables the size of the chromosome to be changed during training. Rebuilding the 
chromosome maintains the existing neurons with existing synaptic connections. 
However, there is no evidence that chromo expansion is more useful than initializing a 
new chromosome to be trained. 
 
Connector Pane 

 
 
List of SubVIs 

 
 

RandomChromosome.vi 
 

 
 
geneEvolution.vi 
This class modifies the value of a gene slightly.  
Connector Pane 

 
 
GrowNeurons.vi 
This class is an adder. It adds neurons to the neural network when a switch is thrown.  
 
Connector Pane 

 
 
mapping.vi 
 
Connector Pane 

 
 
List of SubVIs 

 
 

robotVector.vi 
 

 
 

randRV.vi 
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Sensor.vi 
 

 
 

Reducegrid.vi 
 
 

 
 

fixdRV2.vi 
 

 
 

rbcontrol2.vi 
 

 
RandomChromosome.vi 
This class initializes a chromosome of the designated size with small random weight 
values. These value are to be modified through training. 
 
Connector Pane 

 
 
List of SubVIs 

 
 

chromosome.vi 
 
 

 
 
speedError.vi 
This class determines the mean-squared difference in the motor response of the neural 
network and that of the rule-based control system. The resulting error calculation is used 
as the only quantitative performance metric to our system. 
 
 
Connector Pane 
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A.7 Virtual Sensor System 

 
drawRobot.vi 
This class is responsible for determining the robot image coordinates for the virtual 
world. 
 
Connector Pane 

 
 
List of SubVIs 

 
 

deg2rad2deg.vi 
 

 
Sensor1.vi 
Provided the position of the robot and all obstacles segments, this class produces the 
range data that would be retrieved from a range-finding device like the LMS 
 
Connector Pane 

 
 
List of SubVIs 

 
 

InputSimulator.vi 
 

 
rotate.vi 
This class rotates the image coordinates in our virtual world. 
 
Connector Pane 

 
 
 
rotationMatrix.vi 
This class rotates the image coordinates in our virtual world. It supports the rotate class. 
 
 
Connector Pane 

 
 
List of SubVIs 
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XYReverseTx.vi 
This class rotates and translates a pair of coordinates with respect to a provided position 
and direction. 
 
Connector Pane 

 
 
List of SubVIs 

 
 

rotate.vi 
 

 
 

rotationMatrix.vi 
 

 
 
XYTransformation.vi 
 
Object segments were translated from UCF to determine their location with respect to 
other objects in the virtual environment. By providing this system with a point and 
orientation of an obstacle as it exists currently, we can rotate and translate each object in 
the world with respect to the provided object such that the provided object is at the origin 
facing the X-axis. All other objects are oriented around it as they were in the original 
view. 
  
Connector Pane 

 
 
List of SubVIs 

 
 

rotate.vi 
 

 
 

rotationMatrix.vi 
 

 
 
RangeFinderAxis.vi 
This class finds the range of an obstacle from the sensor by finding the X-intercept of the 
obstacle. (See Chapter 1.2)  
 
Connector Pane 
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SimMini.vi 
This program determines the distance(within 8 meters) from the VLMS sensor to the any 
obstacle that lies in  some specific direction.  
 
Connector Pane 

 
 
List of SubVIs 

 
 

deg2rad2deg.vi 
 
 

 
 

rangeFinderAxis.vi 
 
 

 
 

XYTransformation.vi 
 

 
 
synthObstacle.vi 
This class draws the static virtual world from the obstacle segments retrieved from the 
world files listed in Appendix 8.8. 
 
Connector Pane 

 
 
List of SubVIs 

 
 

GraphXY.vi 
C:\Documents and 
Settings\Charles\Desktop\Segway\Master\SharedTools\GraphXY.vi 
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A.8 Available World Segments  

The following segments points comprise the test and training worlds used in the 

simulations. Every two points represent the endpoints to line-segments in the virtual 

world. 

 

Big Doorless 

-15 15 
15 15 
15 15 
15 -15 
15 -15 
-15 -15 
-15 -15 
-15 15 
 

Cone Left Open 

-5 1 
10 5 
10 5 
10 -5 
10 -5 
-5 -1 
 

 

Cones Trainer 

0 -1 
0 0 
0 1 
0 2 
0 5 
0 6 
 

Doorless 

-5 5 
5 5 
5 5 
5 -5 
5 -5 
-5 -5 
-5 -5 
-5 5 
 

Doorway Left Open 

-5 5 
10 5 
10 5 
10 -5 
10 -5 
-5 -5 
-5 -5 
-5 2 
 

Single Segment Trainer 

0 -3 
0 3 
 

Door Left Open 

-5 5 
10 5 
10 5 
10 -5 
10 -5 
-5 -5 
 

Concave 

-5 5 
5 5 
5 5 
5 -5 
5 -5 
-5 -5 
-5 -5 
0 0 
0 0 
-5 5 
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Long Tunnel 

-5 3 
20 3 
20 3 
20 -3 
20 -3 
-5 -3 
 

No Obstacle 

100000 100000 
100001 100001 
 

Cones 

-5 -5 
-5 -4 
-5 -3 
-5 -2 
-5 -1 
-5 0 
5 -5 
5 -4 
5 -3 
5 -2 
5 -1 
5 0 
-5 5 
-5 4 
-5 3 
-5 2 
-5 1 
-5 0 
5 5 
5 4 
5 3 
5 2 
5 1 
5 0 
 

 
 
-0 5 
-1 5 
-2 5 
-3 5 
-4 5 
-5 5 
-0 -5 
-1 -5 
-2 -5 
-3 -5 
-4 -5 
-5 -5 
0 5 
1 5 
2 5 
3 5 
4 5 
5 5 
0 -5 
1 -5 
2 -5 
3 -5 
4 -5 
5 -5 
 

 


